Carbon Isotope Labeling of Carbamates by Late-Stage [¹¹C], [¹³C] and [¹⁴C] Carbon Dioxide Incorporation

Antonio Del Vecchio,^{[a]+} Alex Talbot,^{[a]+} Fabien Caillé,^[b] Arnaud Chevalier,^[a, c] Antoine Sallustrau,^[a] Olivier Loreau,^[a] Gianluca Destro,^[a] Frédéric Taran,^[a] Davide Audisio*^[a]

^[a] Université Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage, 91191, Gif-sur-Yvette, France

^[b] UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France

^[c] Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

E-mail: davide.audisio@cea.fr

Table of contents

1.	General i	nformation4
2.	Materials	and methods6
2	2.1.	Procedures for the preparation of α-azido-ketones6
2	2.2.	General procedure for the reduction of α -azidoketone to α -azidoalcohols10
2	2.3.	Synthesis of tertiary alcohol14
2	2.4.	Synthesis of [¹³ C]labeled aliphatic cyclic carbamates15
2	2.4.a.	Optimization of the Staudinger Aza-Wittig reaction16
2	2.5.	Synthesis of ¹³ C-labeled aliphatic carbamates18
2	2.6.	Synthesis of ¹⁴ C-labeled aliphatic carbamates23
2	2.7.	Preparation of 1-(2-azidophenyl) derivatives (by means of the Sandmeyer
		reaction)27
2	2.8.	General procedure for the preparation of 1-(2-azidophenyl)alcohols30
2	2.9.	Preparation of hydroxy-azides analogues (830)37
2	2.10.	Synthesis of ¹³ C-labeled 6-membered ring cyclic carbamate derivatives38
2	2.11.	General procedure for the preparation of the aromatic azido derivatives <i>via</i> Sandmeyer reaction43
2	2.12.	Synthesis of ¹³ C-labeled aromatic cyclic carbamates47
2	2.12.1	Optimisation47
2	2.13.	Synthesis of drug precursors51
2	2.14.	Synthesis of ¹³ C-labeled drug derivatives62
2	2.15.	Synthesis of ¹⁴ C-labeled drug derivatives67
2	2.16.	Disconnection/reconnection strategy to label carbamates71
2	2.16.1	Labeling of carbamate (28)71
2	2.16.2	Labeling of Zolmitriptan (30)74
2	2.16.3	Labeling of Fenspiride (25)77
2	2.3.	Synthesis of ¹¹ C-labeled aliphatic cyclic carbamates79
2	2.3.1	General procedure for ¹¹ C radiolabeling79
2	2.3.2	Synthesis of ¹¹ C-labeled 5-membered ring carbamate derivatives80
2	2.3.1	Synthesis of ¹¹ C-labeled 6-membered ring carbamate derivatives83
2	2.3.4	Synthesis of ¹¹ C-labeled aromatic cyclic carbamates86
2	2.3.5	Synthesis of ¹¹ C-labeled drug derivatives88

3. Preliminary optimization on model linear carbamate (32)			
3.1	Synthesis of ¹³ C-labeled linear carbamate [¹³ C]32	92	
3.2	Synthesis of ¹¹ C-labeled linear carbamate [¹¹ C]32	94	
4. NMR	Spectra		
5. Radio	-TLC of ¹⁴ C-labeled compounds		
6. Radio	-HPLC Analysis for ¹¹ C-Labeled Compounds		

1. General information

Reactants and solvents:

Unless otherwise noted, all reactions were carried out in oven-dried glassware

Commercially available chemicals were purchased from from ABCR, Acros Organics, Sigma-Aldrich, Alfa Aesar, Combi-Blocks, Carbolution, Fluorochem, and TCI Europe and used as received unless otherwise stated. The following solvents were dried by distillation over the drying agents indicated in parentheses: THF (Sodium), Dichloromethane (CaH₂). Additional anhydrous solvents were purchased from Acros Organics, SigmaAldrich, Alfa Aesar and stored over molecular sieves under an argon atmosphere.

Purifications:

Flash chromatography were performed on silica gel (Merck Kieselgel 60, grading 40-63 μ m) or using automate Puriflash XS 520 Plus with pre-packed column RediSep® Rf (grading 35-70 μ m). *Chiral HPLC chromatograms* were recorded using a JASCO SFC apparatus with CHIRALCEL IA chiral column (250 mm × 4.6 mm x 5 μ m), mobile phase : CO₂/iPrOH:10/90 , flow rate 1.0 ml.min⁻¹ at 25 °C, UV detection (300 nm).

Analysis:

Reactions were monitored by TLC carried out on silica 0,25 mm (60 F254, Merck) using UV light as visualizing agent. For staining, the TLC plates were dipped into a solution basic aqueous permanganate (1 g KMnO₄, 6 g K₂CO₃ and 0.1 g KOH in 100 mL H₂O) and developed with a heat gun.

Nuclear Magnetic Resonance (NMR) Spectroscopy: ¹H NMR (400 MHz), ¹³C NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m).

Electrospray mass spectra were obtained using an ESI-Quadripole autopurify, Waters (pump: 2545, mass: ZQ2000) mass Spectrometer.

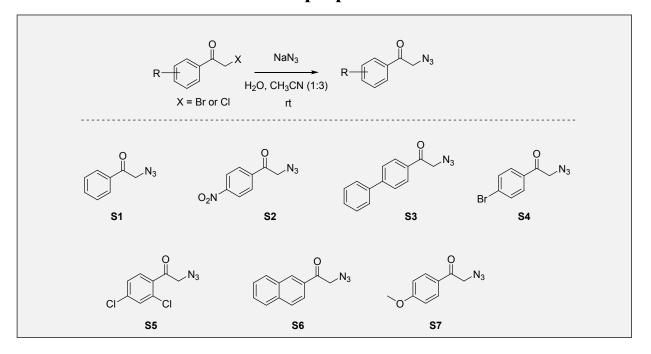
LC-MS spectra were recorded on a Waters Acquity UPLC® equipped PDA e λ Detector and SQ Detector 2, mobile phase A: H₂O + 0.1% formic acid, mobile phase B: acetonitrile + 0.1% formic acid.

High-resolution mass spectra (HRMS) were performed on a Bruker maXis mass spectrometer by the "Fédération de Recherche" ICOA/CBM (FR2708) platform (University of Orléans).

Infrared spectra (IR) were obtained on a Perkin Elmer UATR TWO FTIR spectrophotometer and are reported as wavelength numbers (cm-1).

Melting points (Mp) were obtained on a BÜCHI Melting Point B-545 and are reported in °C.

Carbon-14 radiolabeling:

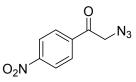

Carbon-14 reagents and compounds were handled by experimentalist uniquely trained in working with radioactive materials and operating in specialized laboratories.

Carbon-14 radioactivity was measured either with a PerkinElmer Ultra Gold liquid scintillation cocktail or with a PerkinElmer 3110TR liquid scintillation analyzer.

RadioHPLC and HPLC-UV analyses were conducted with a Waters Alliance 2695 connected to a MS detector Waters ZQ 2000 and a Scintillation Analyzer Berthold 514 (column Xbridge BEH C18 100x4.6 mm, 3.5 μ m). Alternatively, they were also conducted on a Waters Acquity UPLC® equipped PDA e λ Detector and SQ Detector 2, mobile phase A: H₂O + 0.1% formic acid, mobile phase B: acetonitrile + 0.1% formic acid and a Scintillation Analyzer Berthold 509 (Xbridge BEH C18 50x2.1, 1.7).

<u>When using ¹⁴CO₂</u>: ¹⁴CO₂ (2.172 GBq mmol-1) was generated using a ¹⁴CO₂ manifold system (RC Tritec AG). Mass spectra (ESI) for the calculation of molar activities (A_m) were obtained using a Waters Micromass ZQ spectrometer. Radiochemical purities were determined by Thin Layer Chromatography on TLC silica gel 60F254 glass plates (Merck) using a RITA scanner (Raytest) for the radioactive detection.

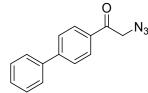
2. Materials and methods



2.1. Procedures for the preparation of α -azido-ketones

To a solution of 2-chloro-1-phenylethan-1-one (1.00 g, 6.47 mmol) at room temperature in a mixture of 3.0 mL H₂O and 9.0 mL of CH₃CN was added sodium azide (650 mg, 10.0 mmol). After adding a catalytic amount of KI (56 mg, 0.33 mmol), the reaction mixture was stirred at room temperature for 2 hours. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-phenylethan-1-one **S1** as a yellowish solid (900 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ 7.92 (m, 2H), 7.63 (m, 1H), 7.51 (m, 2H), 4.57 (s, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 193.2, 134.2, 134.0, 128.9 (2C), 127.8 (2C), 54.7.
IR (cm⁻¹) 3050, 2912, 2102, 1621, 1591, 1432, 1351, 1251, 1223, 901, 873, 771, 749, 663, 453.
LCMS (ESI) *m/z* C₈H₇N₃O [M+H]⁺ 162.1.



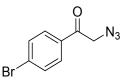
C₈H₆N₄O₃ **MW**: 206.16 g.mol⁻¹ **Yield**: 49% Yellowish solid

To a solution of 2-bromo-1-(4-nitrophenyl)ethan-1-one (1.00 g, 4.10 mmol) at room temperature in a mixture of 2.0 mL H₂O and 6.0 mL of CH₃CN was added sodium azide (400 mg, 6.14 mmol). The reaction mixture was stirred at room temperature for 2 hours. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(4-nitrophenyl)ethan-1-one **S2** as a yellowish solid (410 mg, 49%).

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 8.9 Hz, 2H), 4.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 150.9, 138.8, 129.2 (2C), 124.3 (2C), 55.3. IR (cm⁻¹) 2895, 2150, 2107, 1704, 1601, 1521, 1342, 1209, 1005, 914, 852, 748, 689, 640, 552, 501. LCMS (ESI) *m/z* C₈H₆N₄O₃ [M+H-N₂]⁺ 179.3.

1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-one (S3)

 $\begin{array}{c} C_{14}H_{11}N_3O\\ \textbf{MW: } 237.26 \text{ g.mol}^{-1}\\ \textbf{Yield: } 99\%\\ \text{Yellowish solid} \end{array}$

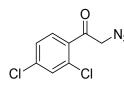

To a solution of 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one (1.10 g, 4.0 mmol) at room temperature in a mixture of 2.0 mL H₂O, 2.0 mL of THF and 6.0 mL of CH₃CN was added sodium azide (390 mg, 6.0 mmol). The reaction mixture was stirred at room temperature for 2 hours. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-one **S3** as a yellowish solid (937 mg, 99%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.97 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.62 (m, 2H), 7.44 (m, 2H), 7.41 (m, 1H), 4.57 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 192.9, 146.8, 139.5, 133.1, 129.1 (2C), 128.62, 128.59 (2C), 127.6 (2C), 127.3 (2C), 54.9.

IR (cm⁻¹) 3030, 2909, 2137, 2097, 1682, 1601, 1403, 1344, 1220, 1192, 1000, 908, 831, 759, 723, 695, 670, 571.

LCMS (ESI) *m/z* C₁₄H₁₁N₃O [M+H]⁺ 238.3.



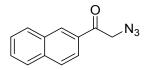
 $\begin{array}{c} C_8H_6BrN_3O\\ \textbf{MW}:\ 240.06\ g.mol^{-1}\\ \textbf{Yield}:\ 89\%\\ Yellowish\ solid \end{array}$

To a solution of 2-bromo-1-(4-bromo)ethan-1-one (1.11 g, 4.0 mmol) at room temperature in a mixture of 2.0 mL H₂O and 6.0 mL of CH₃CN was added sodium azide (400 mg, 6.14 mmol). The reaction mixture was stirred at room temperature for 30 min. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(4-bromophenyl)ethan-1-one **S4** as a yellowish solid (854 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.7 Hz, 2H), 7.63 (d, J = 8.7 Hz, 2H), 4.52 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 133.2, 132.4 (2C), 129.6, 129.5 (2C), 54.9. IR (cm⁻¹) 3368, 2905, 2102, 1692, 1586, 1398, 1292, 1216, 1071, 1000, 908, 719, 645, 552, 496. LCMS (ESI) *m*/z C₈H₆⁷⁹BrN₃O [M+H]⁺ 240.0, C₈H₆⁸¹BrN₃O [M+H]⁺ 242.1.

2-azido-1-(2,4-dichlorophenyl)ethan-1-one (S5)

 $\begin{array}{c} C_8H_5Cl_2N_3O\\ \textbf{MW}:\ 230.05\ g.mol^{-1}\\ \textbf{Yield}:\ 75\%\\ Yellow\ solid \end{array}$


To a solution of 2-chloro-1-(2,4-dichlorophenyl)ethan-1-one (894 mg, 4.0 mmol) at room temperature in a mixture of 2.0 mL H₂O, 2.0 mL of THF and 6.0 mL of CH₃CN was added sodium azide (390 mg, 6.0 mmol). After adding a catalytic amount of KI (34.0 mg, 0.20 mmol), the reaction mixture was stirred at room temperature for 9 hours. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(2,4dichlorophenyl)ethan-1-one **S5** as a yellow solid (687 mg, 75%).

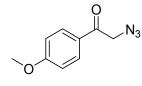
¹**H NMR (400 MHz, CDCl₃)** δ 7.57 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 2.0 Hz, 1H), 7.34 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.49 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 194.9, 139.0, 134.1, 132.8, 131.2, 130.8, 127.8, 57.9.

IR (cm⁻¹) 3090, 2099, 1693, 1581, 1374, 1274, 1255, 1204, 1106, 1064, 995, 911, 826, 780, 576.

LCMS (ESI) m/z $C_8H_5^{35}Cl_2N_3O[M+H-N_2]^+$ 202.1, $C_8H_5^{35}Cl^{37}ClN_3O[M+H-N_2]^+$ 204.2, $C_8H_5^{37}Cl_2N_3O[M+H-N_2]^+$ 206.0.

 $\begin{array}{c} C_{12}H_9N_3O\\ \textbf{MW}:\ 211.22\ g.mol^{-1}\\ \textbf{Yield}:\ 96\%\\ Yellowish\ solid \end{array}$

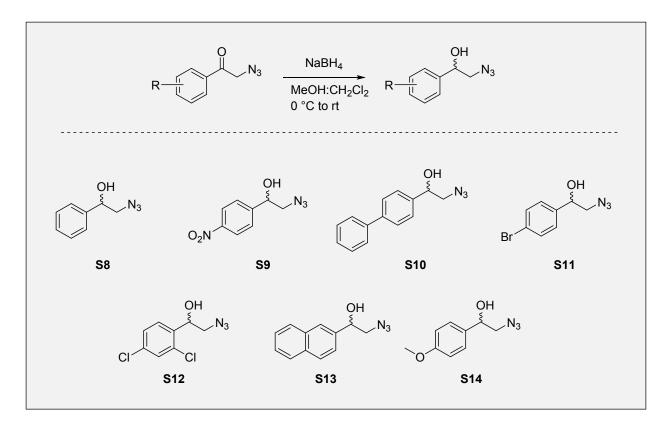

To a solution of 2-bromo-1-(naphthalen-2-yl)ethan-1-one (996 mg, 4.0 mmol) at in a mixture of 2 mL H_2O , 2 mL of THF and 6 mL of CH_3CN was added sodium azide (390 mg, 6.0 mmol). The reaction mixture was stirred at room temperature for 2 hours. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(naphthalen-2-yl)ethan-1-one **S6** as a yellowish solid (854 mg, 96%).

¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.95 – 7.92 (m, 2H), 7.90 – 7.86 (m, 2H), 7.63 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.57 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 4.66 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 193.2, 136.0, 132.4, 131.7, 129.8, 129.7, 129.1, 129.0, 128.0, 127.2, 123.3, 55.0.

IR (cm⁻¹) 3060, 2983, 2902, 2089, 1675, 1595, 1419, 1354, 1255, 1210, 909, 857, 772, 736, 664, 471. **LCMS (ESI)** *m/z* C₁₂H₉N₃O [M+H]⁺212.2.

2-azido-1-(4-methoxyphenyl)ethan-1-one (87)



C₉H₉N₃O₂ **MW**: 191.19 g.mol⁻¹ **Yield**: 98% Yellowish solid

To a solution of 2-bromo-1-(4-methoxyphenyl)ethan-1-one (917 mg, 4.10 mmol) at room temperature in a mixture of 2.0 mL H₂O and 6.0 mL of CH₃CN was added sodium azide (400 mg, 6.14 mmol). The reaction mixture was stirred at room temperature for 1 hour. After addition of 50 mL of EtOAc, the organic phase was washed twice with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(4-methoxyphenyl)ethan-1-one **S7** as a yellowish solid (747 mg, 98%).

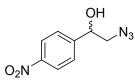
¹**H NMR (400 MHz, CDCl₃)** δ 7.86 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 4.49 (s, 2H), 3.86 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.7, 164.3, 130.3 (2C), 127.4, 114.2 (2C), 55.6, 54.6. IR (cm⁻¹) 2902, 2842, 2120, 1862, 1597, 1515, 1267, 1235, 1174, 1021, 944, 823, 771, 627, 597, 566. LCMS (ESI) *m*/z C₉H₉N₃O₂ [M+H]⁺ 192.2.

2.2. General procedure for the reduction of α -azidoketone to α -azidoalcohols

To a solution of 1.00 mmol of α -azidoketone in 7.0 mL of dry MeOH and 3.0 mL of dry CH₂Cl₂ at 0 °C was added 1.00 mmol of NaBH₄. The resulting mixture was then stirred at room temperature under argon for 30 min. After the reaction was completed, the reaction was stopped by adding 10 mL of a saturated solution of NaHCO₃ and the phases were separated. The aqueous phase was extracted twice with 10.0 mL of CH₂Cl₂, the organic layers were combined, dried over MgSO₄ and evaporated to dryness. The crude mixture was then purified by Flash Chromatography on SiO₂ gel using the opportune eluent.

2-azido-1-phenylethan-1-ol (S8)

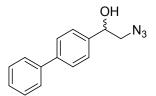

OH N₃ $\begin{array}{c} C_8 H_9 N_3 O \\ \textbf{MW: } 163.18 \text{ g.mol}^{-1} \\ \textbf{Yield: } 90\% \\ \text{Colorless oil} \end{array}$

2-azido-1-phenylethan-1-ol **S8** was prepared accordingly to the general procedure. The reaction was conducted using 161 mg of 2-azido-1-phenylethan-1-one **(S1)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-phenylethan-1-ol **S8** as a colorless oil (146 mg, 90%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.30 (m, 5H), 4.84 (dd, J = 8.0, 4.0 Hz, 1H), 3.42 (m, 2H), 2.74 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 128.7 (2C), 128.4, 126.0 (2C), 73.4, 58.0.
 IR (cm⁻¹) 3404, 2103, 1493, 1453, 1299, 1261, 1063, 881, 758, 700, 617.
 LCMS (ESI) *m*/z C₈H₉N₃O [M-H+HCO₂H]⁻ 208.1.

2-azido-1-(4-nitrophenyl)ethan-1-ol (S9)


C₈H₈N₄O₃ **MW**: 208.18 g.mol⁻¹ **Yield**: 89% Yellow solid

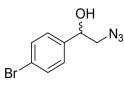
2-azido-1-(4-nitrophenyl)ethan-1-ol **S9** was prepared accordingly to the general procedure. The reaction was conducted using 205 mg of 2-azido-1-(4-nitrophenyl)ethan-1-one **(S2)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(4-nitrophenyl)ethan-1-ol **S9** as a yellow solid (184 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.8 Hz, 2H), 4.99 (dd, J = 7.4, 4.1 Hz, 1H), 3.54 – 3.43 (m, 2H), 3.05 (brs, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 147.9, 147.7, 126.9 (2C), 123.9 (2C), 72.5, 57.8.

IR (cm⁻¹) 3417, 2923, 2098, 1603, 1514, 1343, 1300, 1256, 1076, 851, 820, 750, 700, 519. **LCMS (ESI)** *m/z* C₈H₈N₄O₃ [M-H+HCO₂H]⁻ 253.3.

1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-ol (S10)

 $C_{14}H_{13}N_{3}O$ **MW**: 239.28 g.mol⁻¹ **Yield**: 71% White solid


1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-ol **S10** was prepared accordingly to the general procedure. The reaction was conducted using 237 mg of 1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-one **(S3)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-ol **S10** as a white solid (169 mg, 71%).

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.62 (m, 4H), 7.47 (m, 4H), 7.38 (m, 1H), 4.92 (dd, *J* = 7.9, 4.4 Hz, 1H), 3.58 – 3.42 (m, 2H), 2.71 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.6, 139.6, 128.9 (2C), 127.6, 127.5 (2C), 127.2 (2C), 126.5 (2C), 73.3, 58.1.
IR (cm⁻¹) 3401, 3029, 2096, 1485, 1405, 1266, 1073, 1007, 837, 763, 732, 695.

LCMS (ESI) *m/z* C₁₄H₁₃N₃O [M-H+HCO₂H]⁻ 284.3.

2-azido-1-(4-bromophenyl)ethan-1-ol (S11)

 $\begin{array}{c} C_8H_8BrN_3O\\ \textbf{MW}: 242.08 \text{ g.mol}^{-1}\\ \textbf{Yield}: 98\%\\ \text{White solid} \end{array}$

2-azido-1-(4-bromophenyl)ethan-1-ol **S11** was prepared accordingly to the general procedure. The reaction was conducted using 239 mg of 2-azido-1-(4-bromophenyl)ethan-1-one **(S4)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(4-bromophenyl)ethan-1-ol **S11** as a white solid (237 mg, 98%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (d, J = 8.6 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 4.79 (dd, J = 7.5, 4.1 Hz, 1H), 3.46 – 3.35 (m, 2H), 2.89 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.6, 131.8 (2C), 127.70 (2C), 122.2, 72.8, 57.9.

IR (cm⁻¹) 3398, 2919, 2097, 1487, 1299, 1259, 1070, 1009, 819, 523.

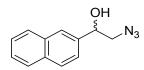
LCMS (ESI) *m/z* C₈H₈⁷⁹BrN₃O [M-H+HCO₂H]⁻286.2, C₈H₈⁸¹BrN₃O [M-H+HCO₂H]⁻288.2.

2-azido-1-(2,4-dichlorophenyl)ethan-1-ol (S12)

OH

 N_3

C₈H₇Cl₂N₃O MW: 232.06 g.mol⁻¹ Yield: 84% Yellowish solid


2-azido-1-(2,4-dichlorophenyl)ethan-1-ol **S12** was prepared accordingly to the general procedure. The reaction was conducted using 232 mg of 2-azido-1-(2,4-dichlorophenyl)ethan-1-one **(S5)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(2,4-dichlorophenyl)ethan-1-ol **S12** as a yellowish solid (194 mg, 84%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 2.1 Hz, 1H), 7.29 (dd, *J* = 8.4, 2.1 Hz, 1H), 5.22 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.54 (dd, *J* = 12.7, 3.0 Hz, 1H), 3.32 (dd, *J* = 12.7, 8.0 Hz, 1H), 2.95 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 136.5, 134.5, 132.3, 129.3, 128.5, 127.7, 69.8, 56.2.

IR (cm⁻¹) 3401, 2923, 2098, 1590, 1468, 1381, 1295, 1267, 1081, 1045, 820, 765, 563, 549, 480. LCMS (ESI) *m*/z C₈H₇³⁵Cl₂N₃O [M-H+HCO₂H]⁻ 276.2, C₈H₇³⁵Cl³⁷ClN₃O [M-H+HCO₂H]⁻ 278.2, C₈H₇³⁷Cl₂N₃O [M-H+HCO₂H]⁻ 280.2.

2-azido-1-(naphthalen-2-yl)ethan-1-ol (S13)

 $\begin{array}{c} C_{12}H_{11}N_{3}O \\ \textbf{MW: } 213.24 \text{ g.mol}^{-1} \\ \textbf{Yield: } 97\% \\ \text{White solid} \end{array}$

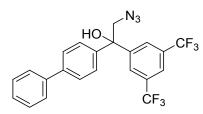
2-azido-1-(naphthalen-2-yl)ethan-1-ol **S13** was prepared accordingly to the general procedure. The reaction was conducted using 211 mg of 2-azido-1-(naphthalen-2-yl)ethan-1-one **(S6)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-1-(naphthalen-2-yl)ethan-1-ol **S13** as a white solid (208 mg, 97%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 – 7.80 (m, 4H), 7.55 – 7.49 (m, 2H), 7.42 (dd, J = 8.5, 1.7 Hz, 1H), 4.98 (dd, J = 8.0, 3.9 Hz, 1H), 3.50 (m, 2H), 2.94 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 138.0, 133.3, 133.2, 128.6, 128.1, 127.8, 126.5, 126.3, 125.0, 123.7, 73.5, 57.9.

IR (cm⁻¹) 3391, 3055, 2095, 1436, 1270, 1257, 1073, 897, 857, 817, 745, 475. **LCMS (ESI)** *m*/*z* C₁₂H₁₁N₃O [M-H+HCO₂H]⁻ 258.3.

2-azido-1-(4-methoxyphenyl)ethan-1-ol (S14)



2-azido-1-(4-methoxyphenyl)ethan-1-ol **S14** was prepared accordingly to the general procedure. The reaction was conducted using 191 mg of 2-azido-1-(4-methoxyphenyl)ethan-1-one **(S7)** as starting material. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 8:2) to afford the 2-azido-1-(4-methoxyphenyl)ethan-1-ol **S14** as a colorless oil (184 mg, 95%).

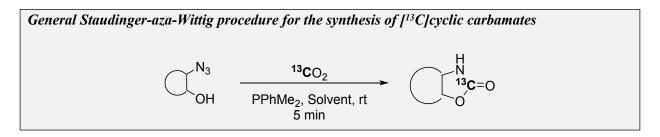
¹**H** NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.77 (dd, J = 8.2, 4.0 Hz, 1H), 3.78 (s, 3H), 3.39 (ddd, J = 16.5, 12.6, 6.1 Hz, 2H), 2.79 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 132.9, 127.3 (2C), 114.1 (2C), 73.0, 58.0, 55.3. IR (cm⁻¹) 3416, 2933, 2094, 1611, 1512, 1462, 1242, 1173, 1029, 829, 540. LCMS (ESI) m/z C₉H₁₁N₃O₂ [M-H+HCO₂H]⁻238.2.

2.3. Synthesis of tertiary alcohol

1-([1,1'-biphenyl]-4-yl)-2-azido-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (S15)

C₂₂H₁₅F₆N₃O **MW**: 451.37 g.mol⁻¹ **Yield**: 39% White solid

To a 0.5 M THF solution of (3,5-bis(trifluoromethyl)phenyl)magnesium bromide (3.00 mL, 1.5 mmol) at 0 °C, 1-methoxy-2-(2-methoxyethoxy)ethane (0.22 mL, 1.5 mmol) was added followed by tetrabutylammonium chloride (28.0 mg, 0.1 mmol). After stirring for 30 minutes at 0 °C, a solution of ketone (**X**) (237 mg, 1.0 mmol) in THF (1.0 mL) was slowly added and the resulting mixture was stirred at 0 °C for 3 additional hours. After completion, the reaction was quenched with NH₄Cl and extracted with EtOAc (3x20 mL). The combined organic phases were dried over MgSO₄, filtrated and evaporated under reduce pressure. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 95:5) to afford the 1-([1,1'-biphenyl]-4-yl)-2-azido-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol**S15**as a white solid (175 mg, 39%).


¹**H NMR (400 MHz, CDCl₃)** δ 7.93 (s, 2H), 7.82 (s, 1H), 7.65 – 7.56 (m, 4H), 7.48 – 7.42 (m, 4H), 7.39 – 7.34 (m, 1H), 4.16 (d, *J* = 12.7 Hz, 1H), 4.04 (d, *J* = 12.7 Hz, 1H), 3.12 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.6, 141.6, 141.1, 140.2, 131.9 (q, $J_{C-F} = 32.7$ Hz, 2C), 129.0 (2C), 127.9, 127.8 (2C), 127.3 (2C), 126.7 – 126.5 (m, 4C), 123.4 (q, $J_{C-F} = 268$ Hz, 2C), 122.0 – 121.9 (m), 77.7, 60.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s).

IR (cm⁻¹) 2107, 1377, 1277, 1168, 1132, 900, 844, 768, 749, 734, 698, 682. **LCMS (ESI)** *m*/*z* C₂₂H₁₅F₆N₃O [M+H-H₂O]⁺ 434.3.

2.4. Synthesis of [¹³C]labeled aliphatic cyclic carbamates

Into 1.0 mL vial, PPhMe₂ (1.00 equiv.) was added to a solution of hydroxy-azide derivative (1.00 equiv.) in the appropriate solvent (0.70 mL). The mixture was transferred into a Wilmad® low pressure/*vacuum* NMR tube that was further frozen in to N₂ bath. At this point then 1.00 to 1.20 equiv. of gaseous ¹³CO₂ are added using Tritec® (figure 1). The mixture was maintained at room temperature for 5 to 10 minutes then the unreacted ¹³CO₂ was removed by opening the NMR tube and the solvent was evaporated. The crude products were purified by Flash Chromatography on SiO₂ gel, affording corresponding [¹³C]labeled carbamates.

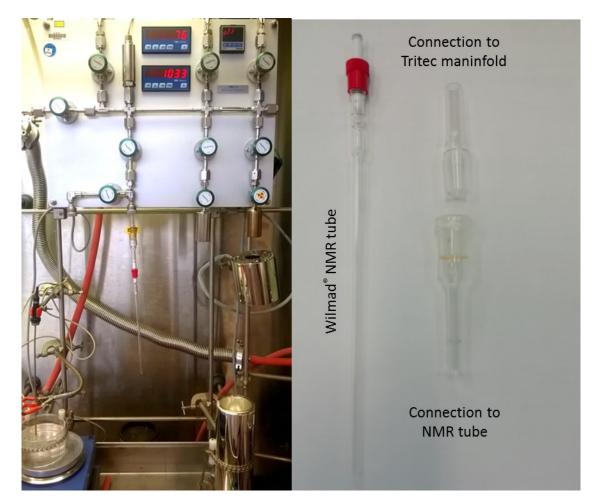
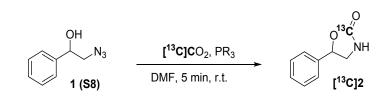
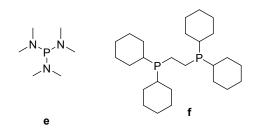



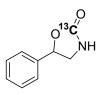
Figure S1: RC Tritec[®] manifold system utilized to charge labeled CO₂ into the reactions.

2.4.a. Optimization of the Staudinger Aza-Wittig reaction

The optimization of the reaction conditions was performed according to the general procedure reported above.

Entry	Eq. CO_2	Phosphine	Yield (%)
1	1	a	63
2	1	b	46
3	1	c	62
4	1	e	0
5	1	f	0
6	1	d	84
7	0.5	d	70



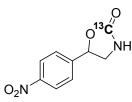

Table S1: Phosphine screening.

Entry	Solvent	T ℃	Conversion (isolated yield%)
1	DMF- <i>d</i> ₇	25	88 (84)
2	DMSO- d_6	25	61
3	CH_3CN-d_3	25	76
4	THF- d_8	25	52
5	$DMF-d_7$	65	82
6	DMSO- d_6	65	37
7	CH_3CN-d_3	65	60
8	THF-d ₈	65	48

 Table S2: Solvent and temperature screening.

2.5. Synthesis of ¹³C-labeled aliphatic carbamates

[¹³C] 5-phenyloxazolidine-2-one ([¹³C]2)

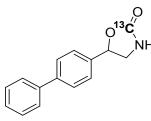


C₈¹³CH₉NO₂ **MW**: 164.17 g.mol⁻¹ **Yield**: 84% White solid

The [¹³C]-5-phenyloxazolidin-2-one [¹³C]**2** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-phenylethan-1-ol **1/(S8)** (16.3 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂ /MeOH 99:1) affording the ¹³C-labeled 5-phenyloxazolidin-2-one [¹³C]**2** as a white solid (13.7 mg, 84%).

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 5H), 5.88 (brs, 1H), 5.63 (ddt, *J* = 16.4, 8.6, 1.6 Hz, 1H), 3.99 (ddt, *J* = 16.3, 3.8, 0.4 Hz, 1H), 3.57 – 3.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1 (¹³C labeled), 138.5, 129.1, 129.0 (2C), 125.8 (2C), 78.0, 48.5 (d, *J* = 3.5 Hz). IR (cm⁻¹) 3287, 2925, 1704, 1225, 1075, 966, 926, 700. Melting point: 87-88 °C. LCMS (ESI) *m/z* C₈¹³CH₉NO₂ [M+H]⁺ 165.2.

[¹³C] 5-(4-nitrophenyl)oxazolidin-2-one ([¹³C]3)


C₈¹³CH₈N₂O₄ **MW**: 209.17 g.mol⁻¹ **Yield**: 81% Yellow solid

The [¹³C] 5-(4-nitrophenyl)oxazolidin-2-one [¹³C]**3** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(4-nitrophenyl)ethan-1-ol **S9** (20.8 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-(4-nitrophenyl)oxazolidin-2-one [¹³C]**3** as a yellow solid (17.0 mg, 81%).

¹**H NMR (400 MHz, MeOD-** d_4) δ 8.28 (d, J = 8.8, 2H), 7.65 (d, J = 8.4, 2H), 5.81 (ddd, J = 9.0, 7.2, 2.1 Hz, 1H), 4.08 (td, J = 9.0, 3.6 Hz, 1H), 3.47 (ddd, J = 9.2, 5.6, 2.0 Hz, 1H).

¹³C NMR (100 MHz, MeOD-d₄) δ 161.6 (¹³C labeled), 149.4, 147.9 (d, J = 1.4 Hz), 127.8 (2C), 125.0 (2C), 77.9 (d, J = 1.2 Hz), 48.9 (Under solvent peak).
IR (cm⁻¹) 3285, 1708, 1607, 1519, 1346, 1222, 1076, 968, 855.
Melting point : 119-120 °C.
LCMS (ESI) *m/z* C₈¹³CH₈N₂O₄ [M+H]⁺ 210.2.

[¹³C] 5-([1,1'-biphenyl]-4-yl)oxazolidin-2-one ([¹³C]4)

C₁₄¹³CH₁₃NO₂ **MW**: 240.27 g.mol⁻¹ **Yield**: 67% Yellow solid

The [¹³C] 5-([1,1'-biphenyl]-4-yl)oxazolidin-2-one [¹³C]**4** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-ol **S10** (23.9 mg, 0.100 mmol) and ¹³CO₂ (0.105 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-([1,1'-biphenyl]-4-yl)oxazolidin-2-one [¹³C]**4** as a yellow solid (16.2 mg, 67%).

¹**H NMR (400 MHz, MeOD-***d*₄) δ 7.69 (d, *J* = 8.4, Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 (m, 1H), 5.71 (t, *J* = 16, 8.8 Hz, 1H), 4.01 (td, *J* = 8.9, 3.7 Hz, 1H), 3.52 (ddd, *J* = 9.9, 7.5, 2.7 Hz, 1H).

¹³C NMR (100 MHz, MeOD- d_4) δ 162.2 (¹³C labeled), 143.0, 141.7, 139.5 (d, J = 1.4 Hz), 129.9 (2C), 128.6, 128.5 (2C), 128.0 (2C), 127.4 (2C), 79.2, 48.7 (Under solvent peak).

IR (cm⁻¹) 3263, 2923, 1677, 1488, 1395, 1233, 1078, 841, 765, 696.

Melting point : 186-187 °C.

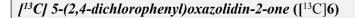
LCMS (ESI) $m/z C_{14}^{13}CH_{13}NO_2[M+H]^+ 241.3.$

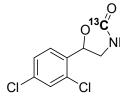
[¹³C] 5-(4-bromophenyl)oxazolidin-2-one ([¹³C]5)

 $C_8^{13}CH_8BrNO_2$ **MW**: 243.06 g.mol⁻¹ **Yield**: 62% White solid

The [¹³C] 5-(4-bromophenyl)oxazolidin-2-one [¹³C]**5** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(4-bromophenyl)ethan-1-ol **S11** (24.2 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography

on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-(4-bromophenyl)oxazolidin-2-one [13 C]5 as a white solid (15.2 mg, 62%).


¹**H** NMR (400 MHz, MeOD- d_4) δ 7.58 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.70 – 5.56 (m, 1H), 3.99 (td, J = 8.9, 3.7 Hz, 1H), 3.44 (ddd, J = 8.9, 7.3, 3.7 Hz, 1H).


¹³C NMR (100 MHz, MeOD- d_4) δ 161.9 (¹³C labeled), 139.9 (d, J = 1.5 Hz), 133.1 (2C), 128.8 (2C), 123.6, 78.6, 49.1 (d, J = 3.6 Hz).

IR (cm⁻¹) 3236, 2406, 1703, 1667, 1486, 1400, 1270, 1175, 1074, 983, 841, 727.

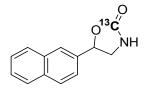
Melting point : 157-158 °C.

LCMS (ESI) *m/z* C₈¹³CH₈⁷⁹BrNO₂ [M+H]⁺ 243.1, C₈¹³CH₈⁸¹BrNO₂ [M+H]⁺ 245.1.

C₈¹³CH₇Cl₂NO₂ **MW**: 233.05 g.mol⁻¹ **Yield**: 89% Yellow solid

The [¹³C] 5-(2,4-dichlorophenyl)oxazolidin-2-one [¹³C]6 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(2,4-dichlorophenyl)ethan-1-ol **S12** (23.2 mg, 0.100 mmol) and ¹³CO₂ (0.110 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-(2,4-dichlorophenyl)oxazolidin-2-one [¹³C]6 as a yellow solid (20.9 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.32 (dd, J = 8.4, 2.0 Hz, 1H), 6.20 (brs, 1H), 5.87 (ddd, J = 8.9, 6.7, 2.3 Hz, 1H), 4.16 (td, J = 8.9, 2.3 Hz, 1H), 3.39 (ddd, J = 8.8, 6.6, 2.4 Hz, 1H).

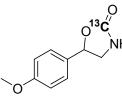

¹³C NMR (100 MHz, CDCl₃) δ 159.5 (¹³C labeled), 135.6, 135.2, 131.8, 129.7, 127.9, 127.3, 74.6, 47.4 (d, J = 3.5 Hz).

IR (cm⁻¹) 3283, 1713, 1591, 1473, 1336, 1226, 1080, 1034, 968, 819, 740.

Melting point : 134-135 °C.

LCMS (ESI) m/z $C_8^{13}CH_7^{35}Cl_2NO_2$ [M+H]⁺ 233.2, $C_8^{13}CH_7^{35}Cl^{37}ClNO_2$ [M+H]⁺ 235.2, $C_8^{13}CH_7^{37}Cl_2NO_2$ [M+H]⁺ 237.1.

[¹³C] 5-(naphthalen-2-yl)oxazolidin-2-one ([¹³C]7)



C₁₂¹³CH₁₁NO₂ **MW**: 214.23 g.mol⁻¹ **Yield**: 50% Yellow solid

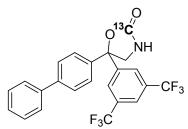
The [¹³C] 5-(naphthalen-2-yl)oxazolidin-2-one [¹³C]7 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol,), 2-azido-1-(naphthalen-2-yl)ethan-1-ol **S13** (21.3 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-(naphthalen-2-yl)oxazolidin-2-one [¹³C]7 as a yellow solid (10.7 mg, 50%).

¹H NMR (400 MHz, MeOD- d_4) δ 7.93 (d, J = 8.5 Hz, 1H), 7.91 – 7.86 (m, 3H), 7.54 – 7.49 (m, 3H), 5.87 – 5.78 (m, 1H), 4.06 (td, J = 9.0, 3.7 Hz, 1H), 3.58 (ddd, J = 9.0, 7.4, 2.8 Hz, 1H). ¹³C NMR (100 MHz, MeOD- d_4) δ 162.2 (¹³C labeled), 137.8, 134.9, 134.6, 130.0, 129.1, 128.8, 127.6, 127.6, 126.2, 124.1, 79.5, 54.8. IR (cm⁻¹) 3270, 2924, 1705, 1227, 1079, 950, 823, 745. Melting point : 169-170 °C. LCMS (ESI) $m/z C_{12}^{13}CH_{11}NO_2 [M+H]^+ 215.2.$

[¹³C] 5-(4-methoxyphenyl)oxazolidin-2-one ([¹³C]8)

C₉¹³CH₁₁NO₃ **MW**: 194.19 g.mol⁻¹ **Yield**: 80% White solid

The [¹³C] 5-(4-methoxyphenyl)oxazolidin-2-one [¹³C]**8** was prepared accordingly to the general procedure, using PPhMe₂ (14.5 μ L,0.100 mmol), 2-azido-1-(4-methoxyphenyl)ethan-1-ol **S14** (19.3 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 5-(4-methoxyphenyl)oxazolidin-2-one [¹³C]**8** as a white solid (15.7 mg, 80%).


¹**H NMR (400 MHz, MeOD-** d_4) δ 7.34 (d, J = 8.4, 2H), 6.96 (d, J = 8.8, 2H), 5.65 – 5.51 (m, 1H), 3.92 (td, J = 9.0, 3.9 Hz, 1H), 3.80 (s, 3H), 3.49 (ddd, J = 9.0, 7.7, 2.6 Hz, 1H).

¹³C NMR (100 MHz, MeOD- d_4) δ 162.2 (¹³C labeled), 161.7, 132.2 (d, J = 1.6 Hz), 128.6 (2C), 115.2 (2C), 79.5, 55.8, 48.8 (Under solvent peak).

IR (cm⁻¹) 3250, 2967, 1706, 1672, 1611, 1518, 1296, 1251, 1181, 1029, 835.

Melting point : 103-104 °C. LCMS (ESI) *m/z* C₉¹³CH₁₁NO₃ [M+H]⁺ 195.3.

[¹³C] 5-([1,1'-biphenyl]-4-yl)-5-(3,5-bis(trifluoromethyl)phenyl)oxazolidin-2-one ([¹³C]9)

C₂₂¹³CH₁₅F₆NO₂ **MW**: 452.36 g.mol⁻¹ **Yield**: 87% White solid

The [¹³C] 5-([1,1'-biphenyl]-4-yl)-5-(3,5-bis(trifluoromethyl)phenyl)oxazolidin-2-one [¹³C]**9** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-([1,1'-biphenyl]-4-yl)-2-azido-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (**S15**) (45.1 mg, 0.100 mmol) and ¹³CO₂ (0.113 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) affording the ¹³C-labeled 5-([1,1'-biphenyl]-4-yl)-5-(3,5-bis(trifluoromethyl) phenyl)oxazolidin-2-one [¹³C]**9** as a white solid (39.5 mg, 87%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.93 (br. s, 2H), 7.87 (br. s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4, Hz, 2H), 7.49 – 7.43 (m, 4H), 7.39-7.35 (m, 1H), 5.61 (br d, J = 4.3 Hz, 1H), 4.37 (dd, J = 8.9, 3.3 Hz, 1H), 4.21 (dd, J = 8.9, 3.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 158.0 (¹³C labeled), 145.4 (d, J = 1.3 Hz), 142.2, 140.0, 139.6 (d, J = 1.0 Hz), 132.5 (q, $J_{C-F} = 33.7$ Hz, 2C), 129.1 (2C), 128.0, 128.0 (2C), 127.3 (2C), 125.9 (2C), 125.8 (m, 2C), 124.5 (q, $J_{C-F} = 271$ Hz, 2C), 122.6 (m), 85.6 (d, J = 1.2 Hz), 53.3 (d, J = 3.1 Hz).

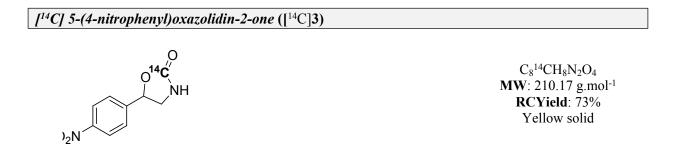
¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s).

IR (cm⁻¹) 1718, 1377, 1278, 1237, 1173, 1134, 845, 740, 682.

Melting point: 205-206 °C.

LCMS (ESI) $m/z C_{22}^{13}CH_{15}F_6NO_2[M+H]^+ 453.5$.

2.6. Synthesis of ¹⁴C-labeled aliphatic carbamates



C₈¹⁴CH₉NO₂ **MW**: 165.17 g.mol⁻¹ **RCYield**: 71% White solid

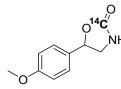

The [¹⁴C] 5-phenyloxazolidine-2-one [¹⁴C]**2** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-phenylethan-1-ol **1(S8)** (16.3 mg, 0.100 mmol) and ¹⁴CO₂ (0.093 mmol, 215.06 MBq) in DMF-*d*₇. The reaction was heated at 70 °C for 5 minutes. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 30:70) affording the ¹⁴C-labeled 5-phenyloxazolidine-2-one [¹⁴C]**2** as a white solid (144.67 MBq, 71%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.098 GBq mmol⁻¹
TLC (silicagel 60F254, EtOAc/Heptane (30/70)) Rf=0.42. Radiochemical purity: ≥99%.

The [¹⁴C] 5-(4-nitrophenyl)oxazolidin-2-one [¹⁴C]**3** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(4-nitrophenyl)ethan-1-ol **S9** (20.8 mg, 0.100 mmol) and ¹⁴CO₂ (0.100 mmol, 231.25 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 90:10) affording the ¹⁴C-labeled 5-(4-nitrophenyl)oxazolidin-2-one [¹⁴C]**3** as a yellow solid (154.66 MBq, 73%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.113 GBq mmol⁻¹
TLC (silicagel 60F254, EtOAc/Heptane (90/10)) Rf=0.25. Radiochemical purity: ≥99%.

 C_8^{14} CH₇Cl₂NO₂ **MW**: 234.05 g.mol⁻¹ **RCYield**: 75% Yellow solid

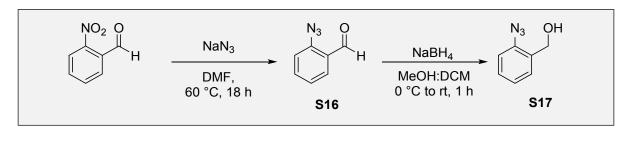

The [¹⁴C] 5-(2,4-dichlorophenyl)oxazolidin-2-one [¹⁴C]**6** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(2,4-dichlorophenyl)ethan-1-ol **S12** (23.2 mg, 0.100 mmol) and ¹⁴CO₂ (0.067 mmol, 154.93 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 40:60) affording the ¹⁴C-labeled 5-(2,4-dichlorophenyl)oxazolidin-2-one [¹⁴C]**6** as a yellow solid (109.67 MBq, 75%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹

Molar activity (MS (ESI)): 2.10 GBq mmol⁻¹

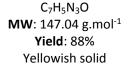
TLC (silicagel 60F254, EtOAc/Heptane (40/60)) Rf=0.42. Radiochemical purity: ≥99 %.

[¹⁴C] 5-(4-methoxyphenyl)oxazolidin-2-one ([¹⁴C]8)



C₉¹⁴CH₁₁NO₃ **MW**: 195.19 g.mol⁻¹ **RCYield**: 55 % White solid

The [¹⁴C] 5-(4-methoxyphenyl)oxazolidin-2-one [¹⁴C]**8** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-1-(4-methoxyphenyl)ethan-1-ol **S14** (19.3 mg 0.100 mmol,) and ¹⁴CO₂ (0.082 mmol, 189.62 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 70:30) affording the ¹⁴C-labeled 5-(4-methoxyphenyl)oxazolidin-2-one [¹⁴C]**8** as a white solid (102.49 MBq, 55 %).


¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.045 GBq mmol⁻¹
TLC (silicagel 60F254, EtOAc/Heptane (70/30)) Rf=0.25. Radiochemical purity: ≥99 %.

2.7. Preparation of the (2-azidophenyl)metanol

2-azidobenzaldehyde (S16)

To a solution of 2-nitrobenzaldehyde (1.0 g, 6.66 mmol) in 20 mL of DMF was added sodium azide (870 mg, 13.4 mmol). The resulting mixture was then stirred at 60 °C for 18 hours. After the reaction was completed, the mixture was diluted in 100 mL of EtOAc and then washed twice with brine. The organic layer was dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azidobenzaldehyde **S16** as a yellowish solid (849 mg, 88%). The spectral data matched that reported literature.¹

¹H NMR (400 MHz, CDCl₃) δ 10.36 (d, J = 0.7 Hz, 1H), 7.90 (dd, J = 7.8, 1.5 Hz, 1H), 7.64 (ddd, J = 8.1, 7.8, 1.5 Hz, 1H), 7.32 – 7.23 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.6, 143.0, 135.5, 129.0, 127.0, 125.0, 119.1. IR (cm⁻¹) 2120, 2095, 1686, 1591, 1475, 1454, 1391, 1289, 1271, 1194, 832, 763, 693, 621, 532, 462.

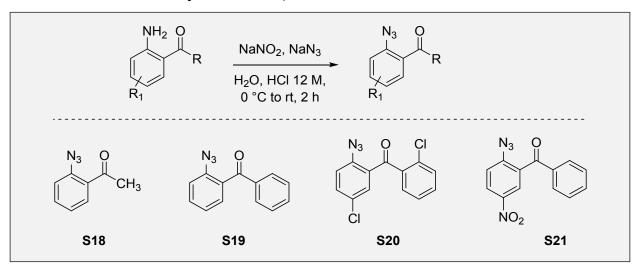
(2-azidophenyl)metanol (S17)

LCMS (ESI) *m/z* C₇H₅N₃O [M+H]⁺ 148.2.

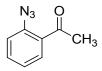
N₃ OH

C₇H₇N₃O MW: 149.06 g.mol⁻¹ Yield: 89% Colorless oil

To a solution of 2-azidobenzaldehyde **S16** (147 mg, 1.0 mmol) in 6.0 mL of dry MeOH and 4.0 mL of dry DCM at 0 °C was added NaBH₄ (37.8 mg, 1.0 mmol). The resulting mixture was then stirred at 0 °C for 15 minutes then 30 additional minutes at room temperature under argon. After the reaction was completed, the reaction was stopped by adding 10 mL of a saturated solution of NaHCO₃ and the phases were separated. The aqueous phase was extracted twice with 10 mL of CH₂Cl₂, the organic layers were


¹ Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12, 2884-87.

combined, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the (2-azidophenyl)methanol **S17** as a colorless oil (131 mg, 89%). The spectral data matched that reported literature.²


¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.13 (m, 2H), 4.60 (s, 2H), 2.47 (br. s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 131.9, 129.2, 129.1, 125.0, 118.1, 61.5. IR (cm⁻¹) 3269, 3168, 2127, 1581, 1483, 1449, 1272, 1093, 1037, 988, 749, 672, 533. LCMS (ESI) *m*/z C₇H₇N₃O [M+H-N₂]⁺ 122.2.

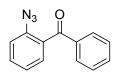
² Demko, Z. P.; Sharpless, K. B. *Org. Lett.* **2001,** *3*, 4091-4094.

2.7. Preparation of 1-(2-azidophenyl) derivatives (by means of the Sandmeyer reaction)

1-(2-azidophenyl)ethan-1-one (S18)

C₈H₇N₃O MW: 161.16 g.mol⁻¹ Yield: 92% yellowish oil

To a solution of 1-(2-aminophenyl)ethan-1-one (405 mg, 3.00 mmol) in 10 mL of deionized water at 0 °C was added HCl 12N (750 μ L, 9.0 mmol) and the reaction was kept at 0 °C. A solution of NaNO₂ (207 mg, 3.00 mmol) in 1.0 mL of water was slowly added and the resulting mixture was stirred at 0 °C for 15 min after what sodium azide (207 mg, 3.60 mmol) was added by portion. The reacting mixture was then allowed to warm to room temperature and kept under stirring for 2 hours. The aqueous phase was extracted twice with 20 mL EtOAc. The organic layers were combined then washed with brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 95:5) to afford the 1-(2-azidophenyl)ethan-1-one **S18** as a yellowish oil (443 mg, 92%). The spectral data matched that reported literature.³


¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.8, 1.6 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.20 – 7.13 (m, 2H), 2.59 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 199.0, 138.7, 133.0, 131.0, 130.4, 124.8, 119.7, 31.1.

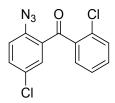
IR (cm⁻¹) 2120, 2090, 1678, 1593, 1444, 1357, 1291, 1277, 1241, 756, 595.

LCMS (ESI) *m/z* C₈H₇N₃O [M+H]⁺ 162.2.

³ Smith, C. J.; Smith, C. D.; Nikbin, N.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. **2011**, *9*, 1927-1937.

(2-azidophenyl)(phenyl)methanone (S19)

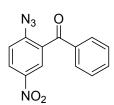
C₁₃H₉N₃O **MW**: 223.24 g.mol⁻¹ **Yield**: 71% Yellow oil


To a solution of (2-aminophenyl)(phenyl)methanone (183 mg, 0.93 mmol) in 3.0 mL of deionized water at 0 °C was added HCl 12N (232 μ L, 2.79 mmol) and the reaction was kept at 0 °C. A solution of NaNO₂ (64 mg, 0.93 mmol) in 500 μ L of water was slowly added and the resulting mixture was stirred at 0 °C for 15 min after what sodium azide (78 mg, 1.20 mmol) was added by portion. The reacting mixture was then allowed to warm to room temperature and kept under stirring for 2 hours. The aqueous phase was extracted twice with 15 mL EtOAc. The organic layers were combined then washed with brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the (2-azidophenyl)(phenyl)methanone **S19** as a yellow oil (168 mg, 71%).

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.79 (m, 2H), 7.58 (m, 1H), 7.53 (m, 1H), 7.45 (m, 2H), 7.39 (m, 1H), 7.24 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 195.5, 138.2, 137.1, 133.5, 131.7, 131.3, 130.0 (2C), 129.8, 128.5 (2C), 124.7, 118.9.

IR (cm⁻¹) 2116, 2090, 1662, 1595, 1578, 1481, 1443, 1285, 1257, 1151, 925, 746, 700, 658, 631, 530. LCMS (ESI) *m/z* C₁₃H₉N₃O [M+H]⁺ 224.2.


C₁₃H₇Cl₂N₃O **MW**: 292.12 g.mol⁻¹ **Yield**: 46% Beige solid

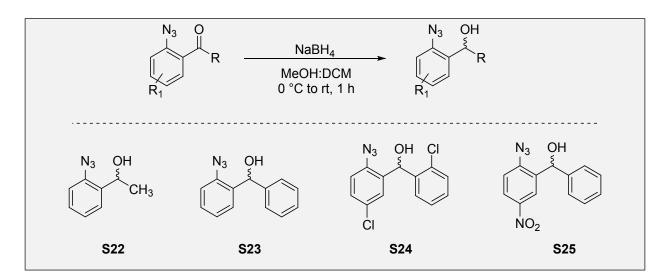
To a solution of (2-amino-5-chlorophenyl)(2-chlorophenyl)methanone (532 mg, 2.00 mmol) in 7.0 mL of deionized water at 0 °C was added HCl 12N (500 μ L, 6.00 mmol) and the reaction was kept at 0 °C. A solution of NaNO₂ (138 mg, 2.00 mmol) in 1.0 mL of water was slowly added and the resulting mixture was stirred at 0 °C for 30 min after what sodium azide (156 mg, 2.4 mmol) was added by portion. The reacting mixture was then allowed to warm to room temperature and kept under stirring for 4 hours. The aqueous phase was extracted twice with 20 mL EtOAc. The organic layers were combined then washed with brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by

Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the (2-azido-5-chlorophenyl)(2-chlorophenyl)methanone **S20** as a beige solid (267 mg, 46%).

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.38 (m, 5H), 7.35 (m, 1H), 7.14 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 138.2, 138.0, 133.2, 132.5, 132.1, 131.8, 131.0, 130.51, 130.50, 130.4, 127.0, 120.8. IR (cm⁻¹) 2129, 2100, 2057, 1663, 1587, 1469, 1395, 1294, 1263, 1243, 1165, 1113, 960, 816, 746. LCMS (ESI) *m*/z C₁₃H₇³⁵Cl₂N₃O [M+H-N₂]⁺ 264.2, C₁₃H₇³⁵Cl³⁷ClN₃O [M+H-N₂]⁺ 266.1, C₁₃H₇³⁷Cl₂N₃O [M+H-N₂]⁺ 268.2.

(2-azido-5-nitrophenyl)(phenyl)methanone (S21)

 $\begin{array}{c} C_{13}H_8N_4O_3 \\ \textbf{MW}: 268.23 \ g.mol^{-1} \\ \textbf{Yield}: \ 72\% \\ \textbf{Yellow solid} \end{array}$


To a solution of (2-amino-5-nitrophenyl)(phenyl)methanone (484 mg, 2.00 mmol) in 7.0 mL of deionized water at 0 °C was added HCl 12N (500 μ L, 6.00 mmol) and the reaction was kept at 0 °C. A solution of NaNO₂ (138 mg, 2.00 mmol) in 1.0 mL of water was slowly added and the resulting mixture was stirred at 0 °C for 30 min after what sodium azide (156 mg, 2.40 mmol) was added by portion. The reacting mixture was then allowed to warm to room temperature and kept under stirring for 4 hours. The aqueous phase was extracted twice with 20 mL EtOAc. The organic layers were combined then washed with brine, dry over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the (2-azido-5-nitrophenyl)(phenyl)methanone **S21** as a yellow solid (388 mg, 72%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.40 (dd, *J* = 8.9, 2.6 Hz, 1H), 8.27 (d, *J* = 2.6 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.67 – 7.62 (m, 1H), 7.53 – 7.47 (m, 2H), 7.40 (d, *J* = 8.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 192.9, 144.8, 144.2, 136.0, 134.4, 131.9, 130.1 (2C), 129.0 (2C), 126.7, 125.4, 119.6.

IR (cm⁻¹) 2124, 1667, 1580, 1521, 1477, 1342, 1291, 1273, 1150, 1076, 867, 799, 744, 687, 639. **LCMS (ESI)** *m*/*z* C₁₃H₈N₄O₃ [M+H]⁺ 269.0.

2.8. General procedure for the preparation of 1-(2azidophenyl)alcohols

To a solution of the corresponding azido derivative (S18-S21) (1.00 equiv.) in the appropriate amount of CH_2Cl_2 and MeOH at 0 °C, was added NaBH₄ (1.00 equiv). The resulting mixture was then stirred at room temperature under argon for 1 hour. After the reaction was completed, the appropriate amount of a saturated solution of NaHCO₃ was added and the phases separated. The aqueous phase was extracted twice with CH_2Cl_2 and the organic phases were combined, dried over MgSO₄ and evaporated under *vacuum*. The crude mixture was purified by Flash Chromatography on SiO₂ gel within the appropriate conditions, to afford the corresponding product of reduction (**57-60**).

1-(2-azidophenyl)ethan-1-ol (S22)

N₃ OH

 $\begin{array}{c} C_8 H_9 N_3 O \\ \textbf{MW}: 163.18 \text{ g.mol}^{-1} \\ \textbf{Yield}: 95\% \\ \text{Yellowish oil} \end{array}$

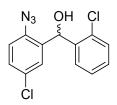
1-(2-azidophenyl)ethan-1-ol **S22** was prepared accordingly to the general procedure. To a solution of 1-(2-azidophenyl)ethan-1-one **S18** (235 mg, 1.46 mmol) in 10 mL of dry MeOH and 4 mL of dry CH_2Cl_2 at 0 °C was added NaBH₄ (55 mg, 1.46 mmol). At the end of the reaction, 20 mL of a saturated solution of NaHCO₃ were added and the resulting phases were separated. The aqueous phase was extracted twice with 10 mL of CH_2Cl_2 and the organic phases combined, dried over MgSO₄ and evaporated. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 1-(2-azidophenyl)ethan-1-ol **S22** as a yellowish oil (227 mg, 95%). The spectral data matched that reported literature.⁴ ¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (dd, J = 7.7, 1.5 Hz, 1H), 7.30 (td, J = 7.7, 1.6 Hz, 1H), 7.17 – 7.09 (m, 2H), 5.04 (q, J = 6.5 Hz, 1H), 2.78 (brs, 1H), 1.43 (d, J = 6.5 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 136.8, 136.4, 128.4, 126.5, 125.1, 118.0, 65.7, 23.7. **IR** (cm⁻¹) 3339, 2124, 2101, 1581, 1485, 1447, 1293, 1275, 1113, 1071, 1008, 898, 749, 670. **LCMS (ESI)** m/z C₈H₉N₃O [M+H]⁺ 164.2.

(2-azidophenyl)(phenyl)methanol (S23)

 $\begin{array}{c} C_{13}H_{11}N_{3}O \\ \textbf{MW}: 225.25 \ g.mol^{-1} \\ \textbf{Yield}: \ 98\% \\ \textbf{Yellow solid} \end{array}$

(2-azidophenyl)(phenyl)methanol **S23** was prepared accordingly to the general procedure. To a solution of (2-azidophenyl)(phenyl)methanone **S19** (150 mg, 0.59 mmol) in 4.5 mL of dry MeOH and 1.5 mL of dry CH₂Cl₂ at 0 °C was added NaBH₄ (18.5 mg, 0.59 mmol). After the end of the reaction, 10 mL of a saturated solution of NaHCO₃ were added and the phases were separated. The aqueous phase was extracted twice with 10 mL of CH₂Cl₂ and the organic phases combined, dried over MgSO₄ and evaporated. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the (2-azidophenyl)(phenyl)methanol **S23** as a yellow solid (149 mg, 98%). The spectral data matched that reported literature.⁴

¹**H NMR (400 MHz, CDCl₃)** δ 7.50 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.42 – 7.26 (m, 6H), 7.20 – 7.13 (m, 2H), 6.02 (s, 1H), 2.90 (brs, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 142.9, 137.0, 134.8, 128.8, 128.4 (2C), 128.0, 127.6, 126.7 (2C), 125.1, 118.2, 71.5.

IR (cm⁻¹) 3351, 2119, 2089, 1582, 1485, 1449, 1291, 1182, 1015, 749, 696.

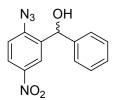
LCMS (ESI) $m/z C_{13}H_{11}N_3O [M+H-N_2]^+ 198.2.$

⁴ Stopka, T.; Niggemann, M. Chem. Commun. **2016**, *52*, 5761-5764.

(2-azido-5-chlorophenyl)(2-chlorophenyl)methanol (824)

C₁₃H₉Cl₂N₃O **MW**: 294.14 g.mol⁻¹ **Yield**: 94% Brown solid

(2-azido-5-chlorophenyl)(2-chlorophenyl)methanol **S24** was prepared accordingly to the general procedure. To a solution of (2-azido-5-chlorophenyl)(2-chlorophenyl)methanone **S20** (225 mg, 0.77 mmol) in 6.0 mL of dry MeOH and 2.0 mL of dry CH₂Cl₂ at 0 °C was added NaBH₄ (29.1 mg, 0.77 mmol). At the end of the reaction, 10 mL of a saturated solution of NaHCO₃ and the phases were separated. The aqueous phase was extracted twice with 10 mL of CH₂Cl₂ and the organic phases combined, dried over MgSO₄ and evaporated. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the (2-azido-5-chlorophenyl)(2-chlorophenyl)methanol **S24** as a brown solid (212 mg, 94%).


¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.32 (m, 2H), 7.29 – 7.22 (m, 3H), 7.19 (d, *J* = 2.4 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 6.25 (s, 1H), 2.84 (br. s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.0, 136.4, 134.8, 133.1, 130.5, 129.8, 129.3, 129.1, 128.4, 128.3, 127.2, 119.4, 67.7.

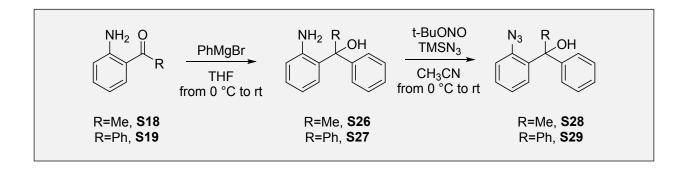
IR (cm⁻¹) 3272, 2122, 2092, 1475, 1441, 1407, 1112, 1021, 905, 810, 755.

LCMS (ESI) *m*/z C₁₃H₉³⁵Cl₂N₃O [M-H+HCOOH]⁻ 338.2, C₁₃H₉³⁵Cl³⁷ClN₃O [M-H+HCOOH]⁻ 340.0, C₁₃H₉³⁷Cl₂N₃O [M-H+HCOOH]⁻ 342.0.

(2-azido-5-nitrophenyl)(phenyl)methanol (S25)

 $\begin{array}{c} C_{13}H_{10}N_4O_3 \\ \textbf{MW: } 270.25 \text{ g.mol}^{-1} \\ \textbf{Yield: } 89\% \\ \text{Yellow solid} \end{array}$

(2-azido-5-nitrophenyl)(phenyl)methanol **S25** was prepared accordingly to the general procedure. To a solution of (2-azido-5-nitrophenyl)(phenyl)methanone **S21** (269 mg, 1.00 mmol) in 7.0 mL of dry MeOH and 3.00 mL of dry CH_2Cl_2 at 0 °C was added NaBH₄ (37.8 mg, 1.0 0mmol). The resulting mixture was then stirred at room temperature under argon for 1 hour. At the end of the reaction, 10 mL of a saturated solution of NaHCO₃ and the phases were separated. The aqueous phase was extracted twice with 10 mL of CH_2Cl_2 and the organic phases were combined, dried over MgSO₄ and evaporated.


The crude mixture was purified by Flash Chromatography on SiO_2 gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the (2-azido-5-nitrophenyl)(phenyl)methanol **S25** as a yellow solid (241 mg, 89%).

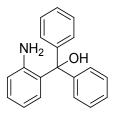
¹**H NMR (400 MHz, CDCl₃)** δ 8.48 (d, *J* = 2.6 Hz, 1H), 8.12 (dd, *J* = 8.8, 2.7 Hz, 1H), 7.35 – 7.22 (m, 5H), 7.16 (d, *J* = 8.8 Hz, 1H), 5.95 (s, 1H), 2.91 (brs, 1H).

¹³**C NMR (100 MHz, CDCl₃**) *δ* 144.8, 143.4, 141.7, 136.1, 128.8 (2C), 128.3, 126.8 (2C), 124.1, 123.2, 118.6, 70.8.

IR (cm⁻¹) 3395, 2121, 1091, 1585, 1518, 1480, 1340, 1084, 1034, 1021, 829, 913, 699. LCMS (ESI) *m*/*z* C₁₃H₁₀N₄O₃ [M-H+HCO₂H]⁻ 315.

2.9. Preparation of trisubstituted alcohols

1-(2-aminophenyl)-1-phenylethan-1-ol (S26)

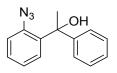

To a solution of 1-(2-aminophenyl)ethan-1-one **S18** (121 μ L, 1 mmol) in THF (2 mL) a 1M THF solution of phenylmagnesium bromide was added (2 mL, 2 mmol) at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 2 hours. The reaction was quenched with NH₄Cl and extracted with EtOAc (3x10 mL). The combined organic phases were dried over MgSO₄, filtrated and evaporated under reduce pressure. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 1-(2-aminophenyl)-1-phenylethan-1-ol (**S26**) as an beige solid (194 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 3H), 7.35 – 7.29 (m, 2H), 7.28 – 7.23 (m, 1H), 7.16 (td, J = 7.6, 1.2 Hz, 1H), 6.89 (td, J = 7.6, 1.2 Hz, 1H), 6.66 (dd, J = 7.6, 1.2 Hz, 1H), 3.75 (br. s, 3H), 1.89 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 147.8, 144.2, 132.3, 128.8, 128.4 (2C), 127.0, 126.7, 125.2 (2C), 119.1, 118.8, 76.7, 31.6.
IR (cm⁻¹) 1613, 1492, 1453, 1064, 1047, 1027, 920, 908, 765, 748, 701, 625.

Melting point: 86-87 °C.

LCMS (ESI) *m*/*z* C₁₄H₁₅NO [M+H]⁺ 214.3.

1-(2-aminophenyl)-1-phenylethan-1-ol (S27)



 $\begin{array}{c} C_{19}H_{17}NO \\ \textbf{MW}: 275.35 \ g.mol^{-1} \\ \textbf{Yield}: 89\% \\ Brown \ solid \end{array}$

To a solution of (2-aminophenyl)(phenyl)methanone S19 (394.5 mg, 2 mmol) in THF (4 mL) a 1M THF solution of phenylmagnesium bromide was added (4 mL, 4 mmol) at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 2 hours. The reaction was then quenched with NH_4Cl and extracted with EtOAc (3x20 mL). The combined organic phases were dried over MgSO₄, filtrated and evaporated under reduce pressure. The crude mixture was purified by Flash Chromatography SiO₂ Heptane/EtOAc afford on gel (eluent 9:1) to the (2aminophenyl)diphenylmethanol (S27) as an brown solid (493.8 mg, 89%).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 10H), 7.14 (td, J = 7.7, 1.4 Hz, 1H), 6.83 – 6.78 (m, 1H), 6.73 (t, J = 7.7 Hz, 1H), 6.50 (dd, J = 7.7, 1.4 Hz, 1H), 3.80 (br. s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 145.8 (2C), 144.1, 133.4, 130.0, 128.8, 128.2 (4C), 127.9 (4C), 127.5 (2C), 119.3, 119.2, 86.5.
IR (cm⁻¹) 1614, 1489, 1446, 1308, 1159, 1002, 905, 752, 733, 699, 637.
Melting point : 123-124 °C.
LCMS (ESI) *m*/z C₁₉H₁₇NO [M+H-H₂O]⁺ 258.2.

1-(2-azidophenyl)-1-phenylethan-1-ol (S28)

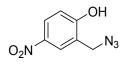

 $\begin{array}{c} C_{14}H_{13}N_{3}O \\ \textbf{MW: } 239.28 \text{ g.mol}^{-1} \\ \textbf{Yield: } 90\% \\ Orange \text{ solid} \end{array}$

To a solution of 1-(2-aminophenyl)-1-phenylethan-1-ol (**S26**) (107 mg, 0.5 mmol) in CH₃CN (2.5 mL) was added at *t*-BuONO (238 μ L, 2 mmol) followed by TMSN₃ (200 μ L, 1.5 mmol) at 0 °C. The resulting mixture was stirred 1 hour at room temperature. The solvent was then removed under reduce pressure and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 95:5) to afford the 1-(2-azidophenyl)-1-phenylethan-1-ol (**S28**) as an orange solid (108.1 mg, 90%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 (dd, J = 7.8, 1.5 Hz, 1H), 7.39 (td, J = 7.8, 1.5 Hz, 1H), 7.32 – 7.27 (m, 4H), 7.25 – 7.20 (m, 2H), 7.16 (dd, J = 7.8, 1.5 Hz, 1H), 4.17 (s, 1H), 1.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.8, 137.7, 137.2, 129.0, 128.1 (2C), 127.9, 126.8, 125.2 (2C), 124.9, 119.3, 76.3, 30.5.
IR (cm⁻¹) 2125, 1578, 1482, 1446, 1375, 1347, 1280, 1102, 1035, 753, 699, 658.
LCMS (ESI) *m*/z C₁₄H₁₃N₃O [M+H-H₂O]⁺ 222.2.

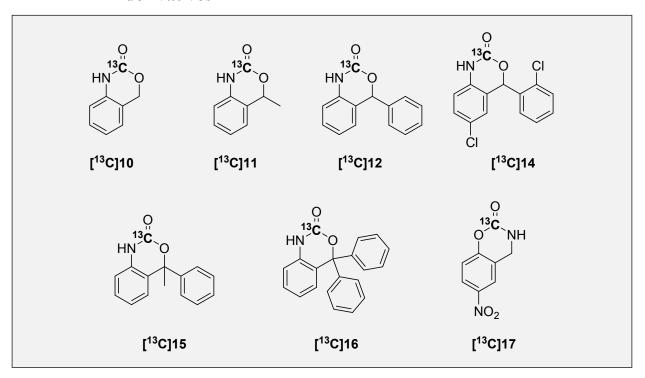
(2-azidophenyl)diphenylmethanol (S29)


 $\begin{array}{c} C_{19}H_{15}N_{3}O \\ \textbf{MW}: \ 301.35 \ g.mol^{-1} \\ \textbf{Yield}: \ 97\% \\ Orange \ solid \end{array}$

To a solution of (2-aminophenyl)diphenylmethanol (**S27**) (138 mg, 0.5 mmol) in CH₃CN (2.5 mL) was added at 0 °C *t*-BuONO (238 μ L, 2 mmol) followed by TMSN₃ (200 μ L, 1.5 mmol). The resulting mixture was stirred 1 hour at room temperature. The solvent was then removed under reduce pressure and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 95:5) to afford the (2-azidophenyl)diphenylmethanol **S29** as an orange solid (147 mg, 97%).

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 7H), 7.22 – 7.18 (m, 5H), 6.99 (td, *J* = 7.7, 1.2 Hz, 1H), 6.60 (dd, *J* = 7.8, 1.5 Hz, 1H), 4.96 (s, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 146.2 (2C), 137.9, 137.8, 131.1, 129.2, 128.0 (4C), 128.0 (4C), 127.4 (2C), 124.5, 119.1, 82.1.
IR (cm⁻¹) 2123, 2087, 1578, 1479, 1446, 1246, 1046, 905, 753, 699, 662.
LCMS (ESI) *m*/z C₁₉H₁₅N₃O [M+H-N₂]⁺ 274.4.

2.9. Preparation of hydroxy-azides analogues (S30)

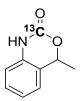

2-(azidomethyl)-4-nitrophenol (\$30)

 $\begin{array}{c} C_7H_6N_4O_3\\ \textbf{MW: } 194.04 \text{ g.mol}^{-1}\\ \textbf{Yield: } 98\%\\ \text{Yellowish solid} \end{array}$

Sodium azide (195 mg, 3.0 mmol) was added to a solution of 2-(bromomethyl)-4-nitrophenol (464 mg, 2.00 mmol) in H₂O and CH₃CN (1.0 mL and 3.0 mL) maintained at 0 °C. The resulting mixture was then stirred at room temperature under argon for 3 hours. At reaction complete, the mixture was diluted in 50 mL of EtOAc and washed twice with brine. The organic phase was then dried over MgSO₄ and evaporated under *vacuum*. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the 2-(azidomethyl)-4-nitrophenol **S30** as a yellowish solid (378 mg, 98%).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (m, 2H), 6.96 (m, 1H), 6.91 (s, 1H), 4.52 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 141.5, 126.1, 125.9, 122.9, 116.5, 50.6. IR (cm⁻¹) 3351, 2105, 1594, 1522, 1494, 1335, 1282, 1229, 1087, 937, 832, 751. LCMS (ESI) *m/z* C₇H₆N₄O₃ [M-H]⁻ 193.2.

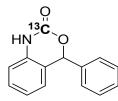
2.10. Synthesis of ¹³C-labeled 6-membered ring cyclic carbamate derivatives


[¹³C] 1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]10)

C₇¹³CH₇NO₂ **MW**: 150.14 g.mol⁻¹ **Yield**: 67% White solid

The [¹³C] 1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]10 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), (2-azidophenyl)methanol S17 (14.9 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]10 as a white solid (10.1 mg, 67%).

¹H NMR (400 MHz, CDCl₃) δ 8.74 (brs, 1H), 7.26 (dd, J = 15.2, 1.2 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.05 (td, J = 7.4, 0.9 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 5.33 (d, J = 4.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8 (¹³C labeled), 135.7, 129.4, 124.3, 123.5, 118.0 (d, J = 3.6 Hz), 114.3, 68.8 (d, J = 2.4 Hz). IR (cm⁻¹) 3221, 1671, 1602, 1499, 1408, 1284, 1259, 1213, 1063, 745. Melting point : 124-125 °C LCMS (ESI) m/z C₇¹³CH₇NO₂ [M+H]⁺ 151.2. [¹³C] 4-methyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]11)

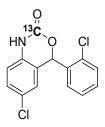


C₈¹³CH₉NO₂ **MW**: 164.17 g.mol⁻¹ **Yield**: 87% White solid

The [¹³C] 4-methyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]11 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-(2-azidophenyl)ethan-1-ol **S22** (16.3 mg, 0.100 mmol) and ¹³CO₂ (0.110 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 4-methyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]11 as a white solid (14.4 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 9.19 (br. s, 1H), 7.25 (ddd, J = 7.6, 1., 0.8 Hz, 1H), 7.11 – 7.03 (m, 2H), 6.89 (br. d, J = 7.6 Hz, 1H), 5.52 (qd, J = 6.6, 3.7 Hz, 1H), 1.71 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4 (¹³C labeled), 135.0, 129.2, 123.8, 123.5, 122.7 (d, J = 3.2 Hz), 114.6 (d, J = 3.5 Hz), 76.1 (d, J = 2.4 Hz), 20.5 (d, J = 2.0 Hz). IR (cm⁻¹) 3231, 1671, 1598, 1500, 1432, 1377, 1252, 1068, 1039, 753, 679. Melting point: 111-112 °C. LCMS (ESI) $m/z C_8^{13}CH_9NO_2[M+H]^+$ 165.2.

[¹³C] 4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]12)


C₁₃¹³CH₁₁NO₂ **MW**: 226.24 g.mol⁻¹ **Yield**: 88% Orange solid

The [¹³C] 4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]**12** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), (2-azidophenyl)(phenyl)methanol **S23** (22.5 mg 0.100 mmol) and ¹³CO₂ (0.110 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]**12** as a orange solid (20.1 mg, 88%).

¹**H NMR (400 MHz, CDCl₃)** δ 9.22 (br. s, 1H), 7.44 – 7.33 (m, 5H), 7.27 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.02 (dd, *J* = 7.4, 1.2 Hz, 1H), 6.95 (br. d, *J* = 7.9 Hz, 1H), 6.85 (br. d, *J* = 7.6 Hz, 1H), 6.39 (d, *J* = 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 153.4 (¹³C labeled), 137.6, 135.4, 129.6, 129.3, 128.9 (2C), 127.9 (2C), 125.9, 123.5, 121.0, 114.6 (d, *J* = 3.6 Hz), 81.4 (d, *J* = 2.3 Hz). IR (cm⁻¹) 3233, 3064, 1673, 1599, 1494, 1371, 1341, 1248, 1025, 753, 697. Melting point : 187-188 °C. LCMS (ESI) *m*/z C₁₃¹³CH₁₁NO₂ [M+H]⁺ 227.3.

[¹³C] 6-chloro-4-(2-chlorophenyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]14)

C₁₃¹³CH₉Cl₂NO₂ **MW**: 295.12 g.mol⁻¹ **Yield**: 80% Yellow solid

The [¹³C] 6-chloro-4-(2-chlorophenyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]**14** was prepared accordingto the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), (2-azido-5-chlorophenyl)(2-chlorophenyl)methanol **S24** (29.4 mg, 0.100 mmol) and ¹³CO₂ (0.110 mmol) in DMF*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 6-chloro-4-(2-chlorophenyl)-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]**14** as a yellow solid (23.6 mg, 80%).

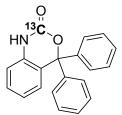
¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 7.61 (dd, J = 8.0, 1.3 Hz, 1H), 7.49 (td, J = 7.7, 1.7 Hz, 1H), 7.42 (dd, J = 7.6, 1.3 Hz, 1H), 7.40– 7.37 (m, 1H), 7.23 (dd, J = 7.7, 1.7 Hz, 1H), 7.00 (dd, J = 8.0, 1.3 Hz, 1H), 6.83 (br. d, J = 3.4 Hz, 1H), 6.80 (dd, J = 2.3, 0.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 150.0 (¹³C labeled), 135.3 (m), 134.7 (m), 133.0, 131.2, 130.3, 129.8, 129.4, 127.9, 126.3, 124.8, 121.4 (m), 115.9 (m), 76.4 (m).

IR (cm⁻¹) 3235, 1681, 1594, 1494, 1331, 1246, 1033, 755.

LCMS (ESI) m/z C₁₃¹³CH₉³⁵Cl₂NO₂ [M+H]⁺ 295.2, C₁₃¹³CH₉³⁵Cl³⁷ClNO₂ [M+H]⁺ 297.2, C₁₃¹³CH₉³⁷Cl₂NO₂ [M+H]⁺ 299.1.

[¹³C] 4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]15)

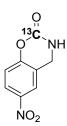

C₁₄¹³CH₁₃NO₂ **MW**: 240.27 g.mol⁻¹ **Yield**: 35% Brown solid

The [¹³C] 4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]15 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-(2-azidophenyl)-1-phenylethan-1-ol **S28** (24.9 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The mixture was then heated at 150 °C for 15 minutes before the unreacted CO₂ was released. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 5:5) affording the ¹³C-labeled-4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]15 as a brown solid (8.5 mg, 35%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.60 (br. s, 1H), 7.33 – 7.26 (m, 7H), 7.14 (td, *J* = 7.6, 1.1 Hz, 1H), 6.87 (dd, *J* = 7.6, 1.1 Hz, 1H), 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 153.2 (¹³C labeled), 143.2, 134.9, 129.5, 128.6 (2C), 128.3, 125.5 (2C), 125.4 (d, J = 2.8 Hz), 125.3, 123.4, 114.9 (d, J = 3.5 Hz), 85.4 (d, J = 2.4 Hz), 28.3. IR (cm⁻¹) 1677, 1599, 1493, 1444, 1327, 1276, 1259, 1059, 1006, 756, 744, 725, 701, 628. LCMS (ESI) m/z C₁₄¹³CH₁₃NO₂ [M+H]⁺ 241.3.

[¹³C] 4,4-diphenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]16)


C₁₉¹³CH₁₅NO₂ **MW**: 302.34 g.mol⁻¹ **Yield**: 28% Brown solid

The [¹³C] 4,4-diphenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]16 was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), (2-azidophenyl)diphenylmethanol **S29** (30.1 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The mixture was then heated at 150 °C for 30 minutes before the unreacted CO₂ was released and heated for 1 hour and 30 minutes more. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 95:5 to 80:20) affording the ¹³C-labeled 4,4-diphenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one [¹³C]16 as a brown solid (8.6 mg, 28%). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 10.37 (s, 1H), 7.43 – 7.38 (m, 6H), 7.34 (td, *J* = 7.8, 1.3 Hz, 1H), 7.12 – 7.07 (m, 4H), 7.02 (td, *J* = 7.6, 1.0 Hz, 1H), 6.98 (d, *J* = 7.9 Hz, 1H), 6.61 (dd, *J* = 7.7, 1.1 Hz, 1H).

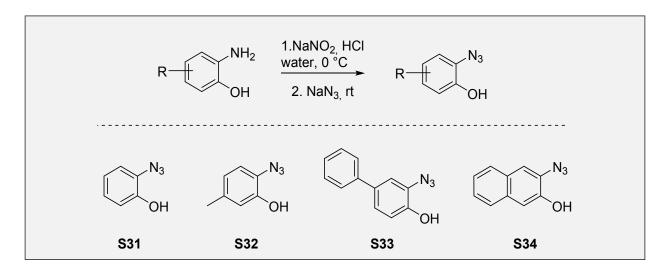
¹³C NMR (100 MHz, DMSO-*d₆*) δ 150.64 (¹³C labeled), 141.46 (d, *J* = 1.6 Hz), 135.9, 135.8, 129.5, 128.5 (2C), 128.3 (4C), 127.5 (4C), 127.0, 124.7 (m), 122.3, 114.5 (m), 88.0.
IR (cm⁻¹) 1677, 1596, 1492, 1448, 1320, 1258, 1014, 754, 698.

LCMS (ESI) *m/z* C₁₉¹³CH₁₅NO₂ [M+H]⁺ 303.4.

[¹³C] 6-nitro-3,4-dihydro-2H-benzo[e][1,3]oxazin-2-one ([¹³C]17)

C₇¹³CH₆N₂O₄ **MW**: 194.19 g.mol⁻¹ **Yield**: 74% Yellow solid

The [¹³C] 6-nitro-3,4-dihydro-2H-benzo[e][1,3]oxazin-2-one [¹³C]**17** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-(azidomethyl)-4-nitrophenol **S30** (19.3 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 6-nitro-3,4-dihydro-2H-benzo[e][1,3]oxazin-2-one [¹³C]**17** as a yellow solid (14.4 mg, 74%).


¹**H NMR (400 MHz, DMSO-***d*₆) δ 8.25 (d, *J* = 2.8 Hz, 2H), 8.16 (dd, *J* = 9.0, 2.8 Hz, 1H), 7.26 (d, *J* = 9.0 Hz, 1H), 4.51 (br. s, 2H).

¹³C NMR (100 MHz, DMSO- d_6) δ 159.0, 157.0, 148.8 (¹³C labeled), 143.3, 124.5, 122.6, 117.1 (d, J = 3.2 Hz), 40.9.

IR (cm⁻¹) 2924, 2853, 1708, 1588, 1522, 1335, 1288, 1245, 1092.

LCMS (ESI) *m/z* C₇¹³CH₆N₂O₄ [M-H]⁻194.2.

2.11. General procedure for the preparation of the aromatic azido derivatives *via* Sandmeyer reaction

To a solution of aminophenol (3.00 mmol) in 10 mL of deionized water at 0 °C was added HCl 12N (833 μ L, 10.0 mmol) and the reaction was kept at 0 °C. A solution of NaNO₂ (207 mg, 3.00 mmol) in 1 mL of water was slowly added and the resulting mixture was stirred at 0 °C for 15 minutes after what sodium azide (234 mg, 3.60 mmol) was added by portion. The reacting mixture was then allowed to warm to room temperature and kept under stirring for 2 hours. The aqueous phase was extracted twice with 20 mL of EtOAc. The organic layers were combined then washed with 30 mL of brine, dry over MgSO₄ and evaporated to dryness. Purification by Flash Chromatography on SiO₂ gel using adapted eluent afforded the desired ortho-azido-phenols.

2-azidophenol (S31)

C₆H₅N₃O **MW**: 135.13 g.mol⁻¹ **Yield**: 74% Orange solid

2-azidophenol **S31** was prepared accordingly to the general procedure. The reaction has been conducted using 327 mg of *o*-aminophenol and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1 to 8:2) to afford the 2-azido-phenol **S31** as an orange solid (300 mg, 74%). The spectral data matched that reported literature.⁵

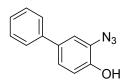
¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.05 (m, 2H), 6.98 – 6.92 (m, 2H), 5.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 126.2, 126.0, 121.3, 118.4, 116.1.

IR (cm⁻¹) 3414, 2117, 1089, 1591, 1492, 1349, 1292, 1245, 1205, 742, 649.

⁵ Ngai, M. H.; Yang, P.-Y.; Liu, K.; Shen, Y.; Wenk, M. R.; Yao, S. Q.; Lear, M. J. *Chem. Commun.* **2010**, *46*, 8335-8337.

LCMS (ESI) *m*/z C₆H₅N₃O [M-H]⁻ 134.2.

2-azido-5-methylphenol (S32)



C₇H₇N₃O **MW**: 149.15 g.mol⁻¹ **Yield**: 75% Brown solid

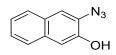
2-azido-5-methylphenol **S32** was prepared accordingly to the general procedure. The reaction has been conducted using 369 mg of 2-amino-5-methylphenol and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-5-methylphenol **S32** as a brown solid (337 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 8.4 Hz, 1H), 6.76 (m, 2H), 5.34 (br. s, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 136.4, 123.2, 121.9, 118.1, 116.7, 21.1. IR (cm⁻¹) 3375, 2914, 2139, 2093, 1584, 1502, 1313, 1256, 1159, 9444, 696, 793, 633, 520. LCMS (ESI) *m*/z C₇H₇N₃O [M-H]⁻ 148.0.

3-azido-[1,1'-biphenyl]-4-ol (833)

C₁₂H₉N₃O **MW**: 211.22 g.mol⁻¹ **Yield**: 68% Brown solid

3-azido-[1,1'-biphenyl]-4-ol **S33** was prepared accordingly to the general procedure. The reaction has been conducted using 617 mg of 3-amino-[1,1'-biphenyl]-4-ol and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 3-azido-[1,1'-biphenyl]-4-ol **S33** as a brown solid (428 mg, 68%). The spectral data matched that reported literature.⁶

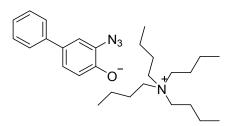

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.58 – 7.52 (m, 2H), 7.48 – 7.42 (m, 2H), 7.38 – 7.32 (m, 1H), 7.31 – 7.27 (m, 2H), 7.04 – 6.99 (m, 1H), 5.40 (br. s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 140.2, 134.9, 129.0 (2C), 127.3, 126.9 (2C), 126.3, 125.0, 116.9, 116.4.

IR (cm⁻¹) 3401, 2139, 2103, 1593, 1523, 1491, 1455, 1410, 1317, 1254, 1214, 1151, 823, 810, 756, 683. **LCMS (ESI)** *m/z* C₁₂H₉N₃O [M-H]⁻ 210.2.

⁶ Novak, M.; Glover, S. A. J. Am. Chem. Soc. **2004**, 126, 7748-7749.

3-azidonaphthalen-2-ol (\$34)

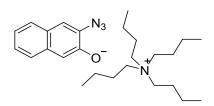

C₁₀H₇N₃O **MW**: 185.19 g.mol⁻¹ **Yield**: 81% Beige solid

3-azidonaphthalen-2-ol **S34** was prepared accordingly to the general procedure. The reaction has been conducted using (318 mg, 2.0 mmol) of 3-aminonaphthalen-2-ol and a proportional amount of other reagents. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 3-azidonaphthalen-2-ol **S34** as a beige solid (299 mg, 81%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (t, J = 7.9 Hz, 2H), 7.47 (s, 1H), 7.43-7.33 (m, 2H), 7.28 (s, 1H), 5.57 (br. s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.2, 132.3, 128.9, 128.0, 126.7, 126.6, 126.1, 124.6, 115.9, 110.9.
IR (cm⁻¹) 3400, 2109, 1599, 1522, 1446, 1399, 1362, 1286, 1144, 1069, 863, 740, 617, 476.
LCMS (ESI) *m/z* C₁₀H₇N₃O [M-H]⁻ 184.1.

tetrabutylammonium 3-azido-[1,1'-biphenyl]-4-olate (\$35)



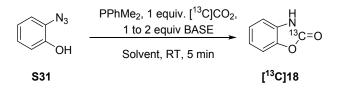
 $\begin{array}{c} C_{28}H_{44}N_4O \\ \textbf{MW}: \ 452.69 \ g.mol^{-1} \\ \textbf{Yield}: \ >99\% \\ Brown \ oil \end{array}$

Compound **S33** (21.1 mg, 0.100 mmol) was dissolved in H_2O at room temperature, then terbutylammonium hydroxide $30 \cdot H_2O$ (120 mg, 0.150 mmol) was added and the mixture stirred vigorously for 3 hours. Extraction occurred with twice CH_2Cl_2 . The unified organic phases were than dried over MgSO₄ and evaporated under vacuum to afford tetrabutylammonium 3-azido-[1,1'-biphenyl]-4-olate **S35** (46 mg, >99%) as sticky brown oil quantitatively, which was used without any further purification.

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 – 7.46 (m, 2H), 7.37 – 7.30 (m, 2H), 7.23 – 7.12 (m, 2H), 7.06 (d, J = 2.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.24 (dd, J = 10.0, 7.0 Hz, 8H), 1.63 – 1.53 (m, 8H), 1.44 – 1.34 (m, 8H), 1.00 – 0.93 (m, 12H).

tetrabutylammonium 3-azidonaphthalen-2-olate (\$36)

 $\begin{array}{c} C_{29}H_{46}N_4O \\ \textbf{MW}: \ 426.65 \ g.mol^{-1} \\ \textbf{Yield}: \ >99\% \\ Brown \ oil \end{array}$


Compound **S34** (18.5 mg, 0.100 mmol) was dissolved in H_2O at room temperature, then terbutylammonium hydroxide $30 \cdot H_2O$ (120 mg, 0.150 mmol) was added and the mixture stirred vigorously for 3 hours. Extraction occurred with twice CH_2Cl_2 . The unified organic phases were than dried over MgSO₄ and evaporated under vacuum to afford tetrabutylammonium 3-azidonaphthalen-2-olate **S36** (43 mg, >99%) as sticky brown oil quantitatively, which was used without any further purification.

¹**H NMR (400 MHz, CDCl₃)** δ 7.61 – 7.55 (m, 2H), 7.51 (s, 1H), 7.32 (s, 1H), 7.28 (dd, J = 6.9, 1.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 3.29 (dd, J = 10.1, 7.0 Hz, 8H), 1.66 – 1.55 (m, 8H), 1.40 (dd, J = 14.8, 7.4 Hz, 8H), 0.97 (t, J = 7.3 Hz, 12H).

2.12. Synthesis of ¹³C-labeled aromatic cyclic carbamates

2.12.1 Optimisation

A)

Entry	Base	Equiv. of base	Solvent	Conversion
				(isolated yield%)
1	-	-	$DMF-d_7$	(64)
2	DABCO	1	CH_3CN-d_3	0
3	DBN	1	CH_3CN-d_3	0
4	DBU	1	CH_3CN-d_3	0
5	TBD	1	CH_3CN-d_3	0
6	DMAP	2	CH_3CN-d_3	71
7	NaOtBu	2	CH_3CN-d_3	23
8	Proton Sponge	2	CH_3CN-d_3	59
9	TEA	2	CH_3CN-d_3	81
10	DIPEA	2	CH_3CN-d_3	90 (85)
11	DIPEA	2	$\text{DMF-}d_7$	(83)
B)				

Table S3: *A*) *Screening of bases; B*) *Different amine, amidine and guanidine bases used.*

DBN

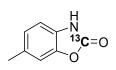
DABCO

DBU

TBD

C₆¹³CH₅NO₂ **MW**: 136.11 g.mol⁻¹ **Yield**: 85% White solid

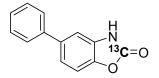
The [¹³C] benzo[d]oxazol-2(3H)-one [¹³C]**18** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol,), 2-azidophenol **S31** (13.5 mg, 0.100 mmol,), ¹³CO₂ (0.100 mmol) and DIPEA (26 μ L, 0.2 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 70:30) affording the [¹³C] benzo[d]oxazol-2(3H)-one [¹³C]**18** as a white solid (11.6 mg, 85%).


¹**H NMR (400 MHz, MeOD-***d*₄) δ 7.22 – 7.18 (m, 1H), 7.15 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.11 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.09 – 7.06 (m, 1H).

¹³C NMR (100 MHz, MeOD-*d*₄) δ 157.2 (¹³C labeled), 125.1 (2C), 123.4 (2C), 110.8 (d, *J* = 4.8 Hz), 110.6 (d, *J* = 4.0 Hz).

IR (cm⁻¹) 2926, 1714, 1593, 1482, 1252, 1142, 1008, 934, 742, 697.

LCMS (ESI) *m/z* C₆¹³CH₅NO₂ [M+H]⁺ 137.2.


[¹³C] 5-methylbenzo[d]oxazol-2(3H)-one ([¹³C]19)

C₇¹³CH₇NO₂ **MW**: 150.14 g.mol⁻¹ **Yield**: 78% Brown solid

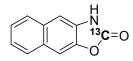
The [¹³C] 5-methylbenzo[d]oxazol-2(3H)-one [¹³C]**19** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol,), 2-azido-5-methylphenol **S32** (14.9 mg, 0.100 mmol,) ¹³CO₂ (0.100 mmol) and DIPEA (26 μ L, 0.200 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 70:30) affording the [¹³C]5-methylbenzo[d]oxazol-2(3H)-one [¹³C]**19** as a brown solid (11.7 mg, 78%).

¹H NMR (400 MHz, MeOD- d_4) δ 7.03 (br. s, 1H), 6.99 – 6.92 (m, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, MeOD- d_4) δ 157.4 (¹³C labeled), 145.5 (d, J = 1.9 Hz), 133.7, 129.1 (d, J = 4.6 Hz), 125.4, 111.2 (d, J = 3.9 Hz), 110.4 (d, J = 4.7 Hz), 21.3. IR (cm⁻¹) 3229, 1731, 1690, 1498, 1290, 1265, 928, 816, 707. Melting point: 135-136 °C. LCMS (ESI) $m/z C_7^{13}$ CH₇NO₂ [M+H]⁺ 151.2. [¹³C] 5-phenylbenzo[d]oxazol-2(3H)-one ([¹³C]20)

 $C_{12}^{13}CH_9NO_2$ **MW**: 212.21 g.mol⁻¹ **Yield**: 37% Yellow solid

The [¹³C] 5-phenylbenzo[d]oxazol-2(3H)-one [¹³C]**20** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol,), tetrabutylammonium 3-azido-[1,1'-biphenyl]-4-olate **S35**⁷ (46 mg, 0.100 mmol,) and ¹³CO₂ (0.100 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 70/30) affording the [¹³C]5-phenylbenzo[d]oxazol-2(3H)-one [¹³C]**20** as a yellow solid (7.8 mg, 37%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.98 (br. s, 1H), 7.57 – 7.51 (m, 2H), 7.48 – 7.42 (m, 2H), 7.39-7.37 (m, 1H), 7.34 (dd, J = 8.3, 1.8 Hz, 1H), 7.30 (br. d, J = 1.5 Hz, 1H), 7.28 (br. s, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 155.7 (¹³C labeled), 143.5 (d, J = 1.6 Hz), 140.6, 138.3, 129.9 (d, J = 4.8 Hz), 129.1 (2C), 127.7, 127.4 (2C), 122.1, 110.5 (d, J = 4.0 Hz), 108.8 (d, J = 4.7 Hz).

IR (cm⁻¹) 3218, 1716, 1480, 1469, 1257, 940, 760, 697.

Melting point: 150-151 °C.

LCMS (ESI) *m/z* C₁₂¹³CH₉NO₂ [M+H]⁺213.2.

[¹³C] naphtho[2,3-d]oxazol-2(3H)-one ([¹³C]21)

 $\begin{array}{c} C_{10}{}^{13}\text{CH}_7\text{NO}_2\\ \textbf{MW: } 186.17 \text{ g.mol}{}^{-1}\\ \textbf{Yield: } 45\%\\ \text{Pale yellow solid} \end{array}$

The [¹³C] naphtho[2,3-d]oxazol-2(3H)-one [¹³C]**21** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), tetrabutylammonium 3-azidonaphthalen-2-olate **S36**⁸ (43 mg, 0.100 mmol) and ¹³CO₂ (0.110 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 70/30) affording the [¹³C] naphtho[2,3-d]oxazol-2(3H)-one [¹³C]**21** as a white solid (8.4 mg, 45%).

¹H NMR (400 MHz, MeOD-d₄) δ 7.82 (ddd, J = 9.4, 7.1, 2.6 Hz, 2H), 7.58 (brs, 1H), 7.45 - 7.36 (m, 3H).

¹³C NMR (100 MHz, MeOD- d_4) δ 157.2 (¹³C labeled), 145.4, 132.5, 131.8, 131.4, 128.9, 128.2, 126.3, 125.7, 106.7 (d, J = 4.1 Hz), 106.5 (d, J = 5.0 Hz).

⁷ When [¹³C]20 was prepared from phenol S33 using DIPEA (2 equiv.), a lower yield was obtained.

⁸ When [¹³C]21 was prepared from phenol S34 using DIPEA (2 equiv.), a lower yield was obtained.

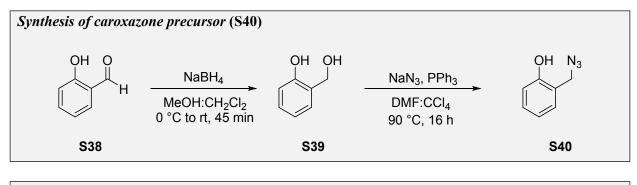
IR (cm⁻¹) 3282, 2445, 1737, 1703, 1470, 1272, 1254, 949, 858. Melting point : 192-193 °C. LCMS (ESI) *m/z* C₁₀¹³CH₇NO₂ [M+H]⁺ 187.2.

2.13. Synthesis of drug precursors

2-azido-4-chlorophenol (S37)

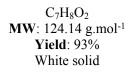
$$\begin{array}{c} CI & & C_{6}H_{4}CIN_{3}O \\ MW: 169.57 \text{ g.mol}^{-1} \\ Vield: 99\% \\ Orange solid \end{array}$$

2-azido-4-chlorophenol **S37** was prepared accordingly to the general procedure. The reaction has been conducted using 431 mg of 2-amino-4-chlorophenol and the crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-azido-4-chlorophenol **S37** as an orange solid (507 mg, 99%). The spectral data matched that reported literature.⁹


¹**H NMR (400 MHz, CDCl₃)** δ 7.05 (d, *J* = 2.3 Hz, 1H), 7.01 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.85 (d, *J* = 8.6 Hz, 1H), 5.35 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.0, 127.1, 126.1, 125.8, 118.4, 117.0.

IR (cm⁻¹) 3333, 2117, 1601, 1491, 1416, 1352, 1291, 1267, 1233, 1213, 1147, 1105, 888, 851, 647, 569. LCMS (ESI) *m/z* C₆H₄³⁵ClN₃O [M+H]⁻ 168.1, C₆H₄³⁷ClN₃O [M+H]⁻ 170.1.


HRMS (ESI) *m*/*z* calcd for C₆H₄ClN₃O [M+H]⁺ 167.9970; found: 167.9966.

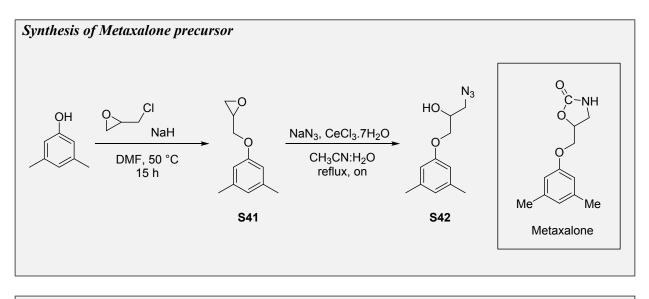
⁹ Ren, L.; Jiao, N. *Chem. Commun.* **2014**, *50*, 3706-3709.

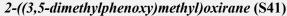
2-(hydroxymethyl)phenol (839)

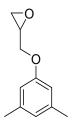
2-(hydroxymethyl)phenol **S39** was synthetized following the general procedure of section **2.2** of this experimental part. To a solution of 2-hydroxybenzaldehyde **S38** (122 mg, 1.00 mmol) in 6.0 mL of dry MeOH and 4.0 mL of dry CH₂Cl₂ at 0 °C was added NaBH₄ (37.8 mg, 1.0 mmol). The resulting mixture was then stirred at 0 °C for 15 min then 30 additional minutes at room temperature, under argon. At the end of the reaction, 10 mL of a saturated solution of NaHCO₃ were added and the phases separated. The aqueous phase was extracted twice with 10 mL of CH₂Cl₂ and the organic phases were combined, dried over MgSO₄ and evaporated to afford the 2-(hydroxymethyl)phenol **S39** (116 mg, 93%) as a white solid. The crude mixture was used for the subsequent step without any further purification. Analytical data were consistent with the reported literature.¹⁰

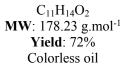
¹H NMR (400 MHz, MeOD- d_4) δ 7.29 – 7.22 (m, 1H), 7.08 (td, J = 8.0, 1.7 Hz, 1H), 6.80 (td, J = 7.4, 1.0 Hz, 1H), 6.76 (dd, J = 8.0, 1.0 Hz, 1H), 4.65 (s, 2H). ¹³C NMR (100 MHz, MeOD- d_4) δ 156.2, 129.4, 129.3, 128.5, 120.4, 115.8, 61.1.

2-(azidomethyl)phenol (S40)

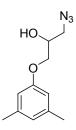

C₇H₇N₃O **MW**: 149.15 g.mol⁻¹ **Yield**: 50% Orange oil


A stirring mixture of 2-(hydroxymethyl)phenol **S39** (97.0 mg, 0.78 mmol), sodium azide (101.5 mg, 1.56 mmol) and triphenylphosphine (205.0 mg, 0.78 mmol) in CCl₄ and DMF (0.5 and 2.0 mL) was heated to 90 °C over 16 hours. At reaction complete, the mixture was cooled down at room temperature <u>and partitioned between EtOAc and water</u>. The aqueous phase was extracted twice with 10 mL of EtOAc ¹⁰ Li, H.-J.; Wu, Y.-Y.; Wu, Q.-X.; Wang, R.; Dai, C.-Y.; Shen, Z.-L.; Xie, C.-L.; Wu, Y.-C. *Org. Biomol. Chem.* **2014**, *12*, 3100-3107.


and the organic phases were combined, dried over $MgSO_4$ and evaporated under *vacuum*. The crude was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 8:2) to afford the 2-(azidomethyl)phenol **S40** as an orange oil (59.3 mg, 50%). Analytical data were consistent with the reported literature.¹¹


¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, J = 8.0, 1.5 Hz, 1H), 7.19 (dd, J = 7.8, 1.5 Hz, 1H), 6.92 (td, J = 7.5, 0.9 Hz, 1H), 6.84 (dd, J = 8.0, 0.9 Hz, 1H), 5.51 (br. s, 1H), 4.40 (s, 2H). LCMS (ESI) m/z C₇H₇N₃O [M-H]⁻ 148.1.

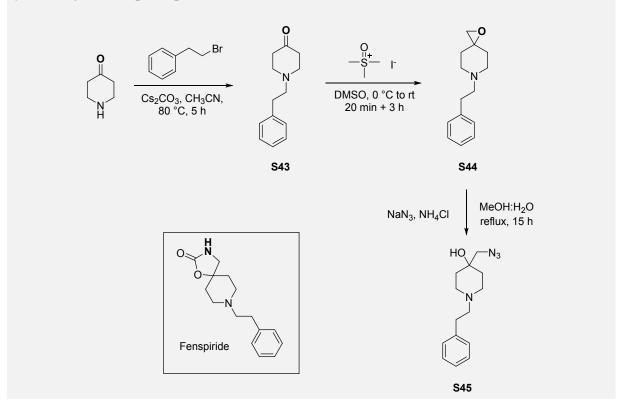
¹¹ ZhangJames, Q., Takacs, M., Org. Lett., 2008, 10, 545-548.



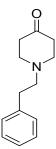
To a solution of 3,5-dimethylphenol (300 mg, 2.50 mmol) in DMF (7.5 mL) was added at 0 °C NaH (147 mg, 3.70 mmol). The resulting solution was stirred for 1 hour at 0 °C before the addition of epichloridrine (290 μ L, 3.70 mmol). The mixture was then heated at 50 °C for 15 hours. After being cooled to room temperature, diethyl ether and water were added and the phases were separated. The aqueous layer was extracted twice with 50 mL of Et₂O. The combined organic phases were dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford the 2-((3,5-dimethylphenoxy)methyl)oxirane **S41** as a colorless oil (314 mg, 72%).

¹**H NMR (400 MHz, CDCl₃)** δ 6.62 (s, 1H), 6.56 (s, 2H), 4.17 (dd, J = 11.0, 3.3 Hz, 1H), 3.95 (dd, J = 11.0, 5.5 Hz, 1H), 3.37 – 3.31 (m, 1H), 2.92 – 2.88 (m, 1H), 2.75 (dd, J = 5.0, 2.7 Hz, 1H), 2.31 – 2.25 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 158.7, 139.4 (2C), 123.1, 112.5 (2C), 68.7, 50.3, 44.9, 21.6 (2C).
IR (cm⁻¹) 1613, 1595, 1472, 1454, 1321, 1296, 1172, 1153, 1067, 907, 830, 688.
LCMS (ESI) *m/z* C₁₁H₁₄O₂ [M+H]⁺ 179.2.


 $\begin{array}{c} C_{11}H_{14}N_3O_2\\ \textbf{MW: } 221.26 \text{ g.mol}^{-1}\\ \textbf{Yield: } 70\%\\ \text{Colorless oil} \end{array}$

To a solution of 2-((3,5-dimethylphenoxy)methyl)oxirane S41 (100 mg, 0.56 mmol) in CH₃CN/H₂O (15 mL, 9:1) was added successively CeCl₃.7H₂O (63 mg, 0.17 mmol) and sodium azide (109 mg, 1.68 mmol) and the resulting mixture was heated to reflux for overnight. After cooling down the reactional mixture was treated with water and the aqueous layer was washed with EtOAc (3 x 20 mL). The combined organic phases were dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 7:3) to afford the 1-azido-3-(3,5-dimethylphenoxy)propan-2-ol S42 (87 mg, 70%) as a colorless oil.

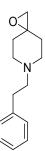

¹**H NMR (400 MHz, CDCl₃)** δ 6.64 (d, J = 0.6 Hz, 1H), 6.55 (s, 2H), 4.18 – 4.13 (m, 1H), 4.02 – 3.96 (m, 2H), 3.57 – 3.45 (m, 2H), 2.29 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 158.4, 139.5 (2C), 123.4, 112.4 (2C), 69.5, 69.0, 53.5, 21.6 (2C).
IR (cm⁻¹) 2099, 1613, 1594, 1457, 1321, 1295, 1170, 1157, 1100, 1071, 829, 687.
LCMS (ESI) *m*/z C₁₁H₁₅N₃O₂ [M+H]⁺ 222.3.
HRMS (ESI) *m*/z calcd for C₁₁H₁₅N₃O₂ [M+H]⁺ 222.1237; found: 222.1235.

Synthesis of the Fenspiride precursor

¹⁻phenethylpiperidin-4-one (S43)

 $\begin{array}{c} C_{13}H_{17}NO\\ \textbf{MW: } 203.29 \text{ g.mol}^{-1}\\ \textbf{Yield: } 65\%\\ \text{Light yellow oil} \end{array}$


Commercial 4-piperidone monohydrate hydrochloride (1.0 g, 6.50 mmol) was dissolved in CH₃CN (18 mL). The colorless solution was treated sequentially with cesium carbonate (4.6 g, 14.1 mmol) and (2-bromoethyl)benzene (0.88 mL, 6.40 mmol) at room temperature. The resulting suspension was vigorously stirred and refluxed at 80 °C, for 5 hours. After 5 hours, the CH₃CN was evaporated and the crude mixture was extracted 3 times with CH_2Cl_2 , dried over MgSO₄ and concentrated under *vacuum* to provide a yellow oil. The oily mixture was purified by Flash Chromatography on SiO₂ gel, after neutralization with 1% Et₃N (eluent EtOAc/Hexanes 1:1 to 7:3 with 1% Et₃N) to give 1-phenethylpiperidin-4-one **S43** as a light yellow oil (853 mg, 65%). The experimental data are consistent with the reported procedure.¹²

¹² Valdez, C.A., Leif, R.N., Mayer, B.P. PLoS One, 2014, 9, e108250/1-e108250/8;

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.28 (m, 2H), 7.25 –7.21 (m, 3H), 2.86 – 2.81 (m, 6H), 2.75 – 2.70 (m, 2H), 2.48 (t, *J* = 6.2 Hz, 4H).

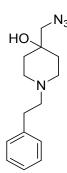
¹³C NMR (100 MHz, CDCl₃) δ 209.2, 140.1, 128.8 (2C), 128.6 (2C), 126.3, 59.4, 53.12 (2C), 41.3 (2C), 34.2.

6-phenethyl-1-oxa-6-azaspiro[2.5]octane (S44)

C₁₄H₁₉NO **MW**: 217.31 g.mol⁻¹ **Yield**: 58% Colorless oil

This compound was prepared by adapting a described procedure.¹³ To a 25-mL flask equipped with a magnetic stirrer was added sodium hydride 60% in mineral oil (52.0 mg, 2.18 mmol). The flask was repeatedly evacuated and recharged with argon then cooled down to 0 °C. Next, a solution of trimethyloxosulfonium iodide (478 mg, 2.18 mmol) in DMSO (3.0 mL) was added and the mixture was stirred for 20 minutes at room temperature. A solution of 1-phenethylpiperidin-4-one **S43** (340 mg, 1.60 mmol) in DMSO (1.2 mL) was then added at once. After stirring 1 hour at 0 °C and for other 2 hours at room temperature, DMSO was evaporated. The resulting white solid was dissolved in a mixture of EtOAc/Heptane (75:25) and extracted twice from water, dried over MgSO₄ and evaporated under *vacuum* to give a pale yellow oil, A purification occurred on Flash Chromatography on SiO₂ gel after neutralization with 1% Et₃N (eluent Heptane/EOAc 6:4 with 1% Et₃N) affording 6-phenethyl-1-oxa-6-azaspiro[2.5]octane **S44** as colorless oil (209.6 mg, 58%).

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.18 (m, 5H), 2.83 (dd, J = 16.0, 4 Hz, 2H), 2.74 – 2.60 (m, 8H), 1.93 – 1.86 (m, 2H), 1.61 – 1.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 128.7 (2C), 128.4 (2C), 126.1, 60.5, 57.4, 53.7, 52.0 (2C), 33.9,


33.0 (2C).

IR (cm⁻¹): 2948, 2920, 2801, 1093, 920, 748, 699.

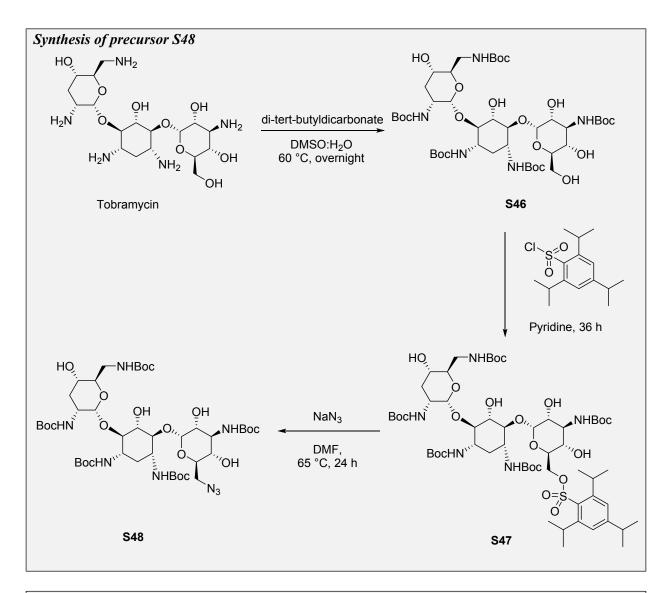
LCMS (ESI) *m*/*z* C₁₄H₁₉NO [M+H]⁺ 218.4.

¹³ Davis, R., Kluge, A.F., Maddox, M.L., Sparacino, M.L., J. Org. Chem., 1983, 48, 255-259.

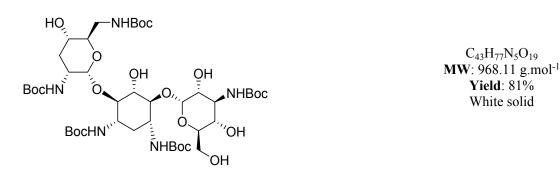
4-(azidomethyl)-1-phenethylpiperidin-4-ol (S45)

C₁₄H₂₀N₄O **MW**: 260.34 g.mol⁻¹ **Yield**: 61% Brown oil

A solution of 6-phenethyl-1-oxa-6-azaspiro[2.5]octane **S44** (80 mg, 0.360 mmol) in MeOH (2 mL) and H_2O (0.4 ml) was treated with sodium azide (119 mg, 1.80 mmol) and ammonium chloride (39.3 mg, 0.74 mmol). The mixture was heated to reflux over 15 hours. The crude product was then extracted from water with CH_2Cl_2 and the organic phase dried over MgSO₄. The resulting crude solution was filtered and evaporated to afford 4-(azidomethyl)-1-phenethylpiperidin-4-ol **S45** as sticky brown oil (57.7 mg, 61%), which was used without further purifications.


¹**H NMR (400 MHz, CDCl₃)** δ 7.31 – 7.26 (m, 2H), 7.22 – 7.18 (m, 3H), 3.32 (s, 2H), 2.88 – 2.80 (m, 4H), 2.69 – 2.65 (m, 2H), 2.54 – 2.42 (m, 2H), 1.78 – 1.65 (m, 5H).

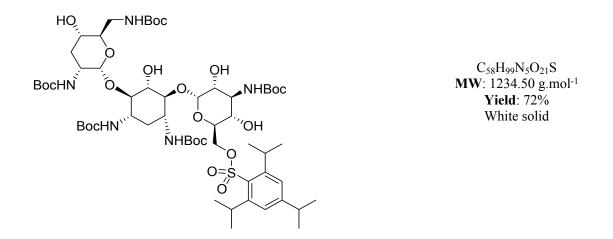
¹³C NMR (100 MHz, CDCl₃) δ 140.6, 129.1 (2C), 128.9 (2C), 126.6, 70.1, 62.1, 60.9, 49.4 (2C), 35.0 (2C), 34.1.


IR (cm⁻¹) 3336, 2929, 2099, 1603, 1496, 1453, 1288, 1124, 1089, 975, 750, 700.

LCMS (ESI) *m/z* C₁₄H₂₀N₄O [M+H]⁺ 261.5.

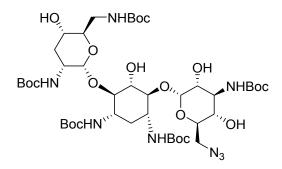
HRMS (ESI) *m/z* calcd for C₁₄H₂₀N₄O [M+H]⁺ 261.1710; found: 261.1710.

di-tert-butyl ((1S,3R,4S,5S,6R)-4-(((2S,3R,4S,5S,6R)-4-((tert-butoxycarbonyl)amino)-3,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6-(((2R,3R,5S,6R)-3-((tertbutoxycarbonyl)amino)-6-(((tert-butoxycarbonyl)amino)methyl)-5-hydroxytetrahydro-2H-pyran-2yl)oxy)-5-hydroxycyclohexane-1,3-diyl)dicarbamate (S46)


Boc-Tobramycine **S46** was obtained according to a reported procedure.¹⁴ A solution of tobramycin (935 mg, 2.00 mmol) in 28 mL aqueous DMSO (DMSO/water, 6/1) was treated with di*-tert*-butyldicarbonate

¹⁴ K. Michael, H. Wang, Y. Tor, *Bioorg. Med. Chem.* 1999, 7, 1361–1371.

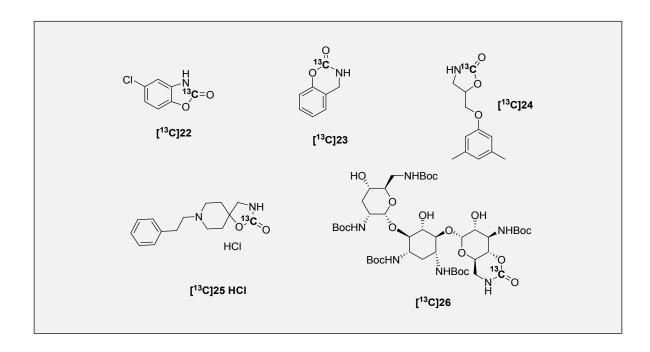
(2.62 g, 12.0 mmol). The solution was heated at 60 °C overnight, then cooled to room temperature. A solution of 30% aqueous ammonia (5 mL) was added dropwise to the mixture. The precipitated solid was filtered, washed with H_2O and dried in a dessicator. The desired product was obtained as a white solid (1.58 g, 81%). The spectroscopic data are in agreement with the reported one.¹⁴


¹H NMR (400 MHz, MeOD-*d₄*) δ 5.11 (s, 1H), 5.07 (s, 1H), 3.94 (m, 1H), 3.80 (m, 1H), 3.71 (m, 2H), 3.61 (m, 3H), 3.56 - 3.33 (m, 10H), 2.11 (m, 1H), 2.00 (m, 1H), 1.50 - 1.42 (m, 45H).
LCMS (ESI) *m/z* C₄₃H₇₇N₅O₁₉ [M+H]⁺ 969.

((2R,3S,4S,5R,6S)-6-(((1S,2S,3R,4S,6R)-4,6-bis((tert-butoxycarbonyl)amino)-3-(((2R,3R,5S,6R)-3-((tert-butoxycarbonyl)amino)-6-(((tert-butoxycarbonyl)amino)methyl)-5-hydroxytetrahydro-2Hpyran-2-yl)oxy)-2-hydroxycyclohexyl)oxy)-4-((tert-butoxycarbonyl)amino)-3,5-dihydroxytetrahydro-2H-pyran-2-yl)methyl 2,4,6-triisopropylbenzenesulfonate (S47)

A solution of the previously reported Boc-Tobramycine **S46** (267 mg, 0.30 mmol) in pyridine (5 mL) was treated with 2,4,6-triisopropylbenzenesulfonyl chloride (636 mg, 2.1 mmol). The reaction mixture was stirred at room temperature for 36 hours. It was neutralized by adding hydrochloric acid (1.0 N), and partitioned between H₂O and EtOAc. The aqueous layer was isolated and extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO₄, and concentrated under *vacuum*. Flash Chromatography on SiO₂ gel (eluent, CH₂Cl₂/MeOH, from 99:1 to 96:4) afforded the desired product **S47** as a white solid (267 mg, 72%). The spectroscopic data are in agreement with those reported in the literature.¹⁴

¹H NMR (400 MHz, MeOD- d_4) δ 7.27 (s, 2H), 5.05 (m, 2H), 4.40 (m, 1H), 4.26 (m, 1H), 4.15 (m, 3H), 3.72 (m, 1H), 3.64 – 3.35 (m, 12H), 2.94 (sept., J = 6.8 Hz, 1H), 2.12 – 1.94 (m, 2H), 1.65 (m, 2H), 1.45 (m, 27H), 1.40 (m, 18H), 1.26 (m, 18H). LCMS (ESI) m/z C₅₈H₉₉N₅O₂₁S [M+H]⁺ 1235. di-tert-butyl ((1S,3R,4S,5S,6R)-4-(((2R,3R,4S,5S,6R)-6-(azidomethyl)-4-((tertbutoxycarbonyl)amino)-3,5-dihydroxytetrahydro-2H-pyran-2-yl)oxy)-6-(((2R,3R,5S,6R)-3-((tertbutoxycarbonyl)amino)-6-(((tert-butoxycarbonyl)amino)methyl)-5-hydroxytetrahydro-2H-pyran-2yl)oxy)-5-hydroxycyclohexane-1,3-diyl)dicarbamate (S48)

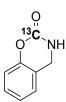


 $\begin{array}{c} C_{43}H_{76}N_8O_{18} \\ \textbf{MW:} \ 993.12 \ g.mol^{-1} \\ \textbf{Yield:} \ 84\% \\ White \ solid \end{array}$

Compound **S48** was obtained according to a reported procedure.¹⁵ To a solution of **S47** (247 mg, 0.20 mmol) in DMF (2.5 mL), sodium azide (104 mg, 1.60 mmol) was added. The yellow solution was heated to 65 °C and stirred over 24 hours. The solvent was removed under reduced pressure and the resulting solid was dissolved in CH_2Cl_2 and washed with water. The organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The product was isolated by Flash Chromatography on SiO₂ gel (eluent, $CH_2Cl_2/MeOH$, from 97:3 to 95:5) as a white solid (167 mg, 84%). The spectroscopic data are in agreement with those reported in the literature.¹⁵

¹H NMR (400 MHz, MeOD- d_4) δ 5.11 (s, 1H), 5.08 (s, 1H), 4.14 (m, 1H), 3.70 (m, 1H), 3.65 – 3.33 (m, 14H), 2.11 (m, 1H), 2.01 (m, 1H), 1.70 – 1.54 (m, 2H), 1.50 – 1.42 (m, 45H). LCMS (ESI) m/z C₄₃H₇₆N₈O₁₈ [M+H]⁺ 994. HRMS (ESI) m/z calcd for C₄₃H₇₆N₈O₁₈ [M+H]⁺ 993.5350; found: 993.5347.

¹⁵ R. J. Fair, L. S. McCoy, M. E. Hensler, B. Aguilar, V. Nizet, Y. Tor, Chem. Med. Chem., 2014, 9, 2164–2171.



2.14. Synthesis of ¹³C-labeled drug derivatives

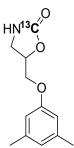
The ¹³C-labeled Chloroxazone [¹³C]**22** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-4-chlorophenol **S37** (16.9 mg, 0.100 mmol), DIPEA (26 μ L, 0.200 mmol) and ¹³CO₂ (0.100 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 70:30) affording the ¹³C-labeled Chloroxazone [¹³C]**22** as a yellow solid (9.0 mg, 53%).

¹H NMR (400 MHz, MeOD- d_4) δ 7.19 – 7.16 (m, 1H), 7.12 – 7.07 (m, 2H). ¹³C NMR (100 MHz, MeOD- d_4) δ 156.8, 144.0 (d, J = 1.8 Hz), 132.9 (d, J = 4.8 Hz), 130.3, 123.1, 111.7 (d, J = 3.9 Hz), 111.1 (d, J = 5.0 Hz). IR (cm⁻¹) 3189, 1726, 1611, 1478, 1258, 960, 922, 844, 802, 704. Melting point : 184-185 °C. LCMS (ESI) m/z C₆¹³CH₄³⁵CINO₂ [M+H]⁺ 169.1, C₆¹³CH₄³⁷CINO₂ [M+H]⁺ 171.1. [¹³C] Caroxazone precursor ([¹³C]23)

C₇¹³CH₇NO₂ **MW**: 150.14 g.mol⁻¹ **Yield**: 57% White solid

The ¹³C-labeled Caroxazone precursor [¹³C]**23** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-(azidomethyl)phenol **S40** (14.9 mg, 0.10 mmol) and ¹³CO₂ (0.109 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 5:5) affording the ¹³C-labeled Caroxazone precursor [¹³C]**23** as a white solid (8.5 mg, 57%).

¹**H NMR (400 MHz, MeOD-***d*₄) δ 7.28 (ddt, *J* = 16.8, 6.4, 0.8 Hz, 1H), 7.20 (d, *J* = 6.4 Hz, 1H), 7.14 (td, *J* = 7.5, 1.2 Hz, 1H), 6.99 (dd, *J* = 8.2, 0.8 Hz, 1H), 4.48 (br. d, *J* = 3.6 Hz, 2H).

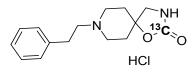

¹³C NMR (100 MHz, MeOD- d_4) δ 153.8 (¹³C labeled), 151.1, 129.8, 127.2, 125.7, 118.8 (d, J = 4.6 Hz), 117.1 (d, J = 3.1 Hz), 42.7.

IR (cm⁻¹) 1665, 1618, 1593, 1480, 1459, 1431, 1268, 1235, 1186, 745, 726.

Melting point : 188-189 °C.

LCMS (ESI) *m/z* C₇¹³CH₇NO₂ [M+H]⁺ 151.1.

[¹³C]Metaxalone [¹³C]24


C₁₁¹³CH₁₅NO₃ **MW**: 222.25 g.mol⁻¹ **Yield**: 72% White solid

The ¹³C-labeled Metaxalone was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-azido-3-(3,5-dimethylphenoxy)propan-2-ol **S42** (22.1 mg, 0.100 mmol) and ¹³CO₂ (0.100 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 50:50) affording the ¹³C-labeled Metaxalone [¹³C]**24** as a white solid (16.0 mg, 72%).

¹**H NMR (400 MHz, CDCl₃)** δ 6.64 (br. s, 1H), 6.54 (br. s, 2H), 5.63 (br. s, 1H), 4.95 (dtd, *J* = 11.5, 5.9, 2.9 Hz, 1H), 4.16 – 4.08 (m, 2H), 3.76 (td, *J* = 8.7, 2.9 Hz, 1H), 3.66 – 3.53 (m, 1H), 2.29 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 159.8 (¹³C labeled), 158.3, 139.5 (2C), 123.5, 112.5 (2C), 74.4, 68.0, 42.9 (d, J = 3.7 Hz), 21.5 (2C). IR (cm⁻¹) 2918, 1698, 1593, 1321, 1295, 1227, 1172, 1157, 1078, 963, 830. Melting point : 123-124 °C. LCMS (ESI) *m/z* C₁₁¹³CH₁₅NO₃ [M+H]⁺ 223.3. HRMS (ESI) *m/z* calcd for C₁₁¹³CH₁₅NO₃ [M+H]⁺ 223.1158; found: 223.1156.

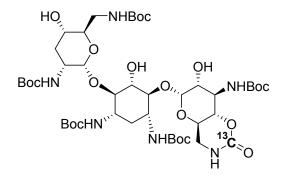
[¹³C]Fenspiride hydrochloride ([¹³C]25 HCl)

C₁₄¹³CH₂₁ClN₂O₂ **MW**: 297.79 g.mol⁻¹ **Yield**: 91% Beige solid

The ¹³C-labeled Fenspiride hydrochloride [¹³C]**25 HCl** was prepared according to the general procedure, using PPhMe₂ (10.6 μ L, 0.075 mmol,), 4-(azidomethyl)-1-phenethylpiperidin-4-ol **S45** (19.5 mg, 0.075 mmol) and ¹³CO₂ (0.075 mmol) in DMF-*d*₇. After solvent evaporation, the crude product was redissolved in EtOAc and treated with 4N HCl in dioxane (37.0 μ L) for 30 minutes at room temperature, to give a white precipitate which was filtered, washed with Et₂O and dried, providing ¹³C-labeled Fenspiride hydrochloride [¹³C]**25 HCl** as a beige solid (20.3 mg, 91%). Spectroscopic data are in agreement to the reported literature.¹⁶

¹**H NMR (400 MHz, CDCl₃)** δ 12.77 (br. s, 1H), 7.74 (br. s, 1H), 7.55 – 7.47 (m, 1H), 7.35 – 7.29 (m, 3H), 5.61 (br. s, 1H), 3.79 – 3.76 (m, 1H), 3.67 – 3.63 (m, 1H), 3.57 (br. s, 1H), 3.48 (br. s, 1H), 3.27 – 3.20 (m, 4H), 2.75 (br. s, 1H), 2.14 (br. s, 1H); 1.80-1.77 (m, 4H).

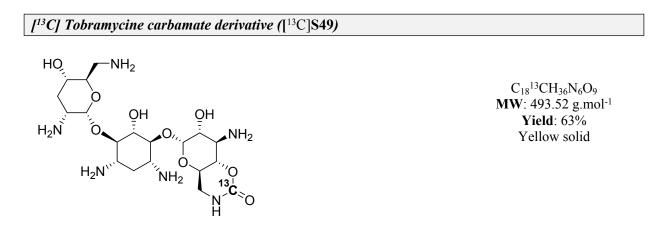
¹³C NMR (100 MHz, CDCl₃) δ 157.4 (¹³C labeled), 135.8, 129.3 (2C), 128.8 (2C), 127.6, 77.4, 58.8, 50.8, 49.1 (2C), 32.9 (2C), 30.4.


IR (cm⁻¹) 1703, 1437, 1248, 1152, 1117, 1080, 973, 936, 866, 747, 731, 699.

LCMS (ESI) $m/z C_{14}{}^{13}CH_{20}N_2O_2 [M+H]^+ 262.3.$

HRMS (ESI) m/z calcd for $C_{14}^{13}CH_{20}N_2O_2$ [M+H]⁺ 262.1631; found: 262.1629.

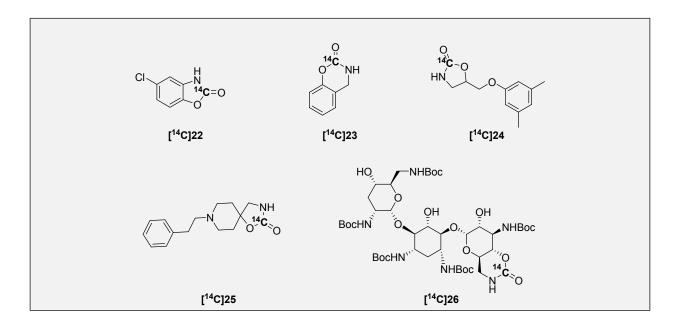
¹⁶ Loh,,Y.Y., Nagao, K., Hoover, A.J., Hesk, D., Rivera, N.R., Colletti,, S.L., Davies, I.W., David W. C. MacMillan, D.W.C., *Science*, **2017**, *358*, 1182–1187.


[¹³C]-5-Boc-Tobramycine carbamate derivative ([¹³C]26)

 $\begin{array}{c} C_{43}{}^{13}CH_{76}N_6O_{19} \\ \textbf{MW: } 994.11 \text{ g.mol}{}^{-1} \\ \textbf{Yield: } 64\% \\ \text{White solid} \end{array}$

The 5-Boc-Tobramycine carbamate [¹³C]**26** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol,), compound **S48** as precursor (99.3 mg, 0.100 mmol,) and ¹³CO₂ (0.120 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 98:2 to 95:5) affording the ¹³C- labeled 5-Boc-Tobramycine carbamate [¹³C]**26** as a white solid (63.7 mg, 64%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.37 (s, 1H), 6.99 (s, 1H), 6.76 (br. d, *J* = 8.6 Hz, 1H), 6.60 (br. s, 1H), 6.54 (br. d, *J* = 6.8 Hz, 1H), 6.46 (br. s, 1H), 5.13 (s, 1H), 5.09 (s, 1H), 4.92 – 4.84 (m, 2H) 4.34 – 4.23 (m, 2H), 3.76 – 3.60 (m, 2H), 3.55 – 3.35 (m, 8H), 3.30 – 3.15 (m, 4H), 2.93 (t, *J* = 9.8 Hz, 1H), 1.91 – 1.75 (m, 2H), 1.56 – 1.45 (m, 1H), 1.42 – 1.27 (m, 45H). IR (cm⁻¹) 1679, 1519, 1392, 1366, 1274, 1247, 1163, 1084, 1043, 1003, 865, 556. LCMS (ESI) *m*/z C₄₃¹³CH₇₆N₆O₁₉ [M+H]⁺ 994.5271; found: 994.5267.



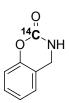
A solution of [¹³C]**26** (20.1 mg, 0.02 mmol) in a mixture of MeOH and concentrated HCl (4 mL, 6:4) was stirred for 2 hours at room temperature. The solvent was evaporated under reduced pressure and the

crude product was purified by preparative HPLC to afford the [¹³C] Tobramycine carbamate [¹³C]**S49** as a yellow solid (6.3 mg, 63%).

¹**H** NMR (400 MHz, $D_2O+DMSO-d_6$) δ 5.62 (d, J = 3.5 Hz, 1H), 5.00 (d, J = 3.5 Hz, 1H), 4.25 – 4.12 (m, 2H), 3.92 – 3.84 (m, 2H), 3.78 – 3.71 (m, 1H), 3.70 – 3.60 (m, 3H), 3.59 – 3.33 (m, 5H), 3.25 (dd, J = 13.6, 3.5 Hz, 1H), 3.17 – 3.04 (m, 2H), 2.38 (dt, J = 12.2, 4.1 Hz, 1H), 2.11 (dt, J = 12.2, 4.1 Hz, 1H), 1.93 – 1.75 (m, 2H).

¹³C NMR (100 MHz, $D_2O+DMSO-d_6$) δ 155.9 (¹³C labeled), 102.7, 95.5, 85.3, 78.6, 75.6, 75.2, 71.9, 69.4, 66.0, 63.2 (d, J = 3.4 Hz), 53.4, 51.3, 49.9, 49.3, 43.6, 41.4, 30.8, 29.3. LCMS (ESI) $m/z C_{18}^{13}CH_{36}N_6O_9 [M+H]^+ 494.5$.

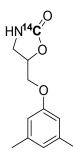
2.15. Synthesis of ¹⁴C-labeled drug derivatives


[¹⁴C] Chloroxazone ([¹⁴C]22)

¹⁴C-labeled Chloroxazone [¹⁴C]**22** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 2-azido-4-chlorophenol **S37** (16.9 mg, 0.100 mmol), ¹⁴CO₂ (0.083 mmol, 191.93 MBq) and DIPEA (26 μ L, 0.200 mmol) in CD₃CN. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 30:70) affording the [¹⁴C] Chloroxazone [¹⁴C]**22** as white solid (70.855 MBq, 39%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.000 GBq mmol⁻¹
TLC (silicagel 60F254, EtOAc/Heptane (50/50)) Rf=0.26. Radiochemical purity: ≥99%.

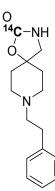
[¹⁴C] Caroxazone precursor ([¹⁴C]23)



 $C_7^{14}CH_7NO_2$ **MW**: 151.14 g.mol⁻¹ **RCYield**: 30% White solid

¹⁴C-labeled Caroxazone precursor [¹⁴C]**23** was prepared according to the general procedure, using PPhMe₂ (14.4 μ L, 0.100 mmol,), 2-(azidomethyl)phenol **S40** (14.9 mg, 0.100 mmol) and ¹⁴CO₂ (0.085 mmol, 196.56 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 95:5) affording the ¹⁴C-labeled Caroxazone precursor [¹⁴C]**23** as white solid (55.463 MBq, 30%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.002 GBq mmol⁻¹
TLC (silicagel 60F254, CH₂Cl₂/MeOH (95/5)) Rf=0.38. Radiochemical purity: ≥99%.


[¹⁴C] Metaxalone ([¹⁴C]24)

C₁₁¹⁴CH₁₅NO₃ **MW**: 223.25 g.mol⁻¹ **RCYield**: 59% White solid

¹⁴C-labeled Metaxalone [¹⁴C]**24** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 1-azido-3-(3,5-dimethylphenoxy)propan-2-ol **S42** (22.1 mg, 0.100 mmol) and ¹⁴CO₂ (0.086 mmol, 198.87 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent EtOAc/Heptane 50:50) affording the ¹⁴C-labeled Metaxalone [¹⁴C]**22** as white solid (111.037 MBq, 59%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 2.041 GBq mmol⁻¹
TLC (silicagel 60F254, EtOAc/Heptane (50/50)) Rf=0.26. Radiochemical purity: ≥99%.

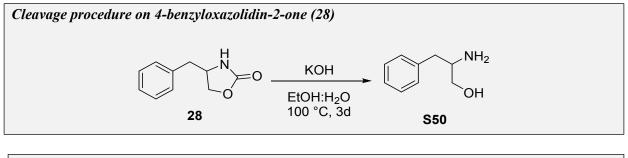
 $\begin{array}{c} C_{14}{}^{14}CH_{20}N_2O_2 \\ \textbf{MW: } 262.33 \text{ g.mol}{}^{-1} \\ \textbf{RCYield: } 45\% \\ \text{Yellow solid} \end{array}$

¹⁴C-labeled Fenspiride [¹⁴C]**25** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), 4-(azidomethyl)-1-phenethylpiperidin-4-ol **S45** (26 mg, 0.100 mmol) and ¹⁴CO₂ (0.092 mmol, 212.75 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 95:5) affording the ¹⁴C-labeled Fenspiride [¹⁴C]**25** as yellow solid (90.354 MBq, 45%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹

Molar activity (MS (ESI)): 1.729 GBq mmol⁻¹

TLC (silicagel 60F254, CH₂Cl₂/MeOH (95/5)) Rf=0.23. Radiochemical purity: ≥99%.



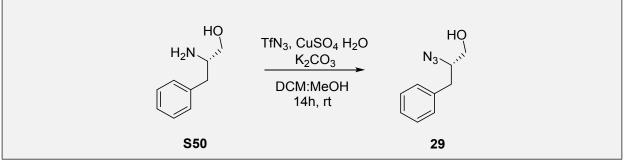
¹⁴C-labeled 5-Boc-Tobramycine carbamate derivative [¹⁴C]**26** was prepared according to the general procedure, using PPhMe₂ (9.93 μL, 0.069 mmol), di-tert-butyl ((1R,3S,4R,5R,6S)-4-(((2R,3R,4S,5S,6R)-6-(azidomethyl)-4-((tert-butoxycarbonyl)amino)-3,5-dihydroxytetrahydro-2H-pyran-2-yl)oxy)-6-(((2R,3R,5S,6R)-3-((tert-butoxycarbonyl)amino)-6-(((tert-butoxycarbonyl)amino)methyl)-5-hydroxytetrahydro-2H-pyran-2-yl)oxy)-5-hydroxycyclohexane-1,3-diyl)dicarbamate **S48** (69 mg, 0.069 mmol) and ¹⁴CO₂ (0.064 mmol, 148.0 MBq) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 95:5) affording the ¹⁴C-labeled 5-Boc-Tobramycine carbamate [¹⁴C]**26** as white solid (48.544 MBq, 35%).

¹⁴CO₂ Molar activity: 2.172 GBq mmol⁻¹
Molar activity (MS (ESI)): 1.955 GBq mmol⁻¹
TLC (silicagel 60F254, DCM/MeOH (95/5)) Rf=0.27. Radiochemical purity: ≥99%.

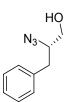
2.16. Disconnection/reconnection strategy to label carbamates

2.16.1 Labeling of carbamate (28)

2-Amino-3-phenyl-1-propanol (S50)



To a stirred suspension of (S)-4-benzyloxazolidin-2-one (35.4 mg, 0.20 mmol) in EtOH:H₂O (0.8 and 0.2 mL), KOH (34 mg, 0.60 mmol) was added at once. The reaction was stirred over 3 days at 100 °C then the mixture of solvents was partially evaporated. The crude product was extracted twice with CH_2Cl_2 (2 x 10 mL) and the combined organic phases were dried over MgSO₄, filtered and evaporated to provide 2-amino-3-phenyl-1-propanol **S50** as white solid (24.7 mg, 80%) without any further purification. Analytical data were consistent with the commercially available reference.


¹**H NMR (400 MHz, CDCl₃)** δ 7.35 – 7.14 (m, 5H), 3.64 (dd, J = 10.7, 3.8 Hz, 1H), 3.39 (dd, J = 10.7, 7.2 Hz, 1H), 3.16 – 3.07 (m, 1H), 2.79 (dd, J = 13.4, 5.2 Hz, 1H), 2.52 (dd, J = 13.4, 8.7 Hz, 1H), 1.95 (s, 3H).

LCMS (ESI) *m/z* C₉H₁₃NO [M+H]⁺ 152.1.

Synthesis of 2-azido-3-phenylpropan-1-ol (29)

2-azido-3-phenylpropan-1-ol (29)

 $\begin{array}{c} C_9H_{11}N_3O\\ \textbf{MW: } 177.21 \text{ g.mol}^{-1}\\ \textbf{Yield: } 64\%\\ \text{White solid} \end{array}$

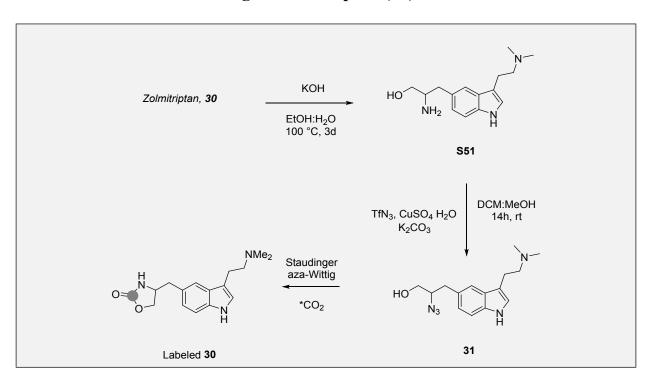
Preparation of trifluoromethanesulfonyl azide (TfN_3): ¹⁷

ATTENTION: TfN_3 is a potentially explosive reagent; it must be prepared and handled with extreme care, using adequate protection and an additional shield for safety.

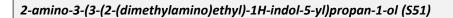
To a solution of sodium azide (130 mg, 2.00 mmol) in $CH_2Cl_2:H_2O$ (1.5 mL, 2:1) at 0 °C was added the trifluoromethanesulfonic anhydride (84 µL, 0.5 mmol). The mixture was then stirred at 0 °C for 2 hours before being quenched by using a saturated solution of NaHCO₃. The aqueous phase was extracted twice with 2 mL of CH_2Cl_2 to give a crude solution of trifluoromethanesulfonyl azide (0.5 mmol, 5 mL) which was directly used for the next step to avoid degradation.

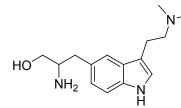
To a suspension of commercially available (R)-2-amino-3-phenylpropan-1-ol (37.8 mg, 0.25 mmol) in H_2O was added $CuSO_4 \cdot H_2O$ (2.0 mg, 0.005 mmol). The reaction was the basified to pH 9 using K_2CO_3 before addition of MeOH (0.7 mL) and a freshly prepared solution of trifluoromethanesulfonyl azide (5 mL, 0.08M in CH_2Cl_2). The mixture was stirred for 14 hours before being quenched by addition of water and CH_2Cl_2 . The aqueous phase then acidified to pH = 2 using a solution of HCl was extracted by CH_2Cl_2 (3 x 10 mL). The combined organic phases were dried over MgSO₄, filtered and evaporated. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 9:1) to afford (R)-2-azido-3-phenylpropan-1-ol **29** as a white solid (28.6 mg, 64%). Analytical data were consistent with the reported literature.¹⁸

 ¹⁷ a) Cavender, C. J.; Shiner, V. J., Trifluoromethanesulfonyl azide. Its reaction with alkyl amines to form alkyl azides. *J. Org. Chem.* **1972**, *37*, 3567-3569. b) Yan, R.-B.; Yang, F.; Wu, Y.; Zhang, L.-H.; Ye, X.-S., An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction. *Tetrahedron Lett.* **2005**, *46*, 8993-8995.
 ¹⁸ Dey, S., Sudalai, A., *Tetrahedron:Asymmetry*, **2015**, *26*, 67–72; Jensen, J.F., Worm-Leonhard, K., Meldal, M., *Eur. J. Org. Chem.*, **2008**, 3785–3797; Fan, Q.-H.; Ni, N.-T.; Li, Q.; Zhang, L.-H.; Ye, X.-S. *Org. Lett.* **2006**, *8*, 1007-1009.


¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.29 – 7.26 (m, 1H), 7.26 – 7.22 (m, 2H), 3.78 – 3.68 (m, 2H), 3.61 – 3.50 (m, 1H), 2.93 – 2.81 (m, 2H). IR (cm⁻¹) 3367, 2106, 1496, 1455, 1343, 1260, 1080, 1032, 747, 700, 551.

[¹³C] 4-benzyloxazolidin-2-one-2 ([¹³C]28)


C₉¹³CH₁₁NO₂ **MW**: 178.20 g.mol⁻¹ **Yield**: 65% White solid


The ¹³C-labeled 4-benzyloxazolidin-2-one-2 [¹³C]**28** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.100 mmol), (R)-2-azido-3-phenylpropan-1-ol **29** (17.7 mg, 0.100 mmol) and ¹³CO₂ (0.108 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent CH₂Cl₂/MeOH 99:1) affording the ¹³C-labeled 4-benzyloxazolidin-2-one-2 [¹³C]**28** as a white solid (11.6 mg, 65%).

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.30-7.28 (m, 1H), 7.18 (d, J = 6.8 Hz, 2H), 5.54 (br. s, 1H), 4.46 (td, J = 8.6, 2.6 Hz, 1H), 4.18-4.13 (m 1H), 4.11-4.07 (m, 1H), 2.88 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (¹³C labeled), 136.1, 129.2 (2C), 129.1 (2C), 127.4, 69.8, 53.9 (d, J = 4.3 Hz), 41.6. IR (cm⁻¹) 1694, 1454, 1395, 1223, 1095, 1023, 935, 745, 701. LCMS (ESI) *m/z* C₉¹³CH₁₁NO₂ [M+H]⁺ 179.1.

2.16.2 Labeling of Zolmitriptan (30)

C₁₅H₂₃N₃O MW: 261.37 g.mol⁻¹ Yield: quantitative Pale yellow solid

To a solution of commercially available Zolmitriptan (57.5 mg, 0.2 mmol, 1 eq) in a mixture EtOH : H_2O (2 mL, 4:1), was added KOH (112 mg, 2 mmol, 10 eq) and the resulting mixture was refluxed for 3 days. The reacting mixture was then cooled down to room temperature, and the solvent was evaporated to give the 2-amino-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol **S51**, which was used in the subsequent step without further purification.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.67 (s, 1H), 7.27 (s, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.08 (d, *J* = 1.9 Hz, 1H), 6.89 (dd, *J* = 8.2, 1.9 Hz, 1H), 3.47 – 3.40 (m, 1H), 3.33 – 3.28 (m, 1H), 2.93 – 2.82 (m, 1H), 2.82 – 2.67 (m, 3H), 2.48 – 2.41 (m, 2H), 2.20 (s, 6H). LCMS (ESI) *m*/*z* C₁₅H₂₃N₃O [M+H]⁺ 262.3.

2-azido-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol (31)

To a suspension of 2-amino-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol **S51** in water (1 mL) (considered 0.2 mmol from the previous step) was added CuSO₄·H₂O (1.5 mg, 0.01 mmol). The mixture was then basified to pH 9 using K₂CO₃ before addition of MeOH (0.8 mL) and a freshly prepared solution of trifluoromethanesulfonyl azide (5 mL, 0.08M in CH₂Cl₂), adapting a reported procedure.¹⁹ The mixture was stirred for 14 hours before being quenched by addition of water and CH₂Cl₂. The aqueous phase was then acidified to pH = 6 using a solution of NH₄Cl and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic phases were dried over MgSO₄, filtered and evaporated. The crude mixture was purified by Flash Chromatography on SiO₂ gel (eluent DCM/MeOH 95:5 to 85:15) to afford 2-azido-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol **31** as a orange oil (27.0 mg, 46% over 2 steps).

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.45 (s, 1H), 7.28 (d, J = 8.3 Hz, 1H), 7.04 (dd, J = 8.3, 1.4 Hz, 1H), 7.00 (d, J = 1.4 Hz, 1H), 3.77 – 3.70 (m, 2H), 3.62 – 3.54 (m, 1H), 3.00 – 2.90 (m, 4H), 2.72 – 2.63 (m, 2H), 2.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 127.9, 127.9, 123.4, 122.2, 119.3, 114.0, 111.4, 66.0, 64.4, 60.3, 45.5 (2C), 37.3, 23.7.

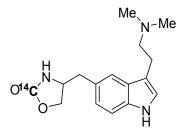
IR (cm⁻¹) 3251, 2922, 2857, 2825, 2781, 2102, 1464, 1348, 1259, 1097, 1039, 796. LCMS (ESI) *m*/z C₁₅H₂₁N₅O [M+H]⁺ 288.3.

The ¹³C-labeled Zolmitriptan [¹³C]**30** was prepared according to the general procedure, using PPhMe₂ (14.2 μ L, 0.097 mmol), 2-azido-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol (27.9 mg, 0.097 mmol,) and ¹³CO₂ (0.099 mmol) in DMF-*d*₇ and the reaction was heated at 70 °C for 15 minutes

¹⁹ Jensen, J.F., Worm-Leonhard, K., Meldal, M., Eur. J. Org. Chem., 2008, 3785–3797.

before the unreacted ${}^{13}CO_2$ was released. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent DCM/MeOH 95:5 to 80:20) affording the ${}^{13}C$ -labeled Zolmitriptan [${}^{13}C$]**30** as white solid (4.7 mg, 16%).

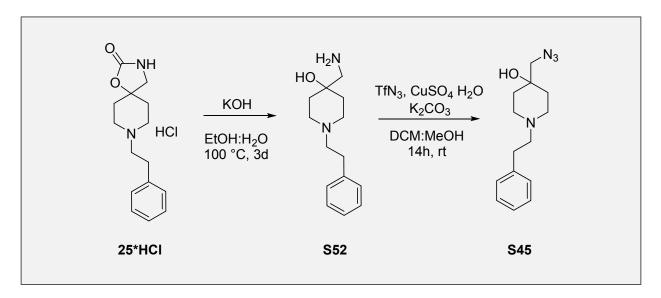
¹**H** NMR (400 MHz, MeOD- d_4) δ 7.42 (d, J = 0.9 Hz, 1H), 7.30 (dd, J = 8.3, 0.9 Hz, 1H), 7.07 (s, 1H), 6.99 (dd, J = 8.3, 1.6 Hz, 1H), 4.41 – 4.32 (m, 1H), 4.23 – 4.16 (m, 2H), 3.01 – 2.88 (m, 4H), 2.79 – 2.74 (m, 2H), 2.43 (s, 6H).

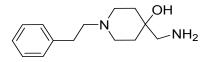

¹³C NMR (100 MHz, MeOD- d_4) δ 162.3 (¹³C labeled), 137.4, 128.9, 127.4, 124.0, 123.9, 119.8, 112.7, 112.5, 70.7, 60.9, 55.4 (d, J = 4.1 Hz), 45.0 (2C), 42.1, 23.7.

IR (cm⁻¹) 3251, 2921, 2851, 1698, 1463, 1394, 1232, 1098, 1023, 930, 804, 728.

LCMS (ESI) *m/z* C₁₅¹³CH₂₁N₃O₂ [M+H]⁺289.2.

HRMS (ESI) m/z calcd for C₁₅¹³CH₂₁N₃O₂ [M+H]⁺ 289.1740; found: 289.1738.

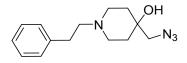

[¹⁴C] Zolmitriptan ([¹⁴C]30)


C₁₅¹⁴CH₂₁N₃O₂ **MW**: 289.16 g.mol⁻¹ **RCY**: 8% White solid

¹⁴C-labeled Zolmitriptan [¹⁴C]**30** was prepared according to the general procedure, using PPhMe₂ (13.5 μ L, 0.094 mmol), 2-azido-3-(3-(2-(dimethylamino)ethyl)-1H-indol-5-yl)propan-1-ol **(31)** (27.0 mg, 0.094 mmol) and ¹⁴CO₂ (0.079 mmol) in DMF-*d*₇. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent DCM/MeOH/Et₃N 95:5:1% to 8:2:1%) affording the ¹⁴C-labeled Zolmitriptan [¹⁴C]**30** as white solid (14.393 MBq, 8%).

2.16.3 Labeling of Fenspiride (25)

4-(aminomethyl)-1-phenethylpiperidin-4-ol (852)



 $\begin{array}{c} C_{14}H_{22}N_2O\\ \textbf{MW: } 234.34 \text{ g.mol}^{-1}\\ \textbf{Yield: not calculated} \end{array}$

To a solution of Fenspiride hydrochloride **25 HCl** (118.7 mg, 0.4 mmol) in a mixture EtOH: H_2O (4 mL, 3:1), was added KOH (224 mg, 4.00 mmol). The resulting mixture was refluxed for 3 days and then cooled down to room temperature. The solvent was further evaporated to give the 4-(aminomethyl)-1-phenethylpiperidin-4-ol **S52**, which was used in the subsequent step without further purification.

¹H NMR (400 MHz, MeOD-*d*₄) δ 7.37 – 7.31 (m, 4H), 7.29 – 7.23 (m, 1H), 3.60 – 3.50 (m, 2H), 3.41 – 3.33 (m, 4H) 3.17 – 3.10 (m, 2H), 3.05 (s, 2H), 2.10 – 1.93 (m, 4H). LCMS (ESI) *m/z* C₁₄H₂₂N₂O [M+H]⁺ 235.2.

4-(azidomethyl)-1-phenethylpiperidin-4-ol (S45)

 $\begin{array}{c} C_{14}H_{20}N_4O\\ \textbf{MW}: 260.34 \text{ g.mol}^{-1}\\ \textbf{Yield}: 82\% \text{ over } 2 \text{ steps}\\ \text{Brown oil} \end{array}$

To a suspension of 4-(aminomethyl)-1-phenethylpiperidin-4-ol **S52** in water (considered 0.4 mmol from the previous step, 2 mL) was added $CuSO_4 \cdot H_2O$ (3.0 mg, 0.02 mmol). The mixture was then basified to pH 9 using K₂CO₃ before addition of MeOH (1.2 mL) and a freshly prepared solution of

trifluoromethanesulfonyl azide (10 mL, 0.08M in CH_2Cl_2), adapting a reported procedure.²⁰ The mixture was stirred for 14 hours before being quenched by addition of water and CH_2Cl_2 . The aqueous phase was then acidified to pH = 6 using a solution of NH₄Cl and extracted with CH_2Cl_2 (3 x 15 mL). The combined organic phases were dried over MgSO₄, filtered and evaporated to give the 4-(azidomethyl)-1-phenethylpiperidin-4-ol **S45** as a brown oil (86 mg, 82% over 2 steps).

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 – 7.26 (m, 2H), 7.22 – 7.18 (m, 3H), 3.32 (s, 2H), 2.88 – 2.80 (m, 4H), 2.69 – 2.65 (m, 2H), 2.54 – 2.42 (m, 2H), 1.78 – 1.65 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 140.6, 129.1 (2C), 128.9 (2C), 126.6, 70.1, 62.1, 60.9, 49.4 (2C), 35.0 (2C), 34.1.

IR (cm⁻¹) 3336, 2929, 2099, 1603, 1496, 1453, 1288, 1124, 1089, 975, 750, 700.

LCMS (ESI) *m/z* C₁₄H₂₀N₄O [M+H]⁺ 261.5.

HRMS (ESI) *m/z* calcd for C₁₄H₂₀N₄O [M+H]⁺ 261.1710; found: 261.1710.

For the conversion of **S45** into the corresponding ¹³C, ¹⁴C and ¹¹C-labeled fenspiride **25** see the corresponding sections in this document.

²⁰ Jensen, J.F., Worm-Leonhard, K., Meldal, M., Eur. J. Org. Chem., 2008, 3785–3797.

2.3. Synthesis of ¹¹C-labeled aliphatic cyclic carbamates

2.3.1 General procedure for ¹¹C radiolabeling

Automated radiosynthesis with carbon-11 was performed using a MeI_{plus} research synthesizer (Synthra GmbH, Germany) with modifications to undergo direct bubbling of [¹¹C]CO₂ into the reaction vessel (Figure S2, see supporting information). No carrier-added [¹¹C]CO₂ (3.5-18 GBq) was produced via the ¹⁴N(p, α)¹¹C nuclear reaction by irradiation of a [¹⁴N]N₂ target containing 0.15-0.5% of O₂ on a cyclone 18/9 cyclotron (IBA, Belgium) and trapped at -180 °C. [¹¹C]CO₂ was released at 50 °C under a stream of helium (8 mL/min) to bubble for 10 s into the reaction vessel containing a solution of the precursor (1 mg) and dimethylphenyl phosphine (15 µL) in anhydrous DMF (300 µL) at -50 °C. The mixture was heated at 70 °C for 5 min and hydrolyzed with glacial acetic acid (100 µL) followed by a mixture of CH₃CN/H₂O (1 mL, 50/50 v/v).

Quality control is performed by HPLC using a 717_{plus} Autosampler system equipped with a 1525 binary pump and a 2996 photodiode array detector (Waters, USA) and a Flowstar LB 513 (Berthold, France) gamma detector. The system was monitored with the Empower 3 software (Waters, USA). HPLC was realized on a reverse phase analytical Symmetry C18 50 x 3.9 mm, 5 µm column (Waters, USA) using a mixture of H₂O/CH₃CN/PicB7[®] (proportions depending on the compound, 2 mL/min) as eluent. UV detection was performed at the maximum absorbance of the compound. Identification of the peak was assessed by comparing the retention time of carbon-11 labeled compounds with the retention time of their non-radioactive reference (t_R^{ref}). For acceptance, the retention time must be within the $t_R^{ref} \pm 10\%$ range. Radiochemical purity (RCP) was calculated as the ratio of the area under the curve (AUC) of the peak over the sum of the AUCs of all other peaks on gamma chromatograms. Radiochemical purity is the mean value of three consecutive runs. The radiochemical yield (RCY) of the labeling reaction was calculated as the ratio of the decay-corrected activity at the end of the synthesis (A_{EOS}), measured in an ionization chamber (Capintec[®], Berthold, France) over the starting activity of $[^{11}C]CO_2$ (A_{CO2}) measured by the calibrated detector of the synthesizer. This ratio was corrected for the radiochemical purity following the equation: $RCY = (A_{EOS} / A_{CO2}) \times RCP$. Molar activity was calculated as the ratio of the activity of the collected peak of the radioactive product measured in an ionization chamber (Capintec[®], Berthold, France) over the molar quantity of the compound determined using calibration curves. Molar activity was calculated as the mean value of three consecutive runs.

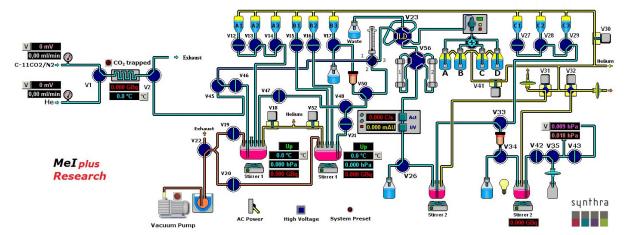
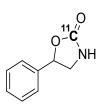
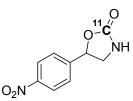



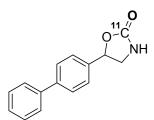
Figure S2. Modified MeI_{plus} Research module for direct CO₂ labeling.

2.3.2 Synthesis of ¹¹C-labeled 5-membered ring carbamate derivatives


[¹¹C] 5-phenyloxazolidin-2-one ([¹¹C]2)

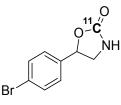
 $\begin{array}{c} C_8{}^{11}CH_9NO_2 \\ \textbf{RCYield: 76\%} \end{array}$

Compound [¹¹C]2 (3.1 GBq) was synthesized from compound 1(S8) according to the general procedure within 15 minutes in 76% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 55/45/0.2 v/v/v, 2 mL/min, $\lambda = 261$ nm).

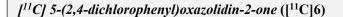

[¹¹C] 5-(4-nitrophenyl)oxazolidin-2-one ([¹¹C]3)

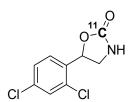
 $\begin{array}{c} C_8{}^{11}CH_8N_2O_2\\ \textbf{RCYield: 80\%} \end{array}$

Compound [¹¹C]3 (3.1 GBq) was synthesized from compound S9 according to the general procedure within 15 minutes in 80% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 80/20/0.2 v/v/v, 2 mL/min, λ = 269 nm).

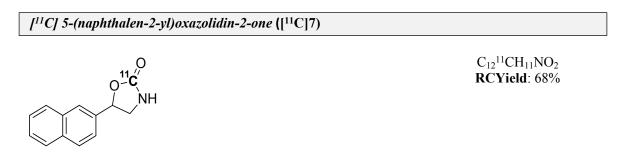

[¹¹C] 5-([1,1'-biphenyl]-4-yl)oxazolidin-2-one ([¹¹C]4)

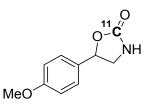
C₁₄¹¹CH₁₃NO₂ **RCYield**: 77%


Compound [¹¹C]4 (2.8 GBq) was synthesized from compound S10 according to the general procedure within 15 minutes in 77% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 65/35/0.2 v/v/v, 2 mL/min, λ = 253nm).


[¹¹C] 5-(4-bromophenyl)oxazolidin-2-one ([¹¹C]5)

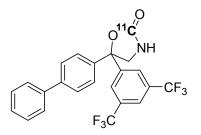
C₈¹¹C H₈BrNO₂ **RCYield**: 74%


Compound [¹¹C]5 (2.8 GBq) was synthesized from compound S11 according to the general procedure within 15 minutes in 74% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 70/30/0.2 v/v/v, 2 mL/min, λ = 223 nm).



C₈¹¹CH₇Cl₂NO₂ **RCYield**: 79%

Compound [¹¹C]6 (3.3 GBq) was synthesized from compound S12 according to the general procedure within 15 minutes in 79% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 55/45/0.2 v/v/v, 2 mL/min, λ = 242nm).


Compound [¹¹C]7 (2.5 GBq) was synthesized from compound S13 according to the general procedure within 15 minutes in 68% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 70/30/0.2 v/v/v, 2 mL/min, λ = 222 nm).

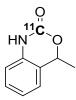
C₉¹¹CH₁₁NO₃ **RCYield**: 83%

Compound [¹¹C]8 (3.0 GBq) was synthesized from compound S14 according to the general procedure within 15 minutes in 83% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 82/18/0.2 v/v/v, 2 mL/min, λ = 227 nm).

C₂₂¹¹CH₁₅F₆NO₂ **RCYield**: 82%

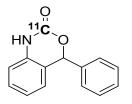
Compound [¹¹C] 9 (3.4 GBq) was synthesized from compound S15 according to the general procedure within 15 minutes in 82% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 35/65/0.2 v/v/v, 2 mL/min, $\lambda = 242$ nm).

2.3.1 Synthesis of ¹¹C-labeled 6-membered ring carbamate derivatives


[¹¹C] 1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]10)

C₇¹¹CH₇NO₂ **RCYield**: 57%

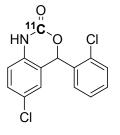
Compound [¹¹C]10 (2.1 GBq) was synthesized from compound S17 according to the general procedure within 15 minutes in 57% RCC and 97% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 90/10/0.2 v/v/v, 2 mL/min, λ = 240 nm).


[¹¹C] 4-methyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]11)

 $C_8^{11}CH_9NO_2$ **RCYield**: 62%

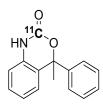
Compound [¹¹C]11 (2.5 GBq) was synthesized from compound S22 according to the general procedure within 15 minutes in 62% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 90/10/0.2 v/v/v, 2 mL/min, $\lambda = 275$ nm).

[¹¹C] 4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]12)



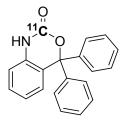
C₁₃¹¹CH₁₁NO₂ **RCYield**: 50%

Compound [¹¹C]12 (1.9 GBq) was synthesized from compound S23 according to the general procedure within 15 minutes in 50% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 85/15/0.2 v/v/v, 2 mL/min, $\lambda = 242$ nm).


[¹¹C] 6-chloro-4-phenyl-1H-benzo[d][1,3]oxazin-2(4H)-one ([¹¹C]14)

C₁₃¹¹CH₁₀Cl₂NO₂ **RCYield**: 24%

Compound [¹¹C]14 (0.9 GBq) was synthesized from compound S24 according to the general procedure within 15 minutes in 24% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 65/35/0.2 v/v/v, 2 mL/min, λ = 222 nm).


[¹¹C] 4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]15)

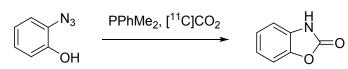
C₁₄¹¹CH₁₃NO₂ **RCYield**: 18%

Compound [¹¹C]15 (0.5 GBq) was synthesized from compound S28 according to the general procedure within 15 minutes in 18% RCC and 75% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 75/35/0.2 v/v/v, 2 mL/min, λ = 240 nm).

[¹¹C] 4,4-diphenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]16)

C₁₉¹¹CH₁₅NO₂ **RCYield**: 12%

Compound [¹¹C]16 (0.3 GBq) was synthesized from compound S29 according to the general procedure within 15 minutes in 12% RCC and 75% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 45/55/0.2 v/v/v, 2 mL/min, $\lambda = 242$ nm).


[¹¹C] 6-nitro-3,4-dihydro-2H-benzo[e][1,3]oxazin-2-one ([¹¹C]17)

 $C_7^{11}CH_6N_2O_4$ **RCYield**: 72%

Compound [¹¹C]17 (2.8 GBq) was synthesized from compound S30 according to the general procedure within 15 minutes in 72% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 85/15/0.2 v/v/v, 2 mL/min, $\lambda = 287$ nm).

2.3.4 Synthesis of ¹¹C-labeled aromatic cyclic carbamates

For the ¹¹C-radiolabeling of carbamate 18, radiochemical conditions were optimized according to Table S4.

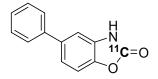
[¹¹ C]18	
----------------------	--

Entry	Temp. (° C)	Time	Solvant	Additif	RCC	RCP
1	25	5 min	DMF	None	32%	100%
2	70	5 min	DMF	None	59%	100%
3	110	5 min	DMF	None	55%	100%
4	25	5 min	DMF	DIPEA (1.5 eq)	37%	100%
5	70	5 min	DMF	DIPEA (1.5 eq)	57%	100%
6	25	5 min	DMF	DBU (2 eq)	7%	n.d.
7	25	5 min	DMF	NaOH (2 eq)	10%	n.d.

Table S4 : Procedure : On Synthra. Irrad 5 min. Quench 200 μ L AcOH then 1mL CH₃CN/H₂O/TFA (50/50/0.1).

[¹¹C] benzo[d]oxazol-2(3H)-one ([¹¹C]18)

C₆¹¹CH₅NO₂ **RCYield**: 59%


Compound [¹¹C]**18** (2.1 GBq) was synthesized from compound **S31** according to the general procedure within 15 minutes in 59% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 90/10/0.2 v/v/v, 2 mL/min, λ = 270 nm).

[¹¹C] 5-methylbenzo[d]oxazol-2(3H)-one ([¹¹C]19)

C₇¹¹CH₇NO₂ **RCYield**: 48%

Compound [¹¹C]**19** (1.8 GBq) was synthesized from compound **S32** according to the general procedure within 15 minutes in 48% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 80/20/0.2 v/v/v, 2 mL/min, $\lambda = 270$ nm).

[¹¹C] 5-phenylbenzo[d]oxazol-2(3H)-one ([¹¹C]20)

C₁₂¹¹CH₉NO₂ **RCYield**: 53%

Compound [¹¹C]**20** (2.0 GBq) was synthesized from compound **S33** according to the general procedure within 15 minutes in 53% RCC and 96% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 70/30/0.2 v/v/v, 2 mL/min, λ = 270 nm).

[¹¹C] naphtho[2,3-d]oxazol-2(3H)-one ([¹¹C]21)

C=0

 $\begin{array}{c} C_{10}{}^{11}CH_7NO_2\\ \textbf{RCYield: 19\%} \end{array}$

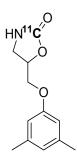
Compound [¹¹C]**21** (0.7 GBq) was synthesized from compound **S34** according to the general procedure within 15 minutes in 19% RCC and 100% RCP as calculated after analysis by HPLC (H₂O/CH₃CN/PicB7[®] 75/25/0.2 v/v/v, 2 mL/min, λ = 236 nm).

2.3.5 Synthesis of ¹¹C-labeled drug derivatives

CI

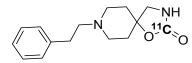
 $C_6^{11}CH_4CINO_2$ **RCYield**: 37 ± 2%

The crude product was synthesized from compound **S37** following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 μ m, Waters, USA) using a mixture of H₂O/CH₃CN/TFA (60/40/0.1 v/v/v, 5 mL/min) as eluent with gamma and UV (λ = 280 nm) detection. The collected peak (t_R = 10.3-11.5 min) of [¹¹C]chlorzoxazone [¹¹C]**22** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]chlorzoxazone [¹¹C]**22** (2.8 ± 0.3 GBq) was obtained within 30 min from end of beam in 37 ± 2% RCY and 85 ± 4 GBq/µmol molar activity (n = 2). Quality control was performed following the general procedure (H₂O/CH₃CN/PicB7[®] 75/25/0.2 v/v/v, 2 mL/min, λ = 280 nm).


[¹¹C]Caroxazone precursor ([¹¹C]23)

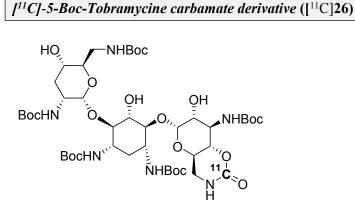
 $\begin{array}{c} C_7{}^{11}CH_7NO_2 \\ \textbf{RCYield: } 25 \pm 5\% \end{array}$

The crude product was synthesized from compound **40** following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 μ m, Waters, USA) using a mixture of H₂O/CH₃CN/TFA (75/25/0.1 v/v/v, 5 mL/min) as eluent with gamma and UV (λ = 240 nm) detection. The collected peak (t_R = 8.5-12.5 min) of the [¹¹C]caroxazone precursor [¹¹C]**23** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]caroxazone precursor [¹¹C]**23** (0.9 ± 0.1 GBq) was obtained within 30 min from end of beam in 25 ± 5% RCY and 75 ± 10 GBq/µmol molar activity (n = 2). Quality control was performed following the general procedure (H₂O/CH₃CN/PicB7[®] 90/10/0.2 v/v/v, 2 mL/min, λ = 240 nm).

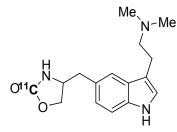

[¹¹C]Metaxalone ([¹¹C]24)

$$C_{11}^{11}CH_{15}NO_3$$

RCYield: 44 ± 3%


The crude product was synthesized from compound **S42** following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 μ m, Waters, USA) using a mixture of H₂O/CH₃CN/TFA (50/50/0.1 v/v/v, 5 mL/min) as eluent with gamma and UV ($\lambda = 279$ nm) detection. The collected peak (t_R = 10.8-11.8 min) of [¹¹C]Metaxalone [¹¹C]**24** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]Metaxalone [¹¹C]**24** (2.1 ± 0.4 GBq) was obtained within 35 min from end of beam in 44 ± 3% RCY and 78 ± 3 GBq/µmol molar activity (n = 2). Quality control was performed following the general procedure (H₂O/CH₃CN/PicB7[®] 70/30/0.2 v/v/v, 2 mL/min, $\lambda = 279$ nm).

[11C]Fenspiride ([11C]25)


 $C_{14}^{11}CH_{20}N_2O_2$ **RCYield**: 23 ± 3%

The crude product was synthesized from compound **S45** following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 μ m, Waters, USA) using a mixture of NaH₂PO_{4aq} (2.76 g/L)/CH₃OH (60/40 v/v, 5 mL/min) as eluent with gamma and UV (λ = 210 nm) detection. The collected peak (t_R = 8.0-10.0 min) of [¹¹C]Fenspiride [¹¹C]**25** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]Fenspiride [¹¹C]**25** (0.8 ± 0.2 GBq) was obtained within 30 min from end of beam in 23 ± 3% RCY and 81 ± 8 GBq/µmol molar activity (n = 3). Quality control was performed following the general procedure using a Zorbax[®] SB-C18 4.6 x 250 mm, 3.5 μ m column (Agilent, USA) with aqueous NaH₂PO₄(2.76 g/L, pH 3)/CH₃OH 50/50 v/v as eluent at 1 mL/min and UV detection at $\lambda = 210$ nm.

 $C_{43}^{11}CH_{76}N_6O_{19}$ **RCYield**: 68 ± 2%

The crude product was synthesized from compound S48 following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 µm, Waters, USA) using a mixture of H₂O/CH₃CN/TFA (40/60/0.1 v/v/v, 5 mL/min) as eluent with gamma detection. The collected peak ($t_R = 32.7-33.3 \text{ min}$) of the [¹¹C]tobramycine derivative [¹¹C]**26** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]tobramycine derivative [¹¹C]26 (1.1 \pm 0.2 GBq) was obtained within 55 min from end of beam in $68 \pm 2\%$ RCY (n = 2). Giving the absence of UV absorption of this molecule, the quality control was performed using ultra performance liquid chromatography-mass spectroscopy. Chromatography was realized on a Ultimate 3000 (Thermo Scientific, USA) device equipped with an Acquity BEH 2.1 x 50 mm, 1.7 µm column (Waters, USA). A gradient of water with 0.1% of formic acid and acetonitrile with 0.1% of formic acid (3% of CH₃CN/HCHO for 2 minutes, then rising to 100% during 7 minutes then decreasing to 3% during 1 minute then keeping 3% for 2 minutes) at a flowrate of 0.3 mL/min was applied. Mass spectroscopy was performed with a Linear Trap Quadripole Orbitrap Velos (Thermo Scientific, USA) equipped with an electron spray ionization (ESI) chamber. Spectrum was recorded between 100 and 1000 m/z.

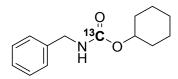
 $C_{15}^{11}CH_{21}N_3O_2$ **RCYield**: 25 ± 2%

The crude product was synthesized from compound **31** following the general procedure. Purification by semi-preparative HPLC was performed on a reverse phase Symmetry C18 column (250 x 4.6 mm, 5 μ m, Waters, USA) using a mixture of H₂O/CH₃CN/Et₃N (55/45/0.1 v/v/v, 5 mL/min) as eluent with gamma and UV (λ = 283 nm) detection. The collected peak (t_R = 10.5-12.0 min) of [¹¹C]Zolmitriptan [¹¹C]**30** was diluted with water (20 mL) and loaded on a C18 cartridge (Sep-Pak C18, Waters, USA). The cartridge was rinsed with water (10 mL) and the product was eluted with ethanol (2 mL) and further diluted with aq. 0.9 % NaCl (18 mL). Ready-to-inject [¹¹C]Zolmitriptan [¹¹C]**30** (1.0 ± 0.2 GBq) was obtained within 35 min from end of beam in 25 ± 2% RCY and 74 ± 6 GBq/µmol molar activity (n = 2). Quality control was performed following the general procedure using a Zorbax[®] SB-C18 4.6 x 250 mm, 3.5 µm column (Agilent, USA) with aqueous H₂O/CH₃CN/Et₃N 55/45/0.1 v/v/v as eluent at 1 mL/min and UV detection at λ = 283 nm.

3. Preliminary optimization on model linear carbamate (32)

3.1 Synthesis of ¹³C-labeled linear carbamate [¹³C]32

General procedure :


In a oven-dried vial (2mL), to a solution of (azidomethyl)benzene (0.1 mmol) **S53** in DMF- d_7 (0.7 mL, previously dried on molecular sieve) was added PPhMe₂ (0.1 mmol) and when indicated, the additive (0.2 mmol). The mixture was transfer to a Young NMR tube, sealed and freezed in liquid N₂. Next, [¹³C]CO₂ (0.1 to 0.3 mmol) was added *via* the Tritec manifold. The mixture was then allowed to warm up to room temperature for 30 minutes. Cyclohexanol **S54**(0.1 to 1 mmol, previously dried on molecular sieve) was then added and the mixture heated at 150 °C for 5 to 30 minutes. The crude was then purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 7:3) affording the ¹³C-labeled cyclohexyl benzylcarbamate [¹³C]**32**.

Entry	S54 equiv.	CO₂ equiv.	Additive	Conditions ^a	Yield⁵
1 ^c	5	1	-	5 min at 150 °C	29%
2	5	1	DMAP	5 min at 150 °C	54%
3	5	2	DMAP	15 min at 150 °C	53%
4	5	2	-	5 min at 150 °C	57%
5	5	3	-	15 min at 150 °C	64%
6	10	2	-	30 min at 150 °C	56%
7	10	2	DMAP	15 min at 150 °C	53%

Table S5: Carbon-13 labeling of carbamate 32. ^a After the 30 minutes at room temperature^b Isolated Yield, ^c Addition of **S54** before [¹³C]CO₂

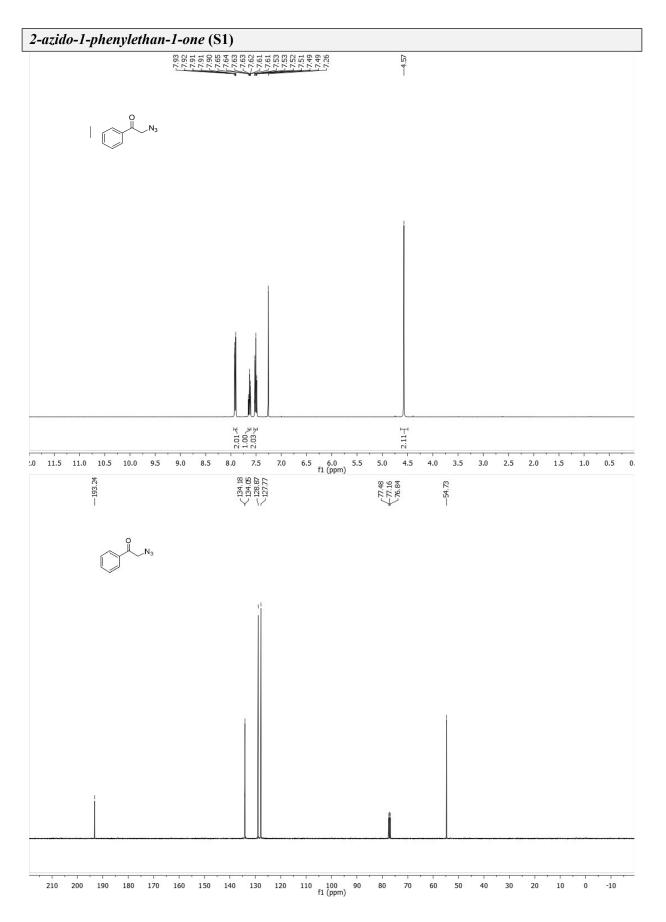
[¹³C]cyclohexyl benzylcarbamate ([¹³C]32)

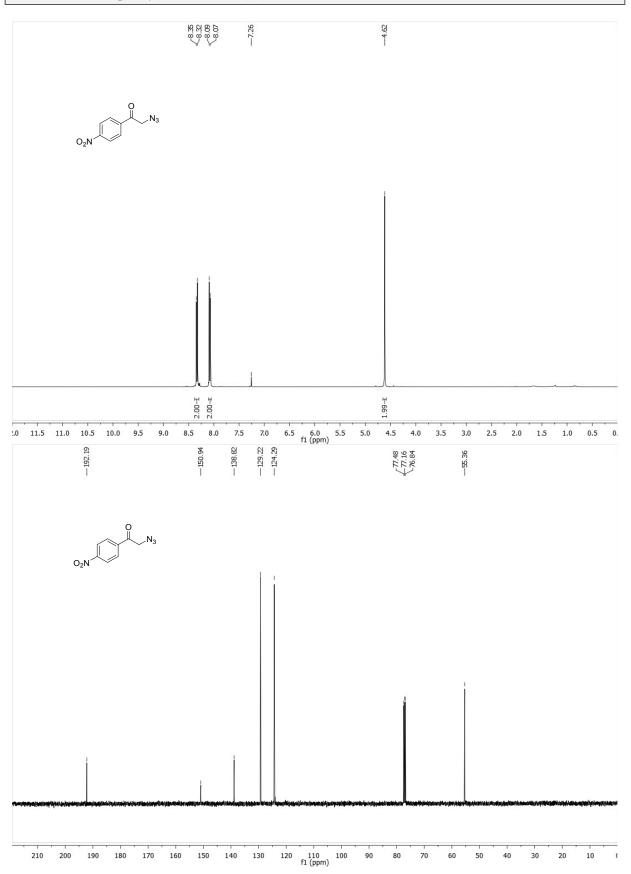


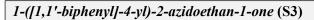
C₁₃¹³CH₁₉NO₂ **MW**: 234.3 g.mol⁻¹ **Yield**: 64% White solid

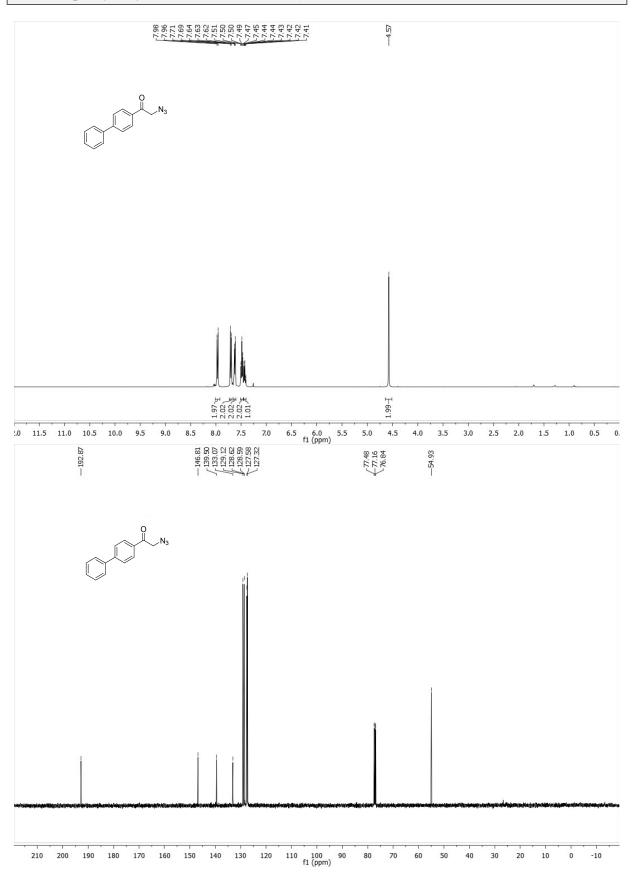
The ¹³C-labeled cyclohexyl benzylcarbamate [¹³C]**32** was prepared according to the general procedure, using PPhMe₂ (14.5 μ L, 0.10 mmol), (azidomethyl)benzene **S53** (13.3 mg, 0.10 mmol) and ¹³CO₂ (0.30 mmol) in DMF-*d*₇. After 30 minutes at room temperature, cyclohexanol **S54** (0.30 mL, 0.50 mmol) was added and the mixture was heated to 150 °C for 5 minutes. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent Heptane/EtOAc 7:3) affording the ¹³C-labeled cyclohexyl benzylcarbamate [¹³C]**32** as a white solid (15.0 mg, 64%).

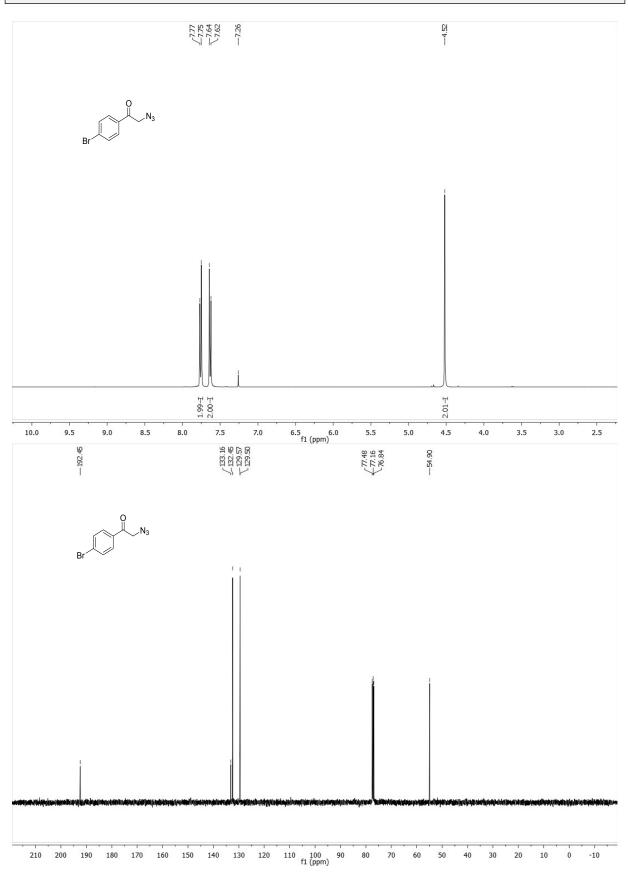
¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 5.01 – 4.83 (m, 1H), 4.76 – 4.60 (m, 1H), 4.43 – 4.26 (m, 2H), 1.96 – 1.80 (m, 2H), 1.77 – 1.62 (m, 2H), 1.60 – 1.46 (m, 1H), 1.44 – 1.29 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4 (¹³C labeled), 138.9, 128.8 (2C), 127.7, 127.6 (2C), 74.4, 45.1, 32.2 (2C), 25.5, 24.0 (2C). LCMS (ESI) *m/z* C₁₃¹³CH₁₉NO₂ [M+H]⁺ 235.3.

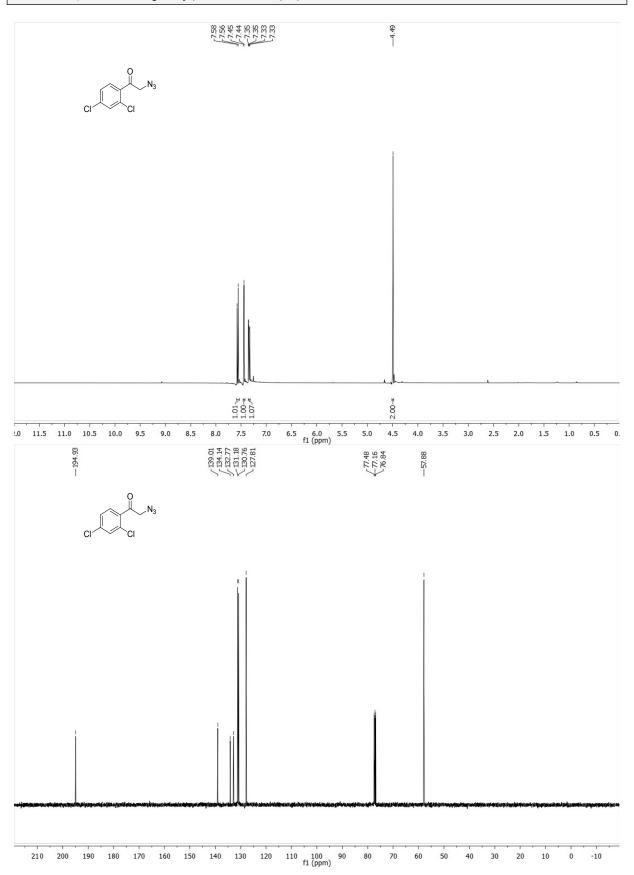

3.2 Synthesis of ¹¹C-labeled linear carbamate [¹¹C]32

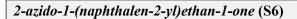

S53	S54	Conditions	Results	RCC
1 mg	5 mg	<u>2 steps</u> : 1) S53 , DMF rt 5 min 2) S54 , DMF, 150 °C, 10 min	2 radioactive side products only	0%
200 µg	150 μL	<u>1 step</u> : S53 in DMF/ S54 1/1 v/v (300 μL) ; 150 °C, 5 min	5 radioactive products formed including [¹¹ C] 32	2%
20µg	150 μL	<u>1 step</u> : S53 in DMF/ S54 1/1 v/v (300 μL) ; 150 °C, 5 min	Only [¹¹ C] 32 formed together with unreacted [¹¹ C]CO ₂	4%
3 * 20 µg	150µL	<u>1 step</u> : S53 (added in three times every 3 min) in DMF/ S54 1/1 v/v (200 μL) ; 80 °C, 10 min	[¹¹ C] 32 with secondary products	2%

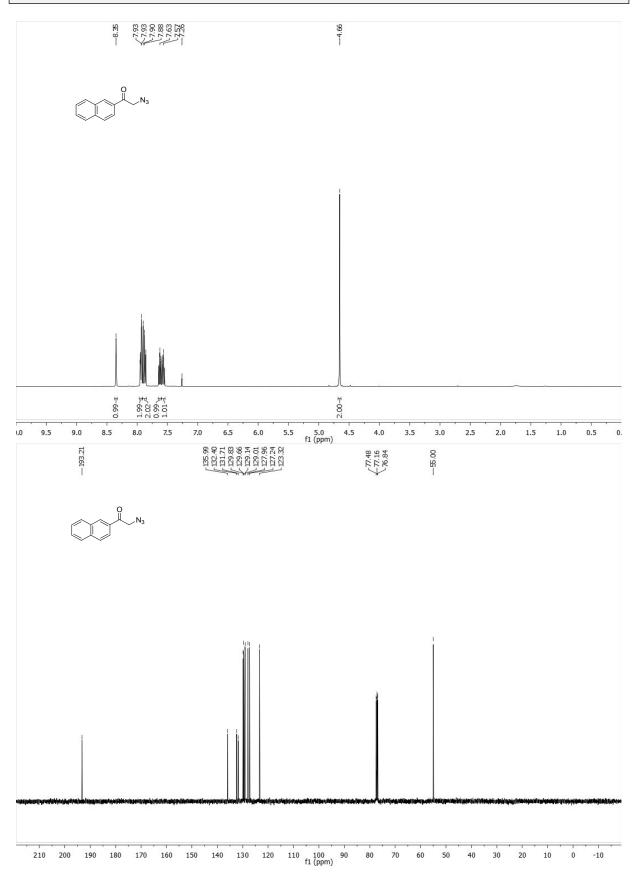

 Table S6: Carbon-11 labeling of carbamate 32.

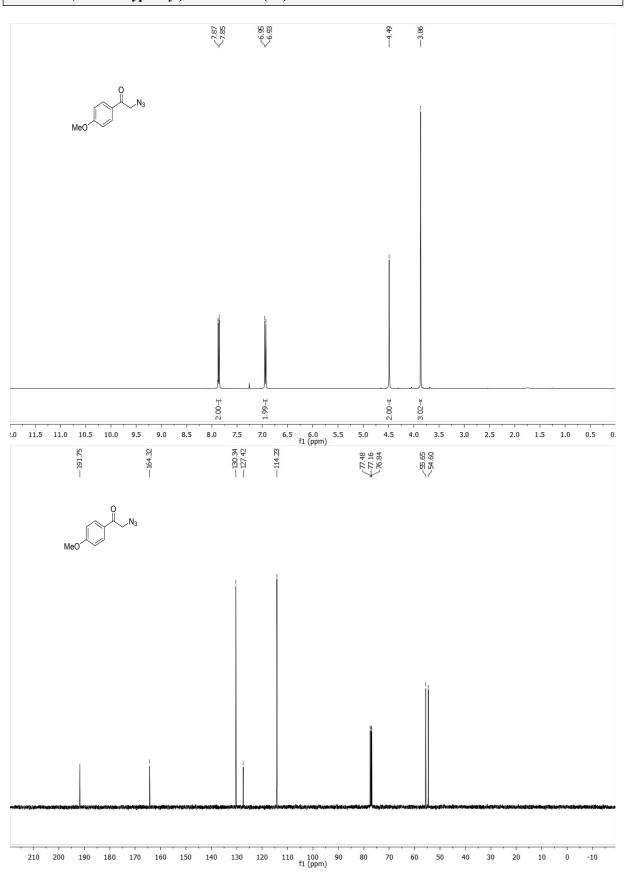

4. NMR Spectra

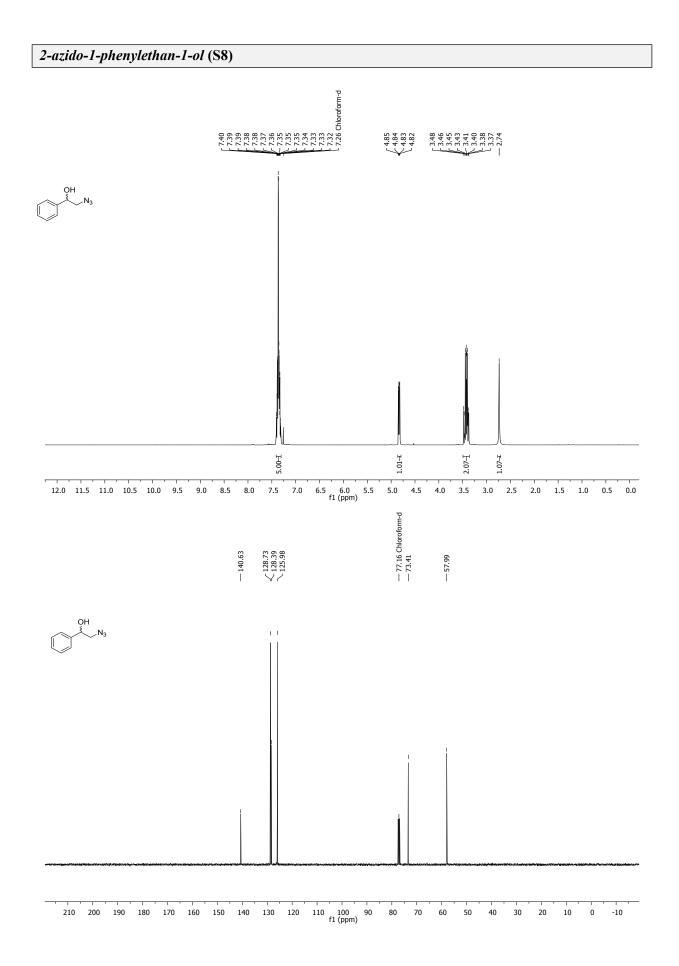


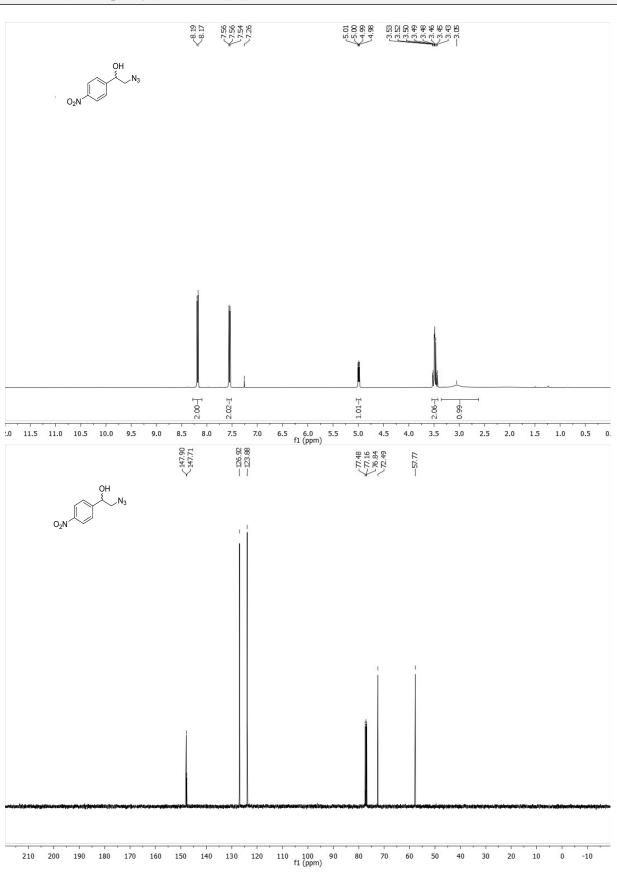




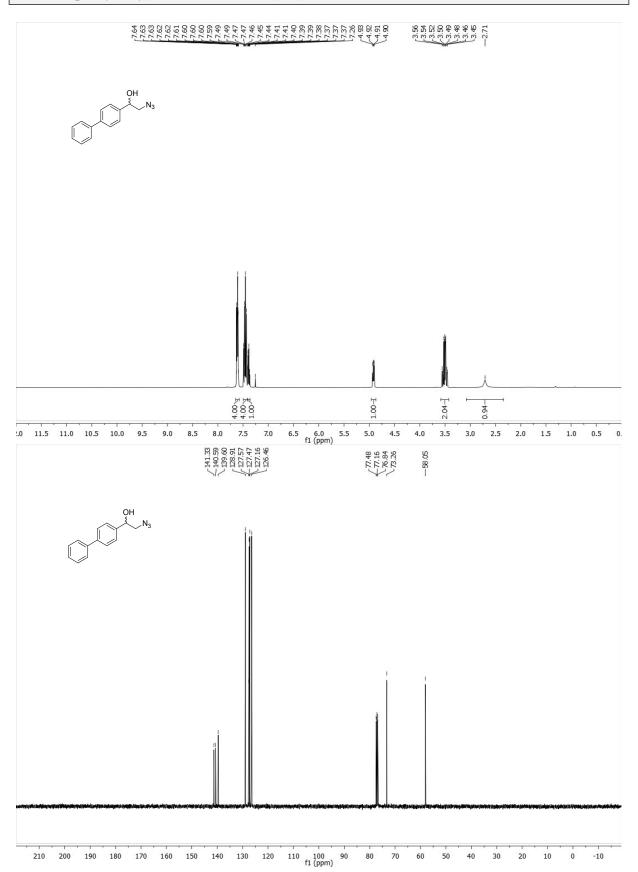


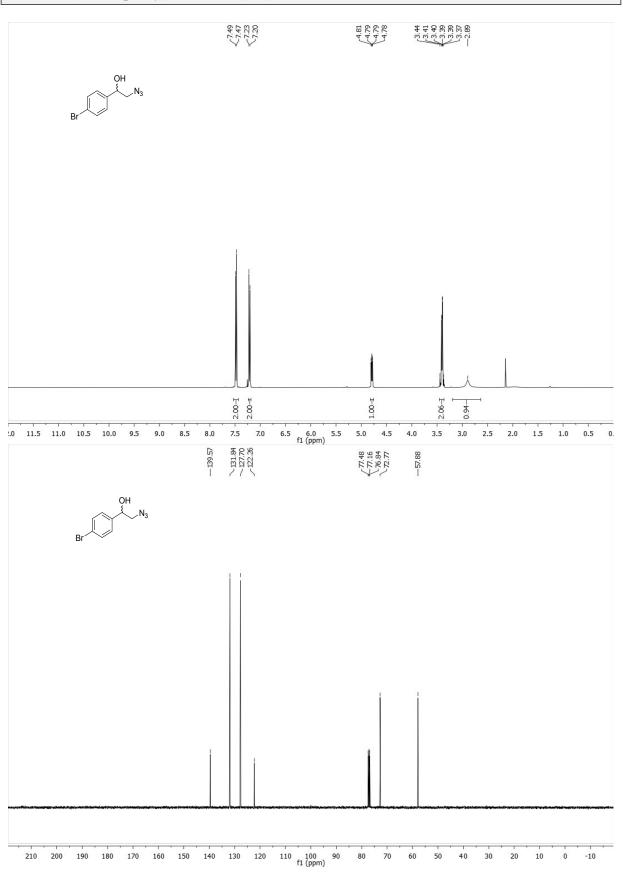

2-azido-1-(2,4-dichlorophenyl)ethan-1-one (S5)

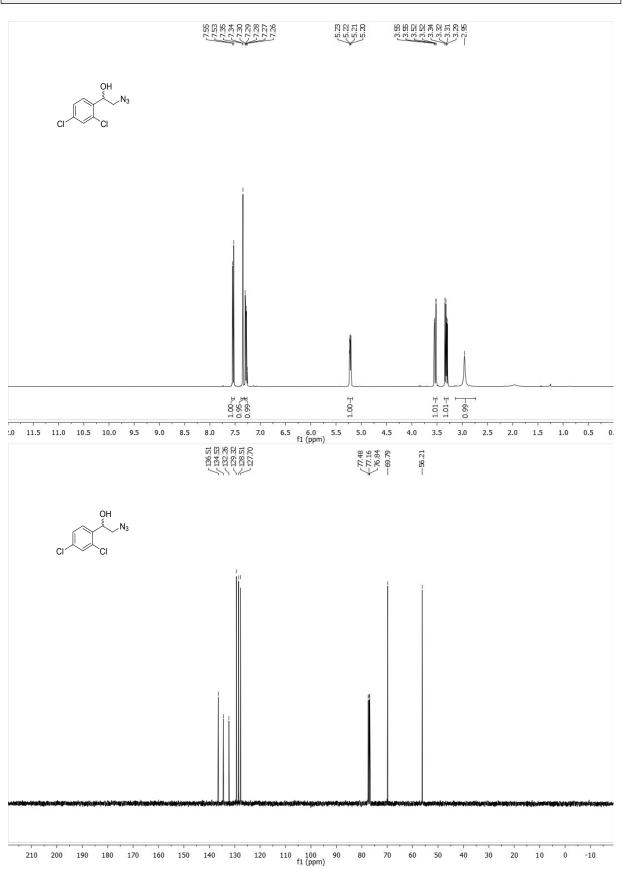


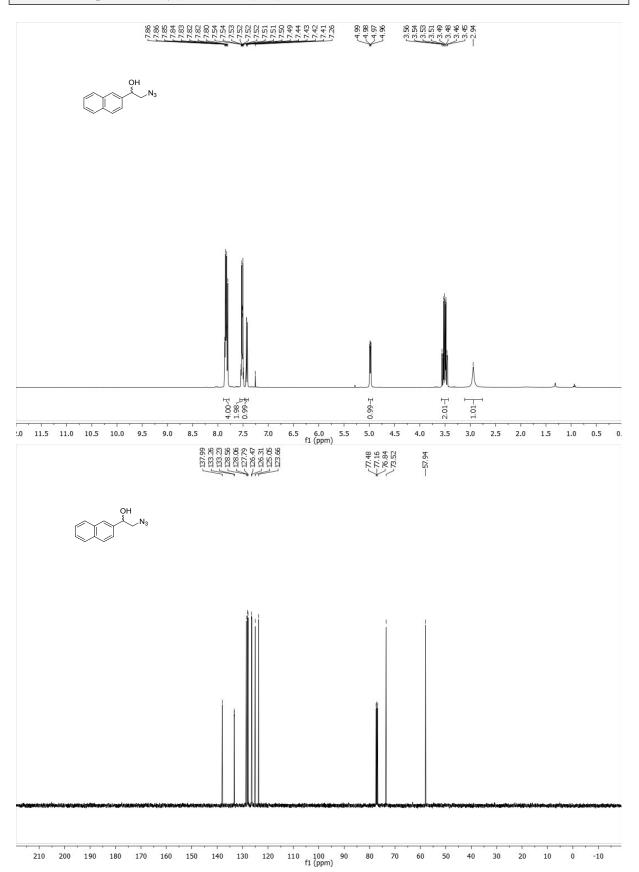


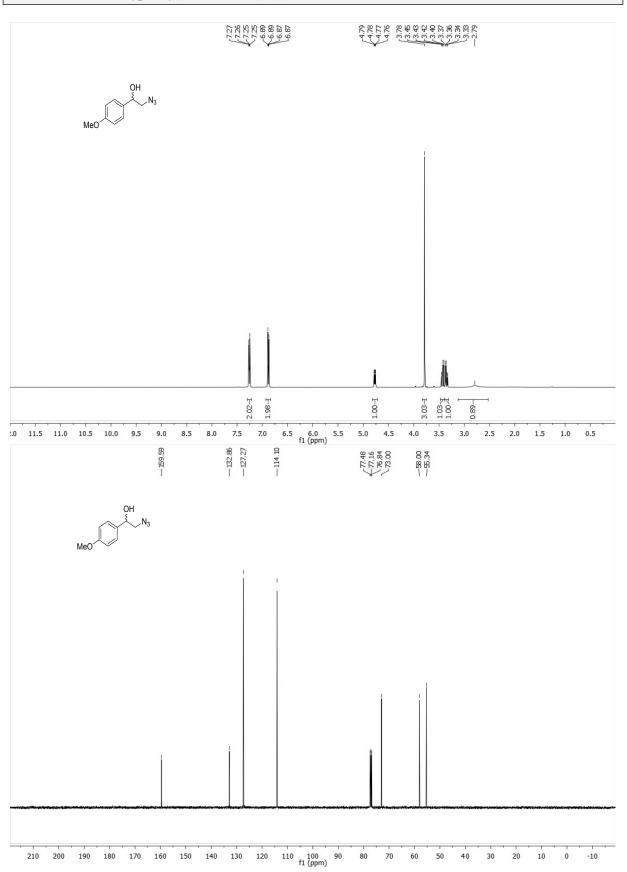
2-azido-1-(4-methoxyphenyl)ethan-1-one (S7)

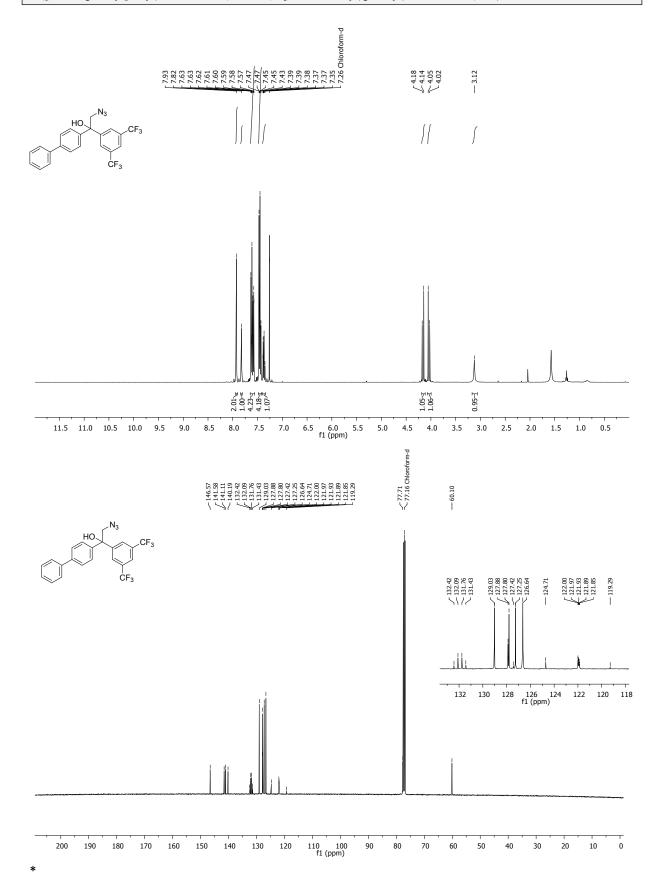


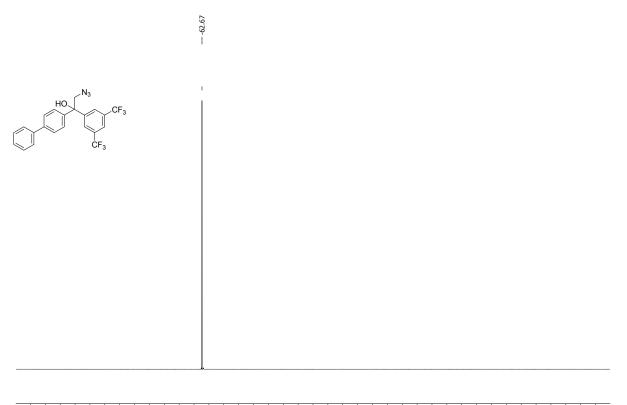

2-azido-1-(4-nitrophenyl)ethan-1-ol (89)

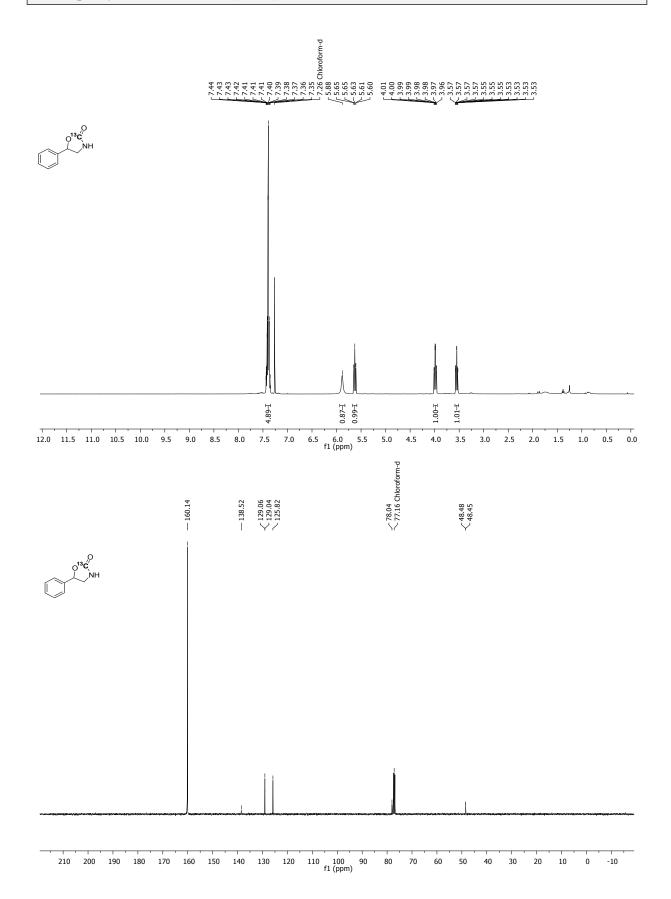

1-([1,1'-biphenyl]-4-yl)-2-azidoethan-1-ol (S10)

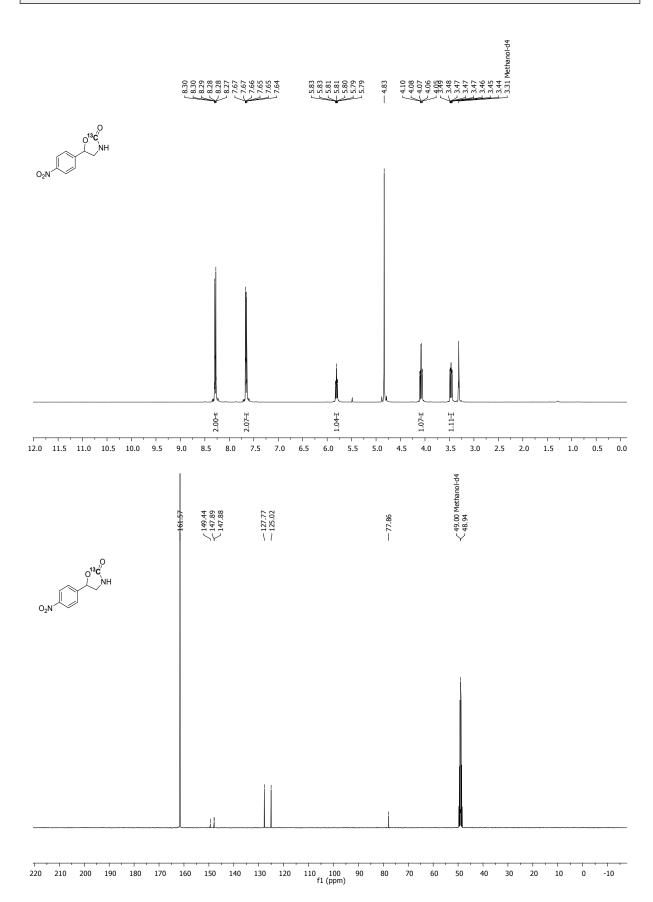

2-azido-1-(4-bromophenyl)ethan-1-ol (S11)

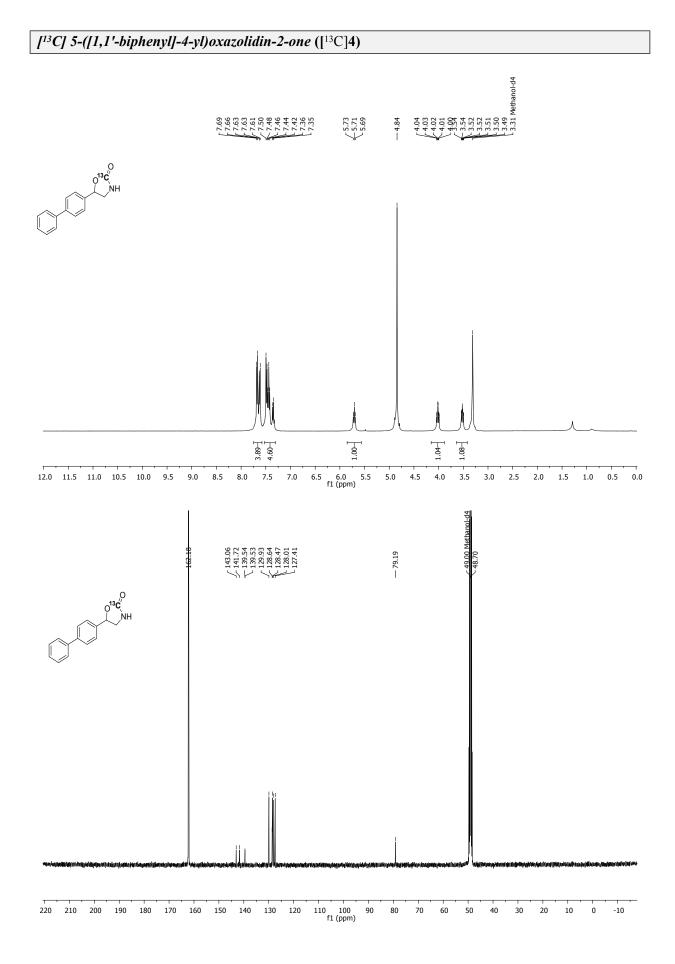




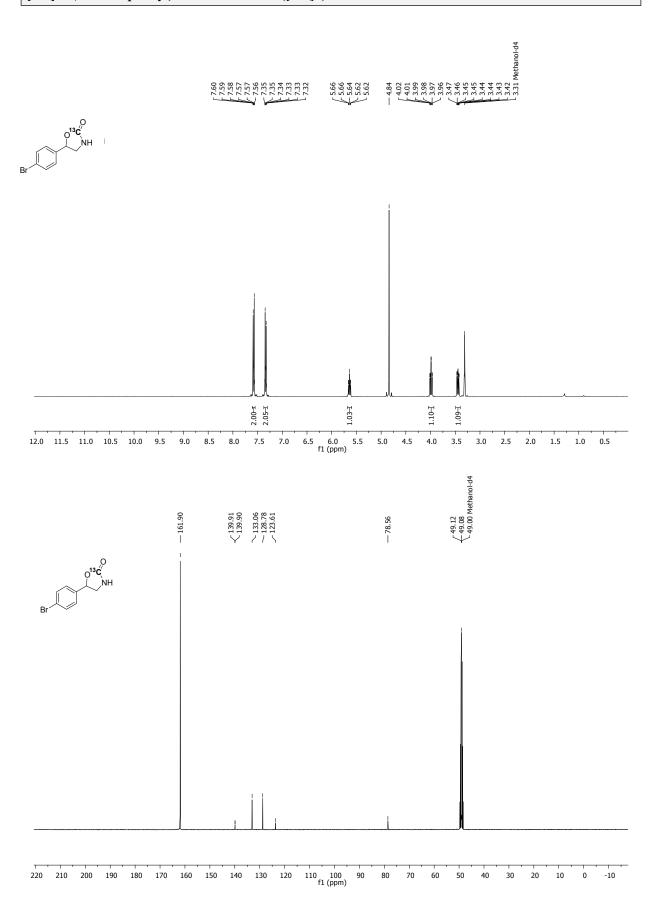

2-azido-1-(naphthalen-2-yl)ethan-1-ol (S13)

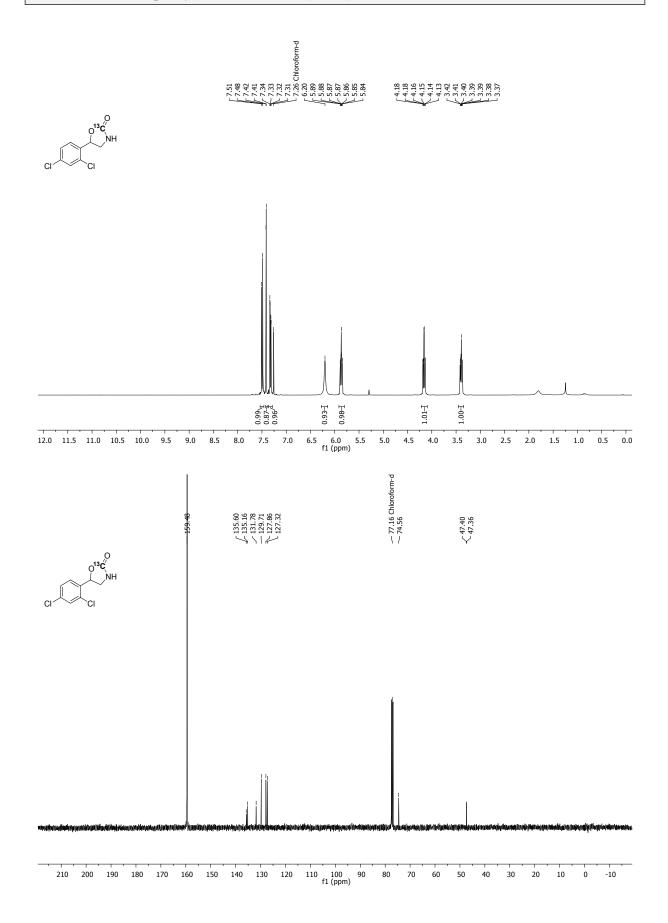

2-azido-1-(4-methoxyphenyl)ethan-1-ol (S14)

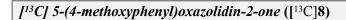


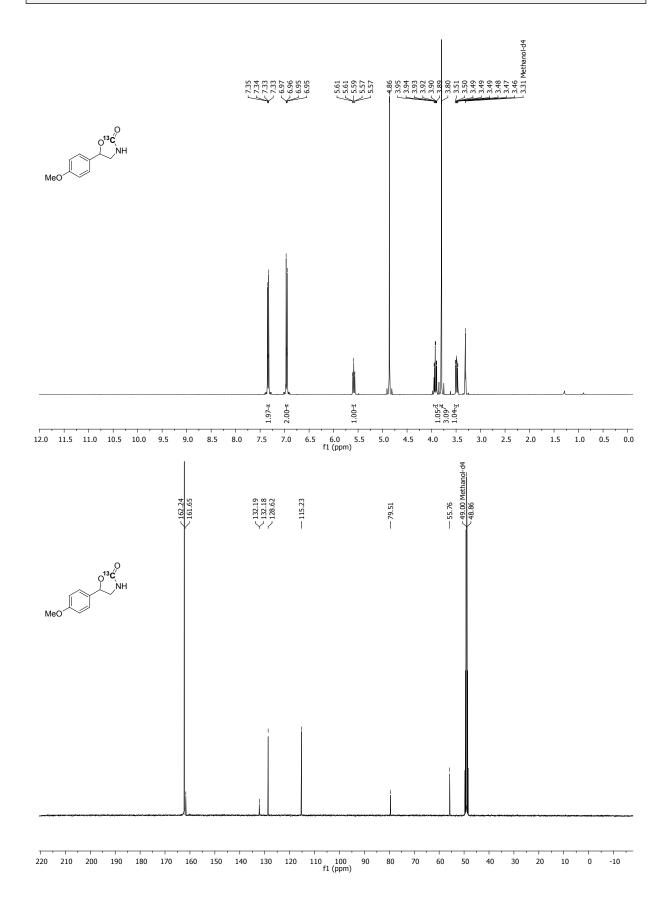


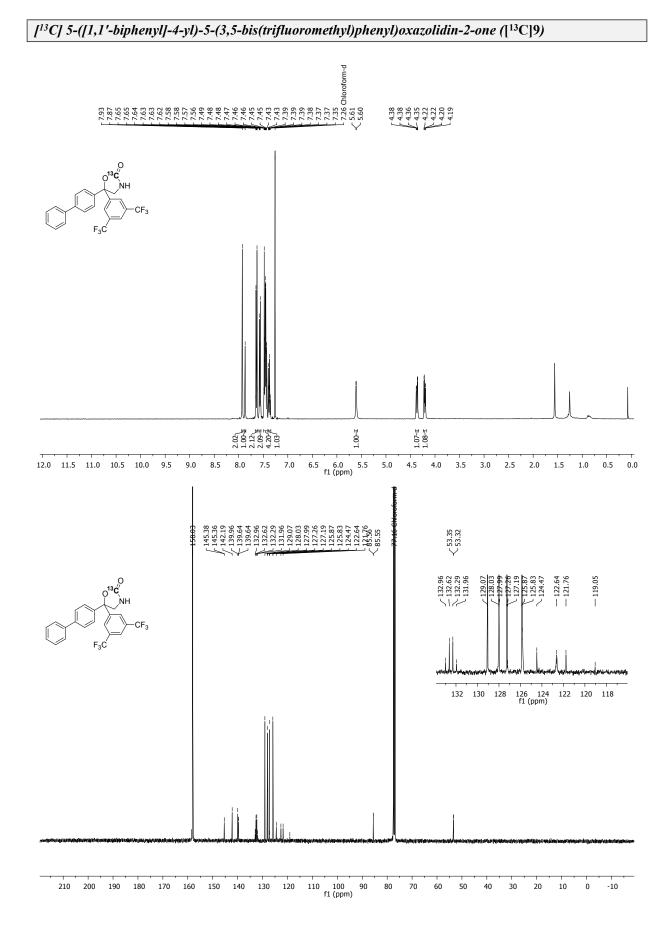
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm) [¹³C] 5-phenyloxazolidine-2-one ([¹³C]2)

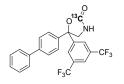


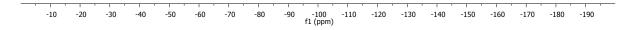

[¹³C] 5-(4-nitrophenyl)oxazolidin-2-one ([¹³C]3)

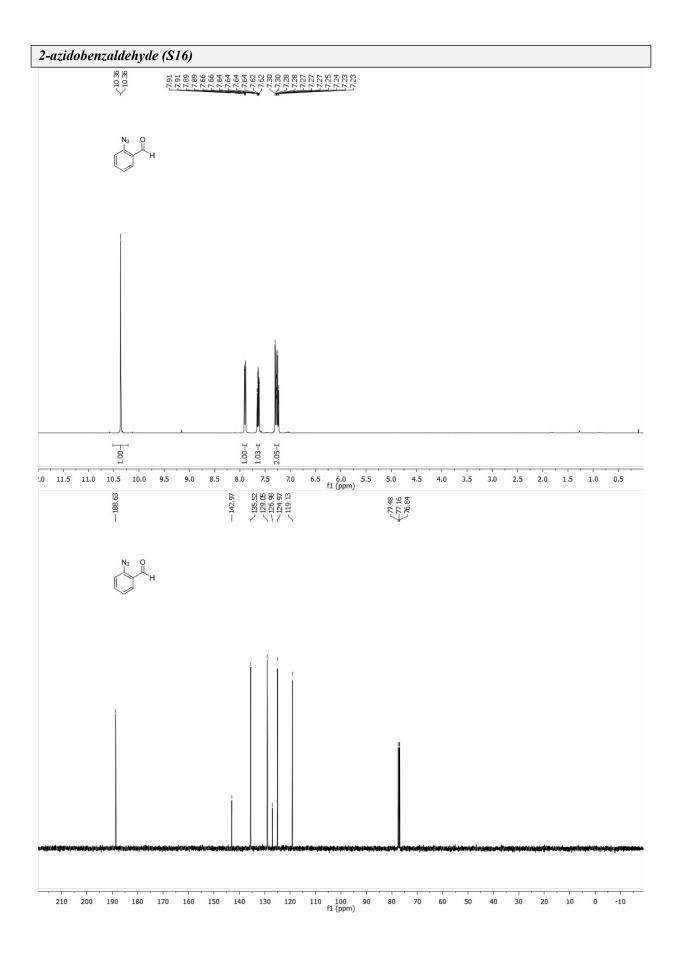

S114

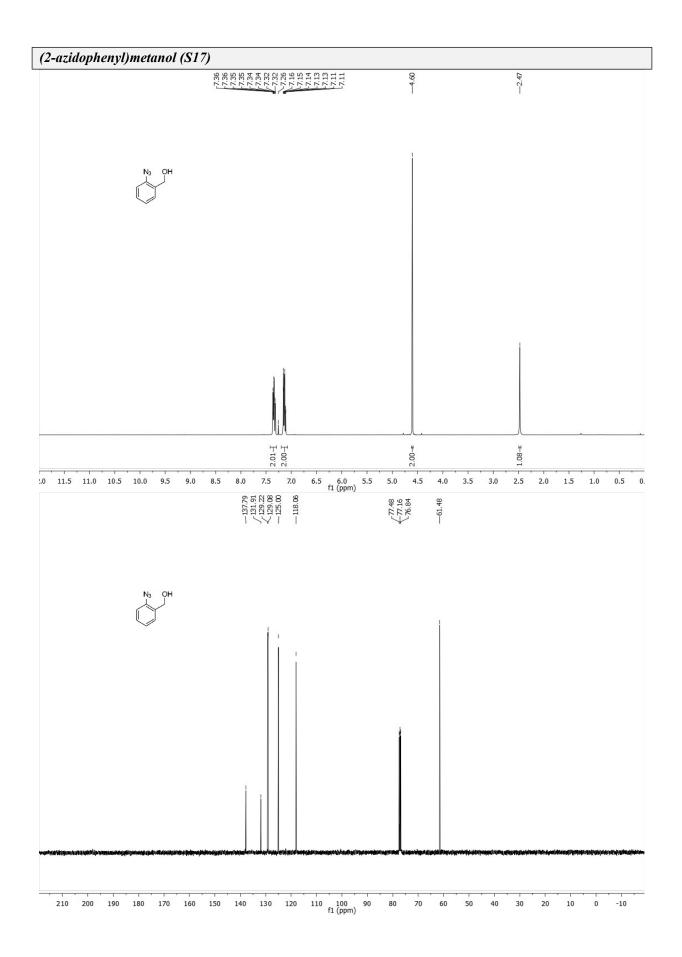


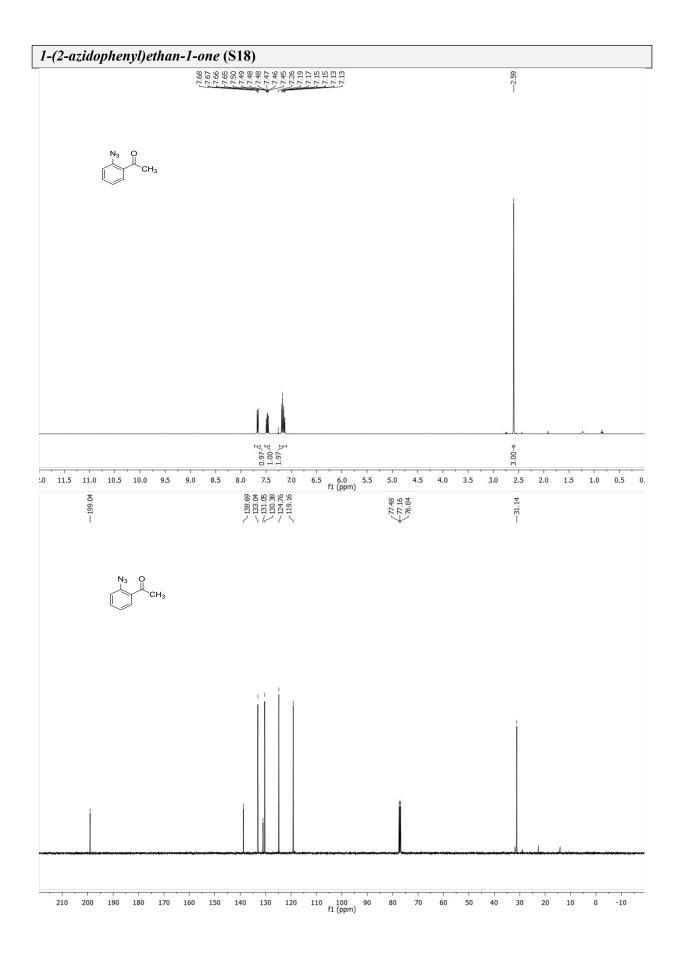

[¹³C] 5-(2,4-dichlorophenyl)oxazolidin-2-one ([¹³C]6)

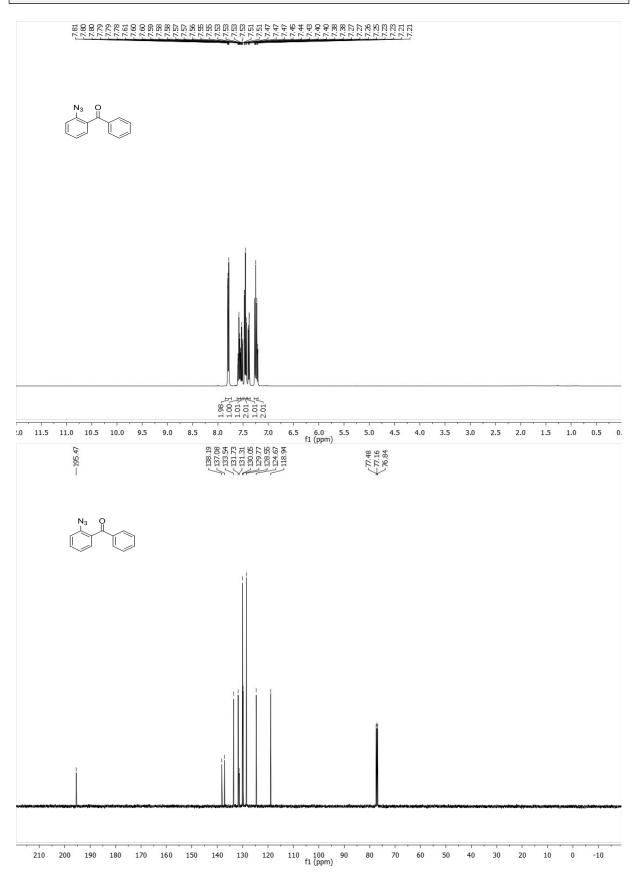


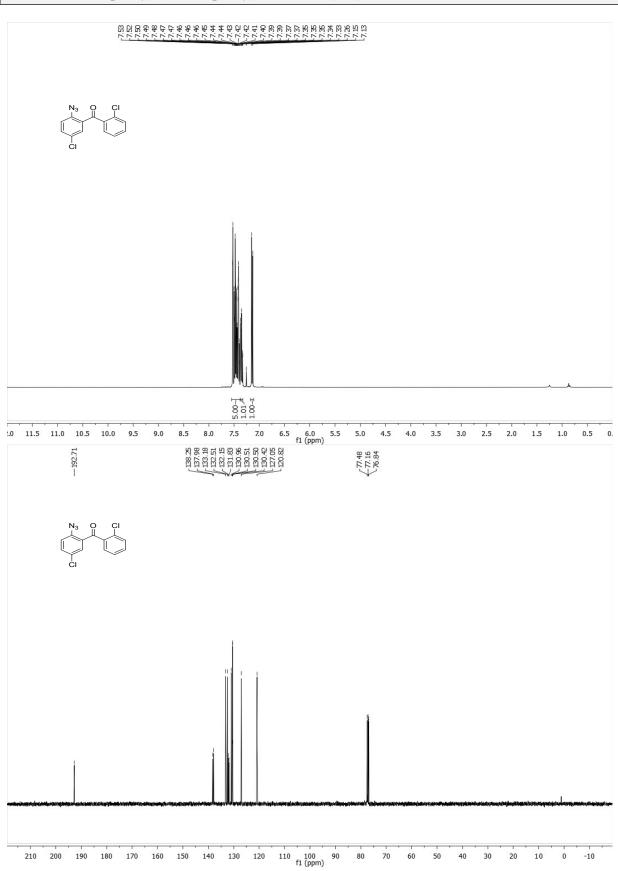


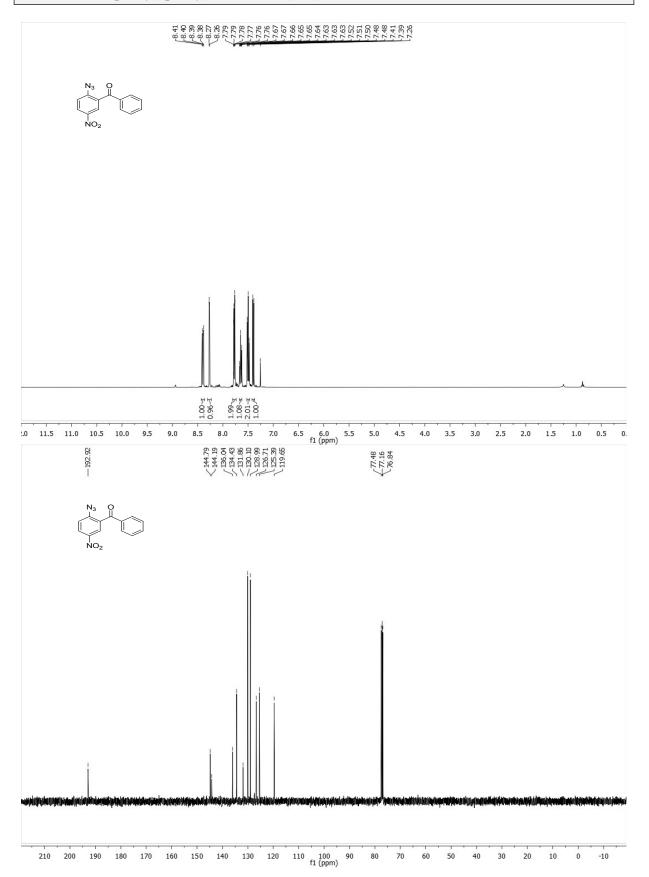


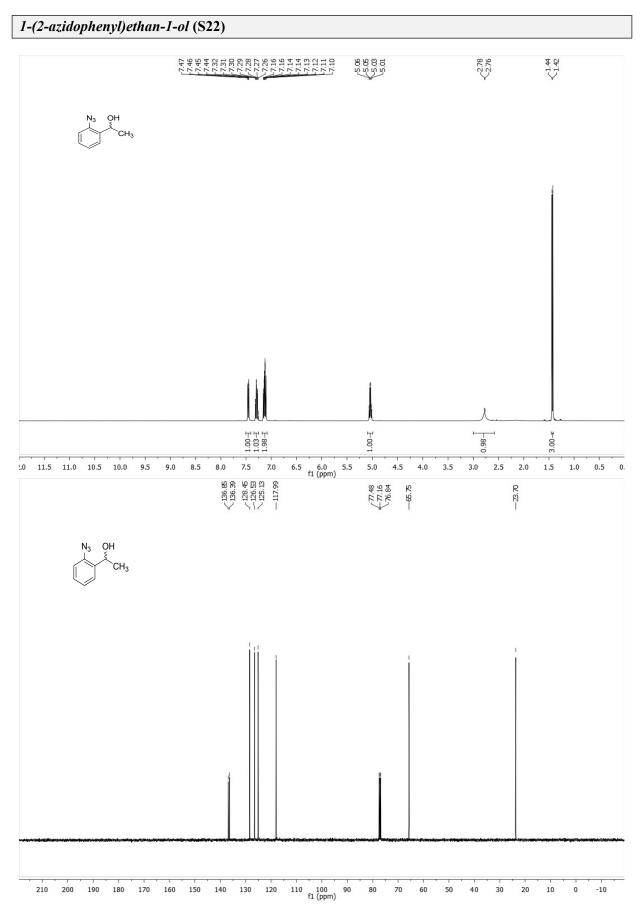


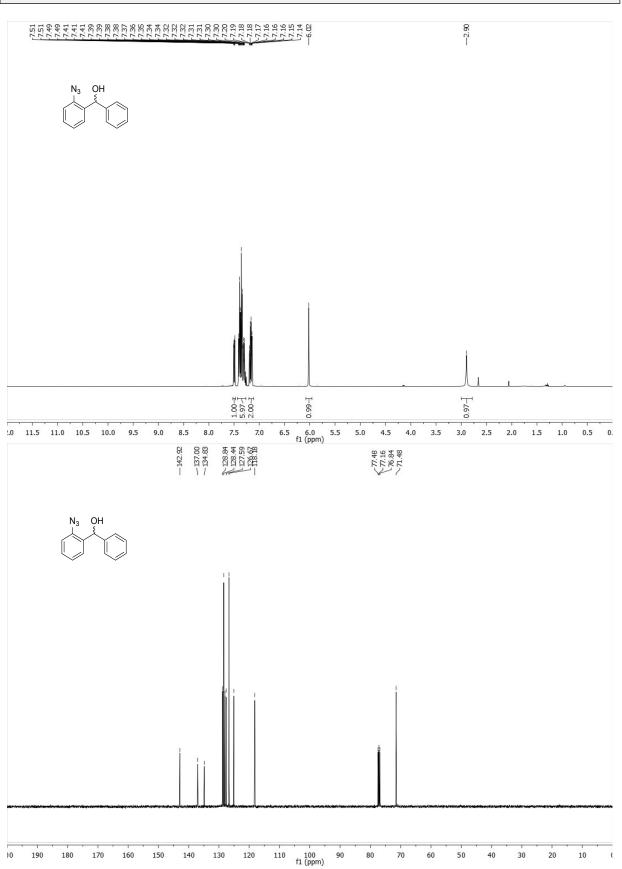


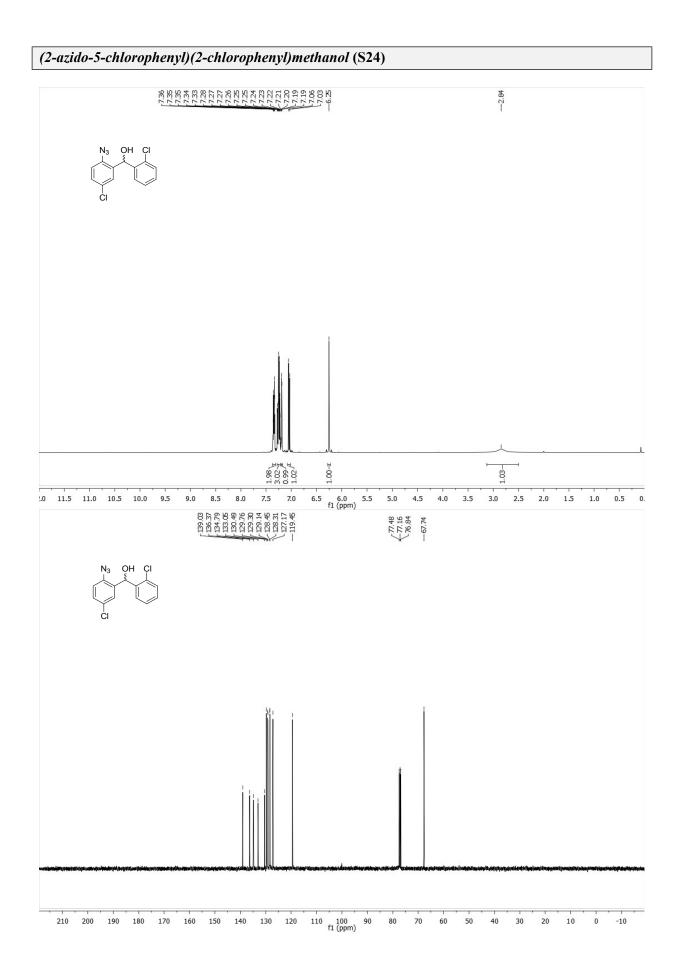


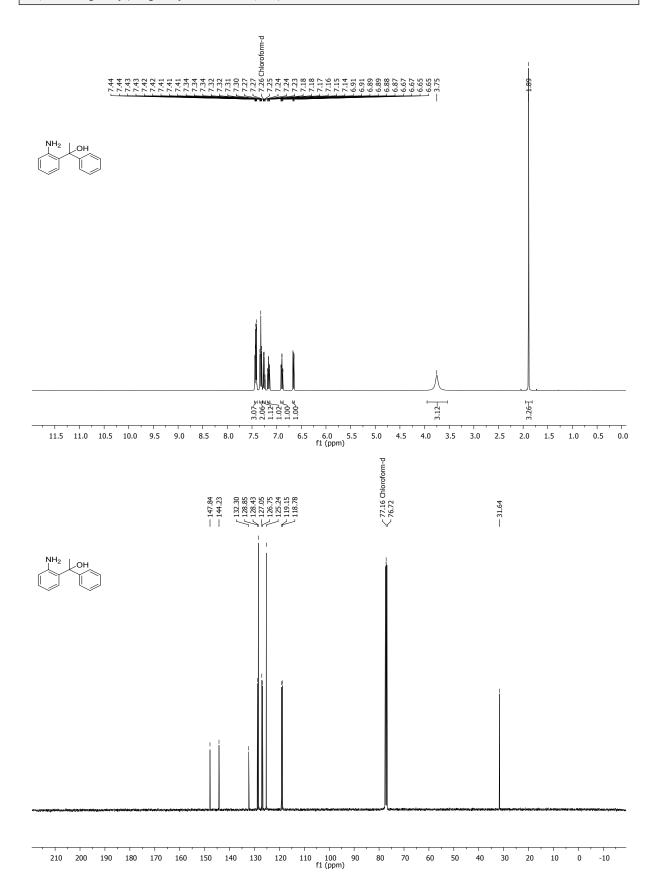


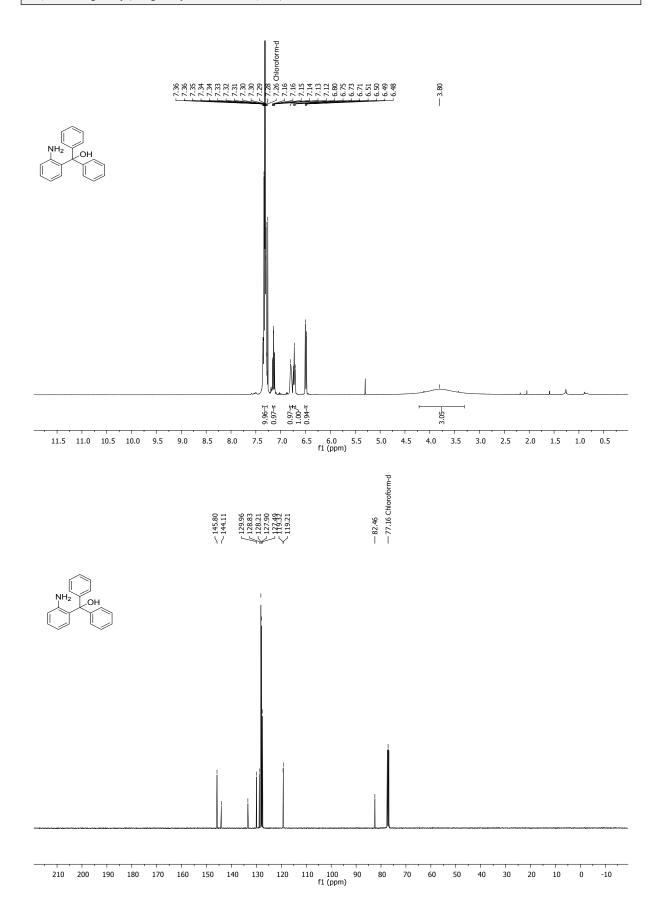

(2-azidophenyl)(phenyl)methanone (S19)

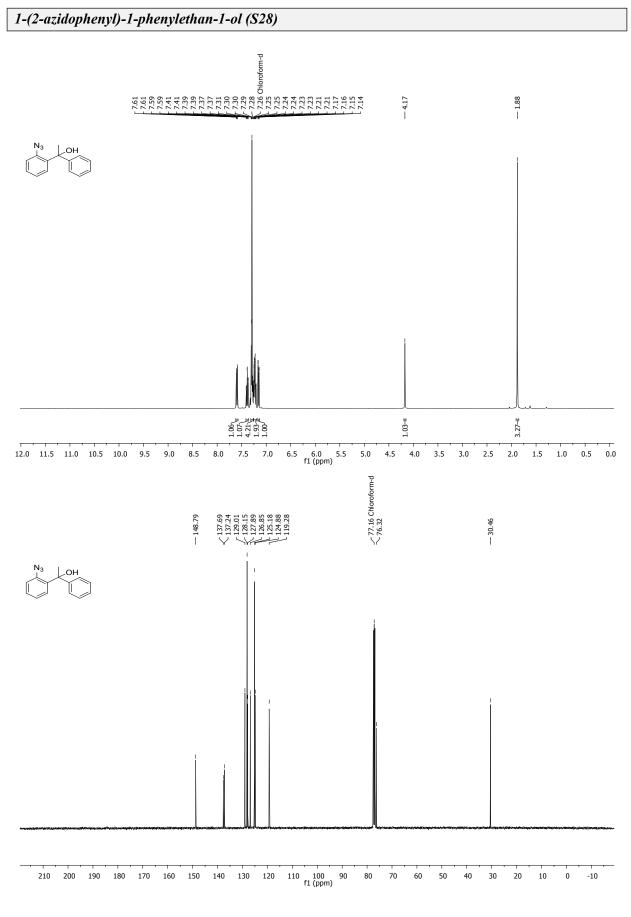


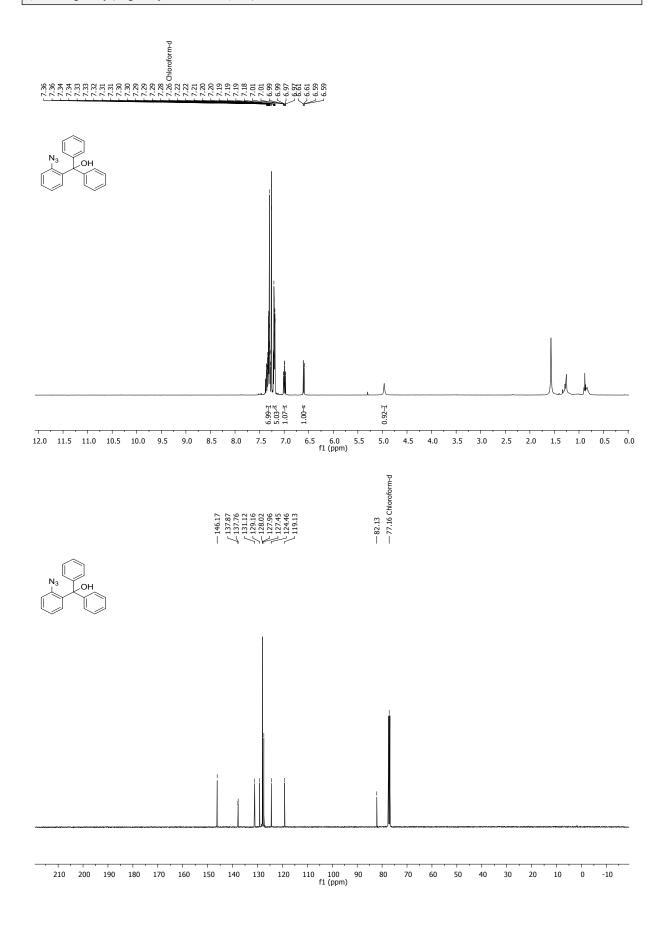

(2-azido-5-chlorophenyl)(2-chlorophenyl)methanone (S20)

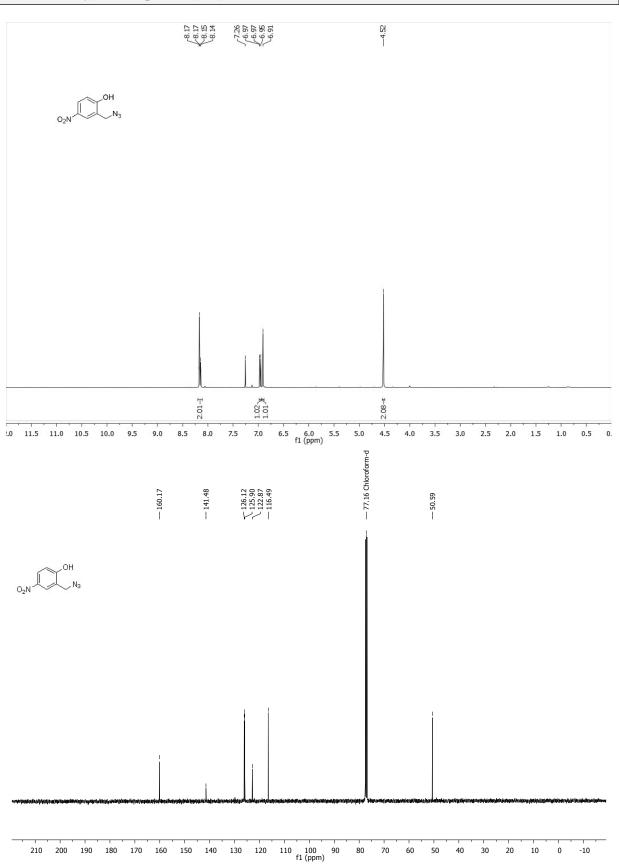

(2-azido-5-nitrophenyl)(phenyl)methanone (S21)

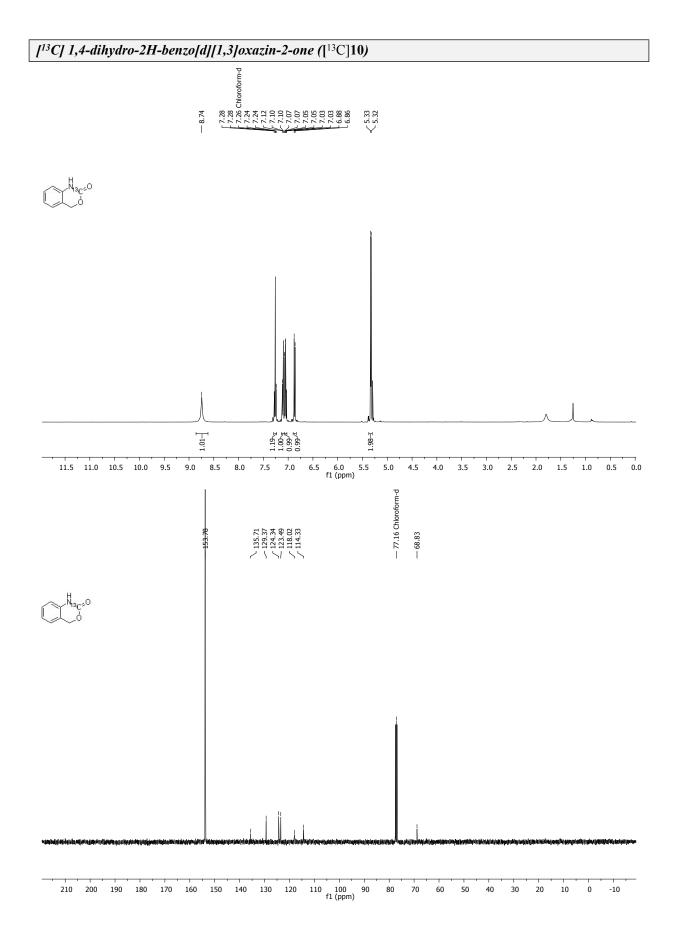


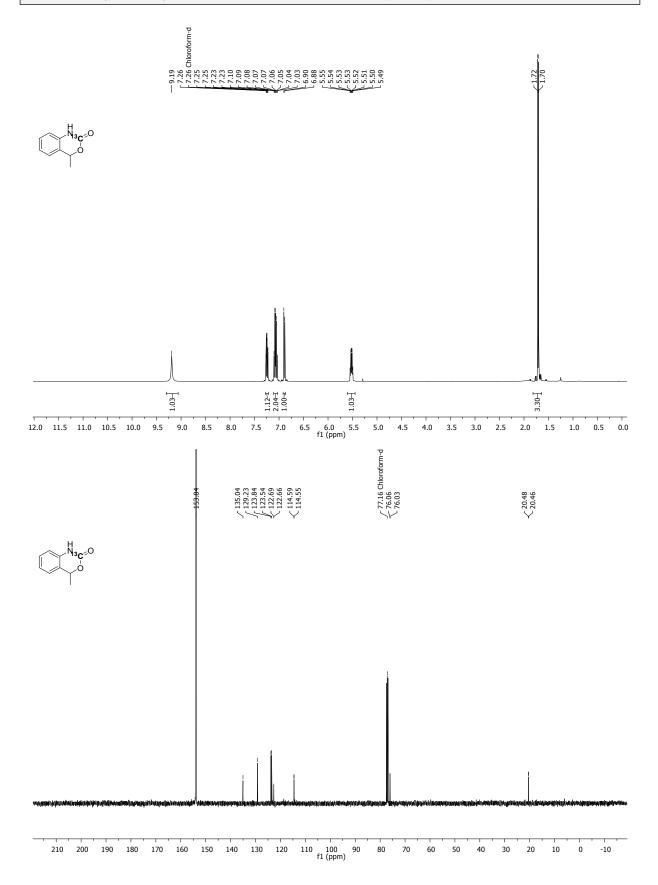


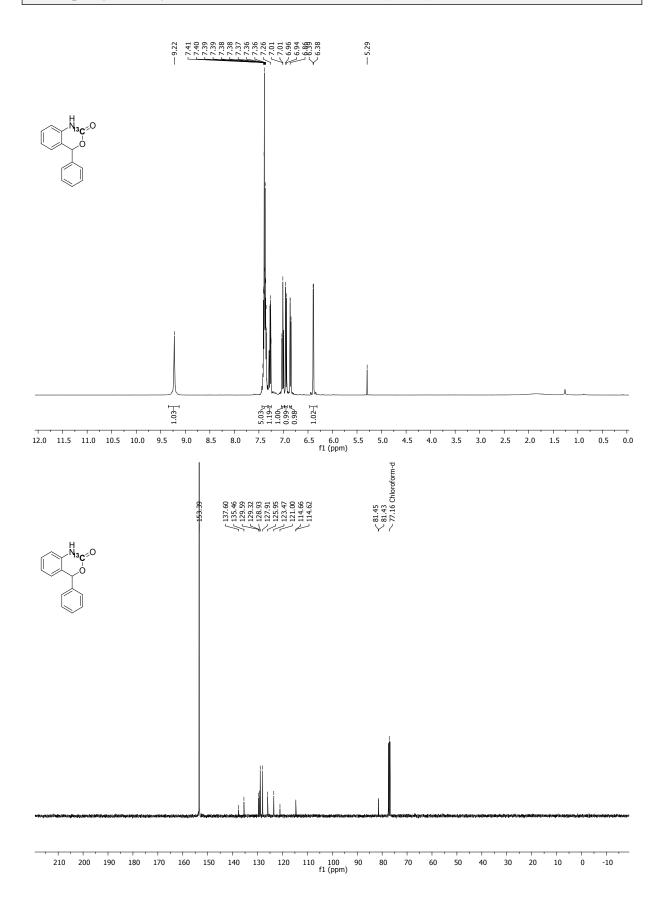

S127

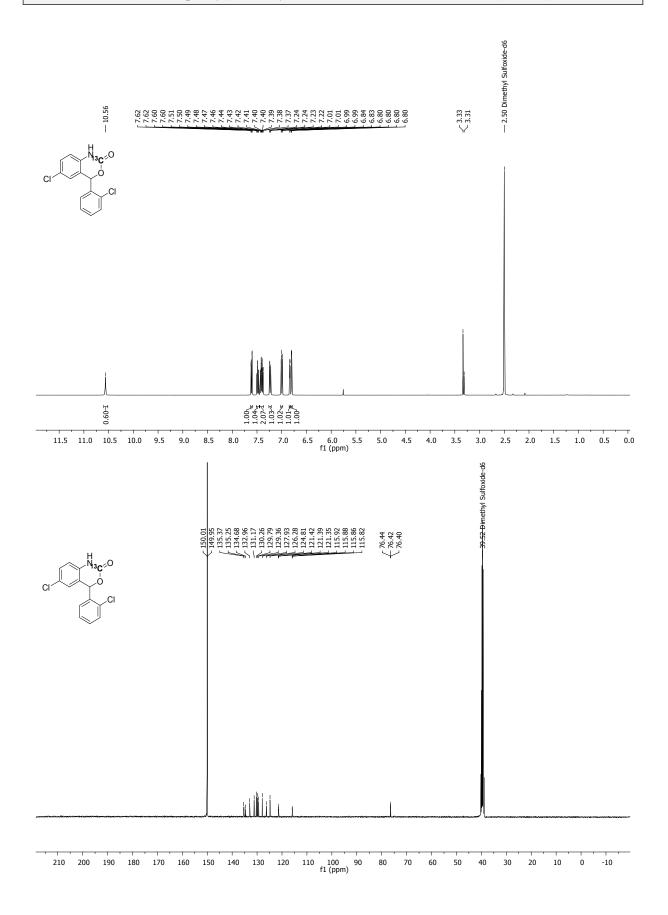


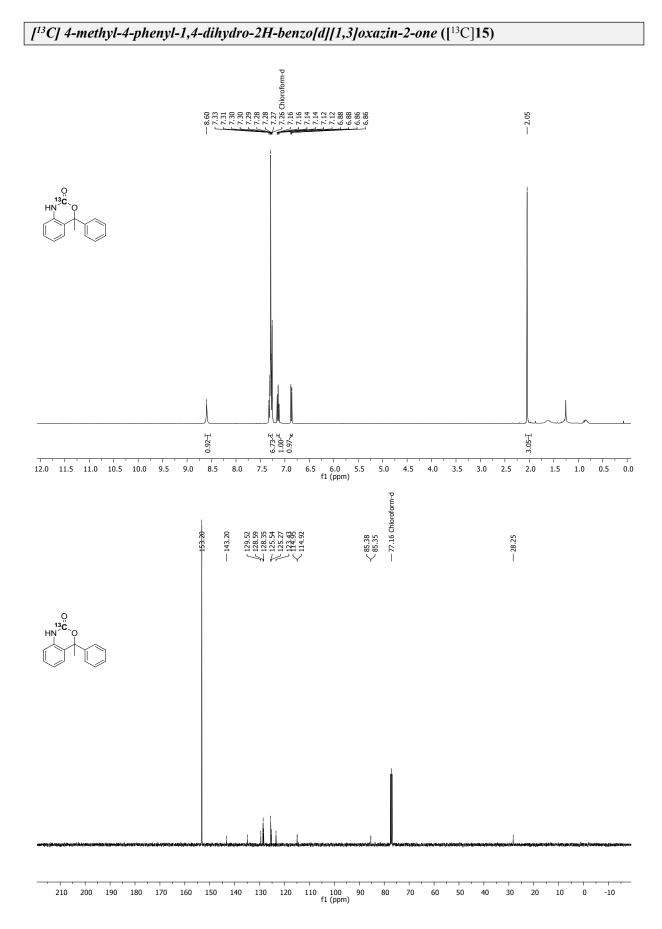


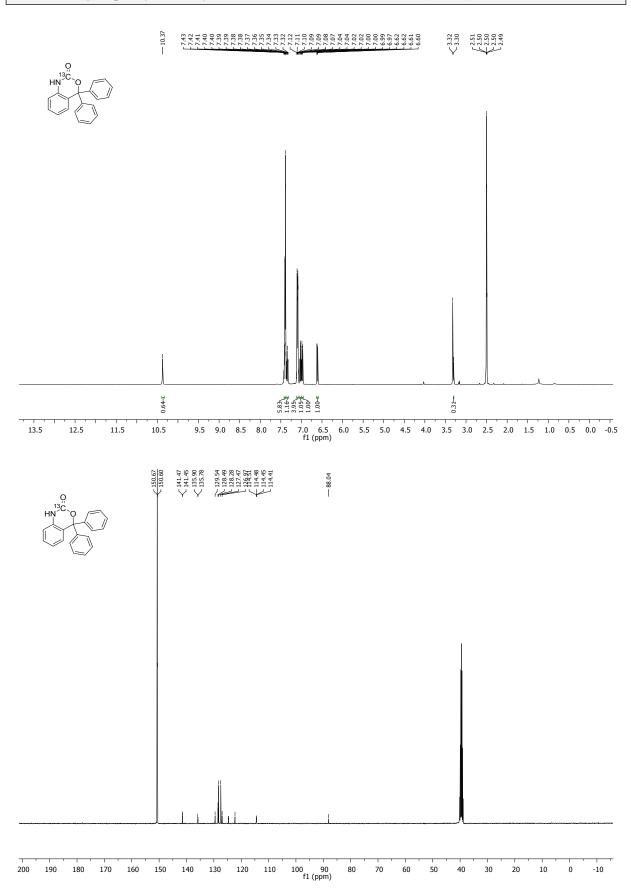


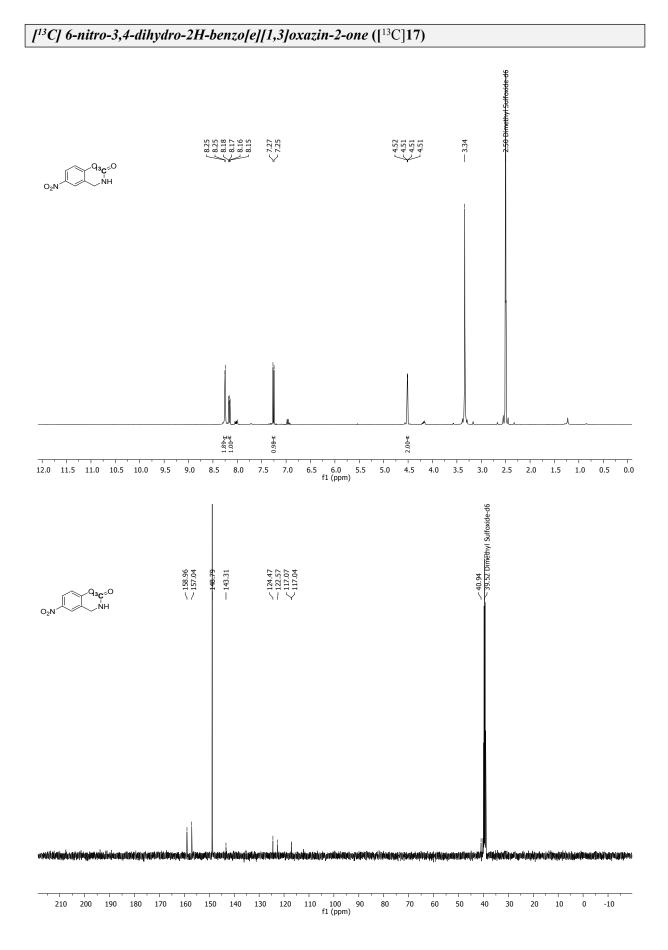

S132

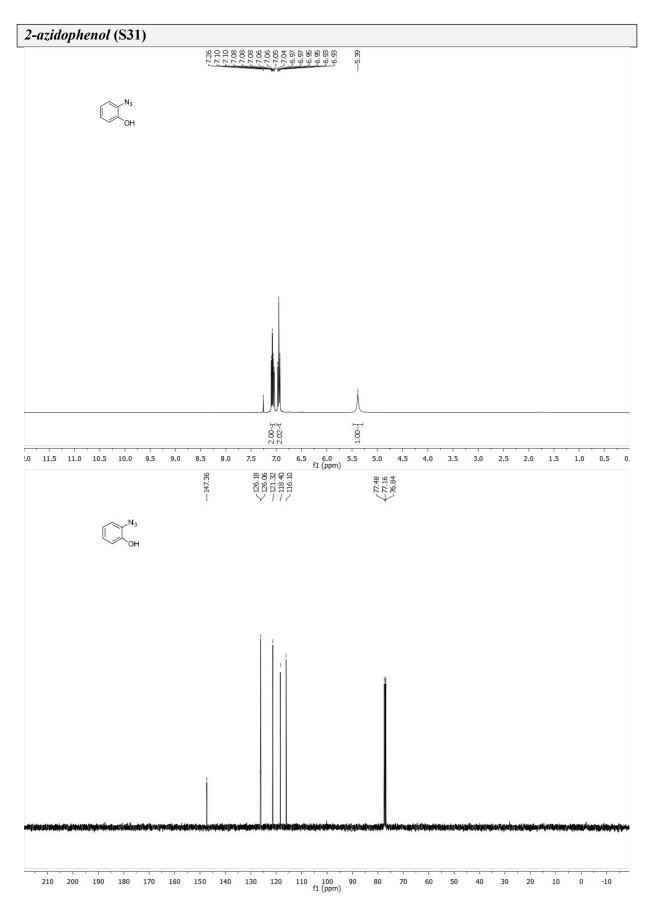


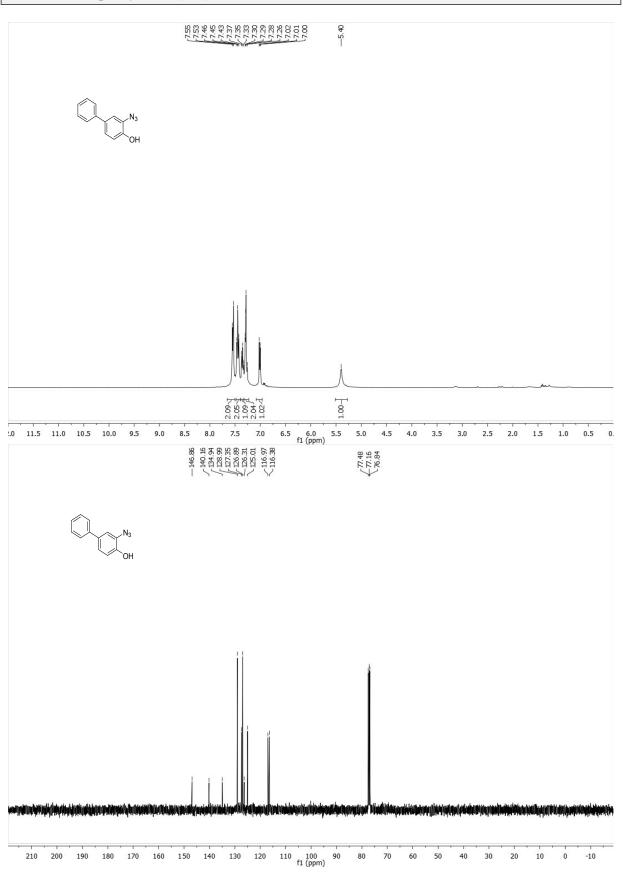

2-(azidomethyl)-4-nitrophenol (S30)



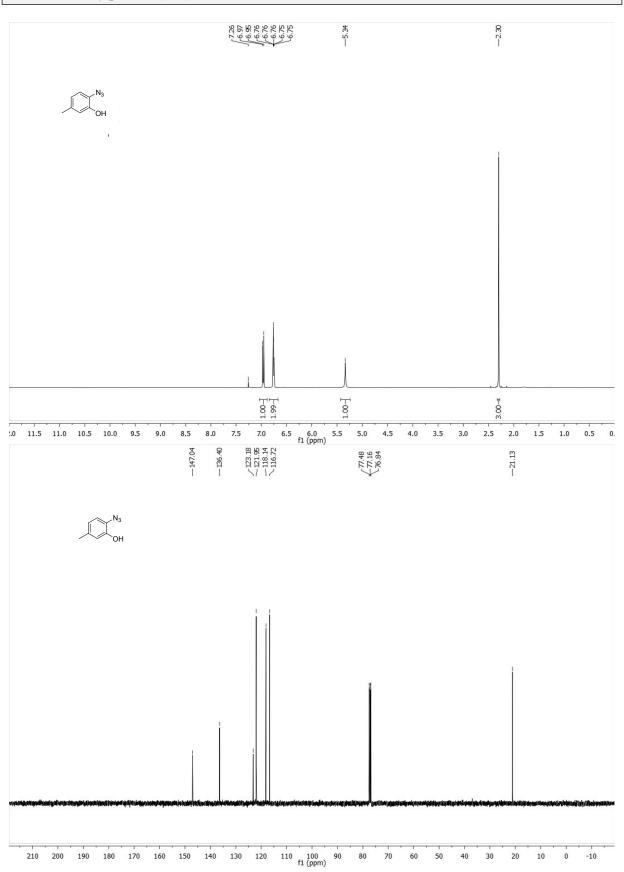


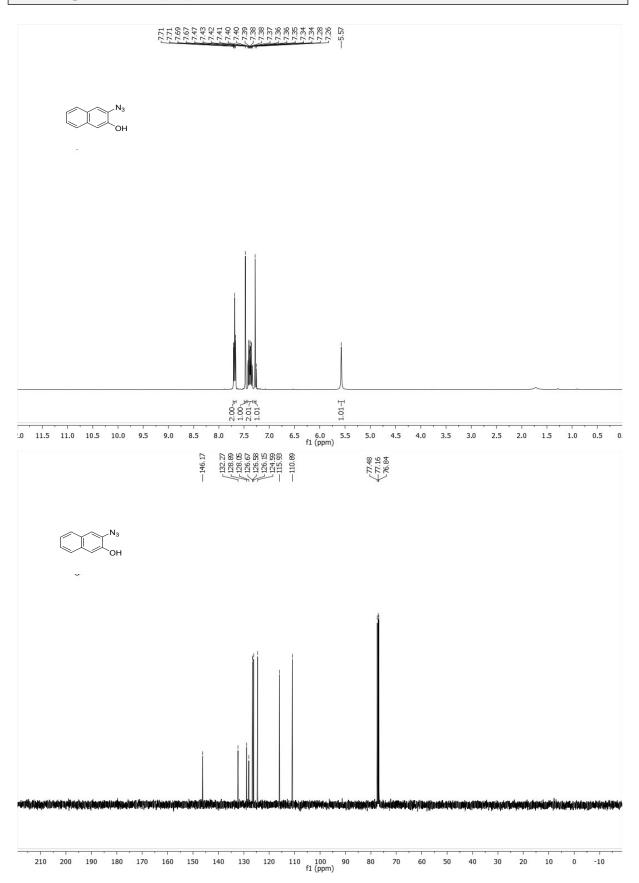


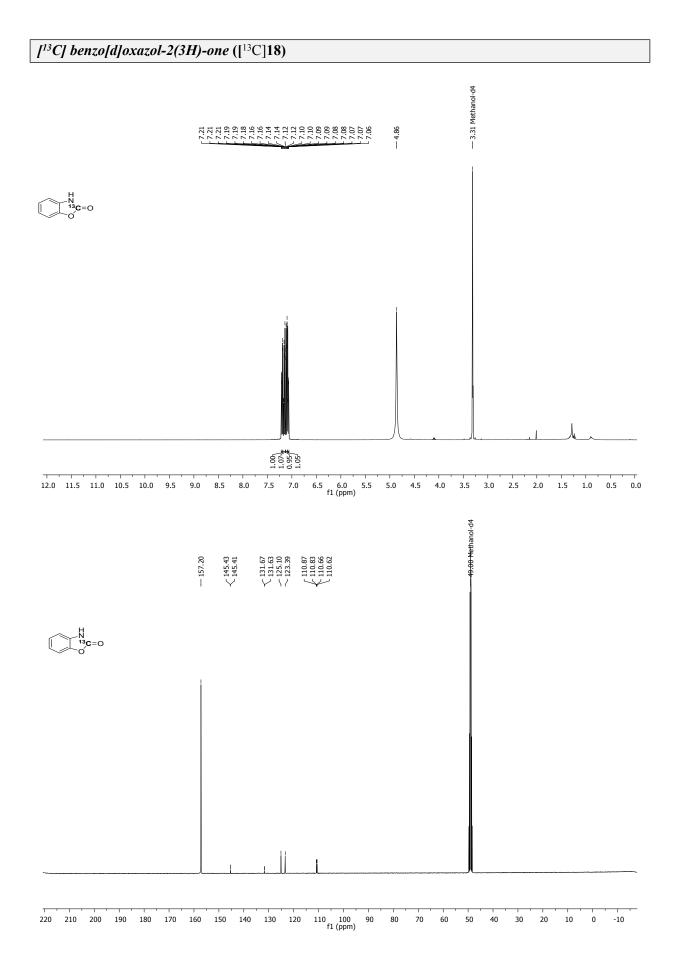


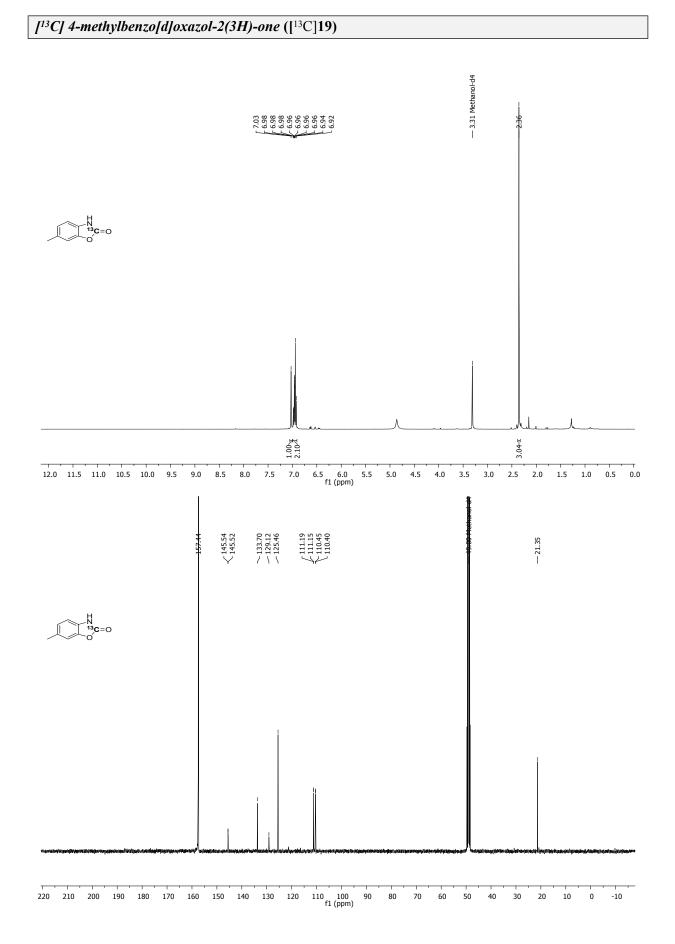


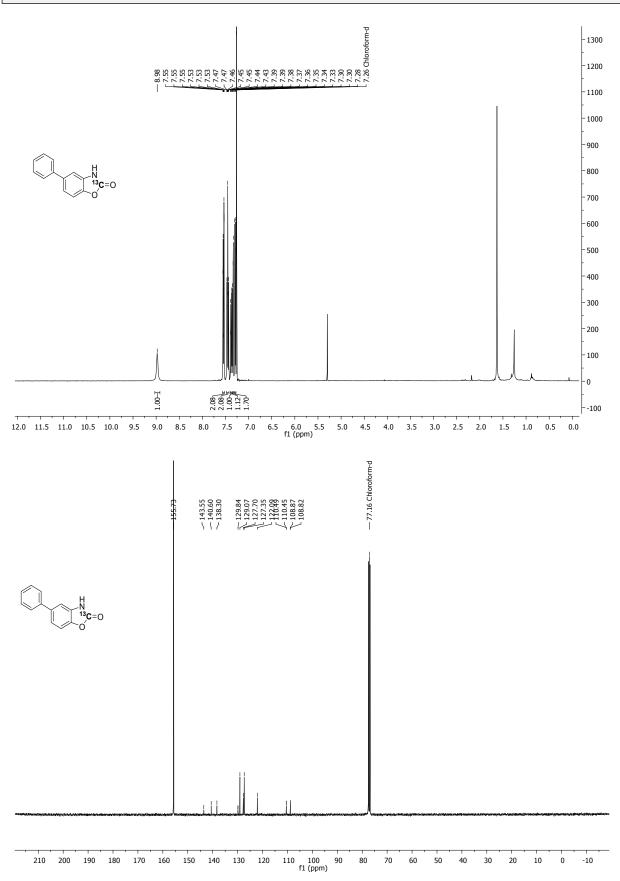
[¹³C] 4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹³C]16)

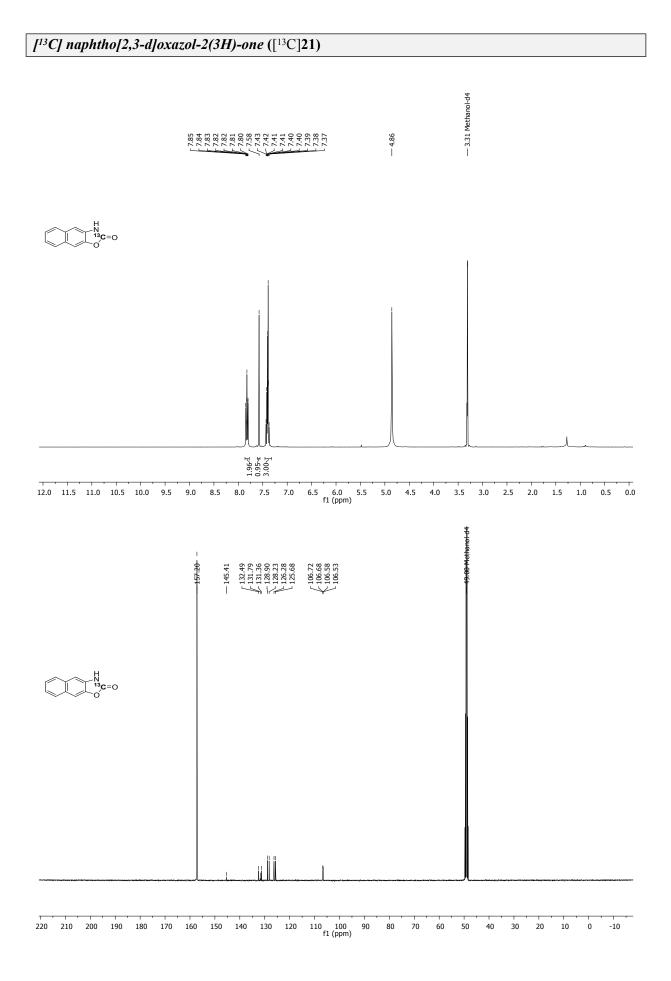


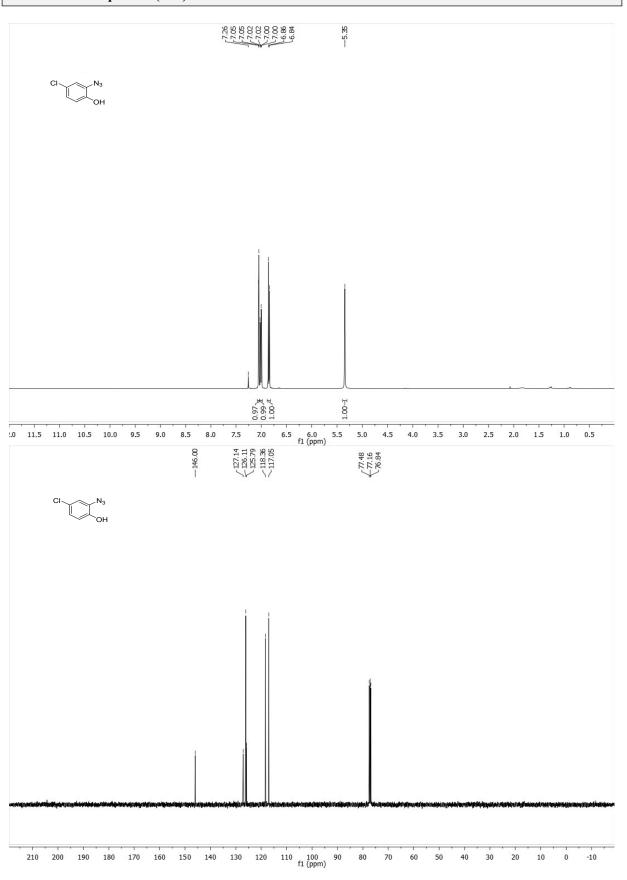

3-azido-[1,1'-biphenyl]-4-ol (\$33)

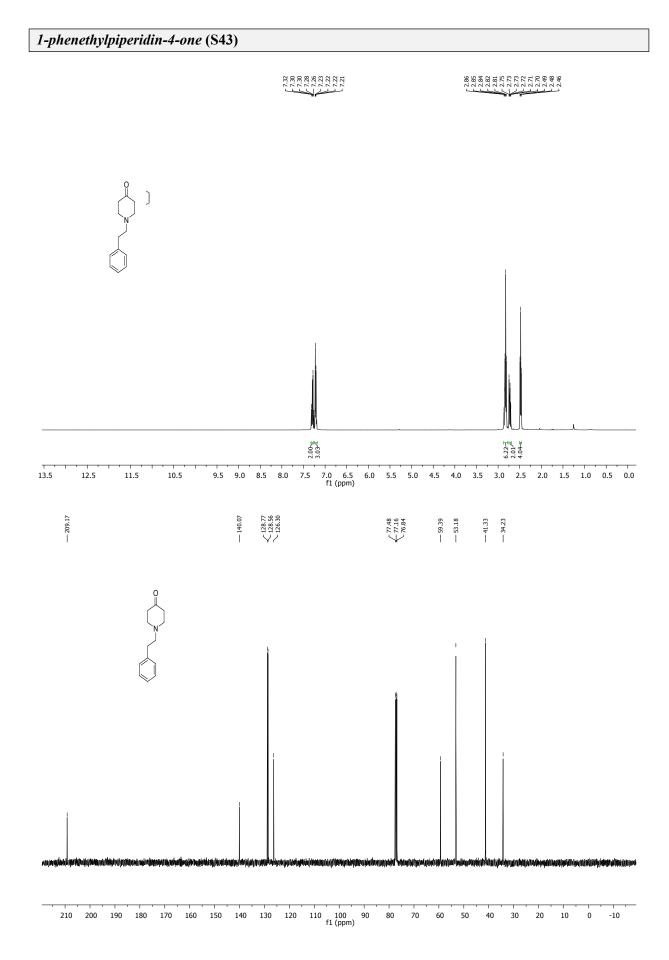


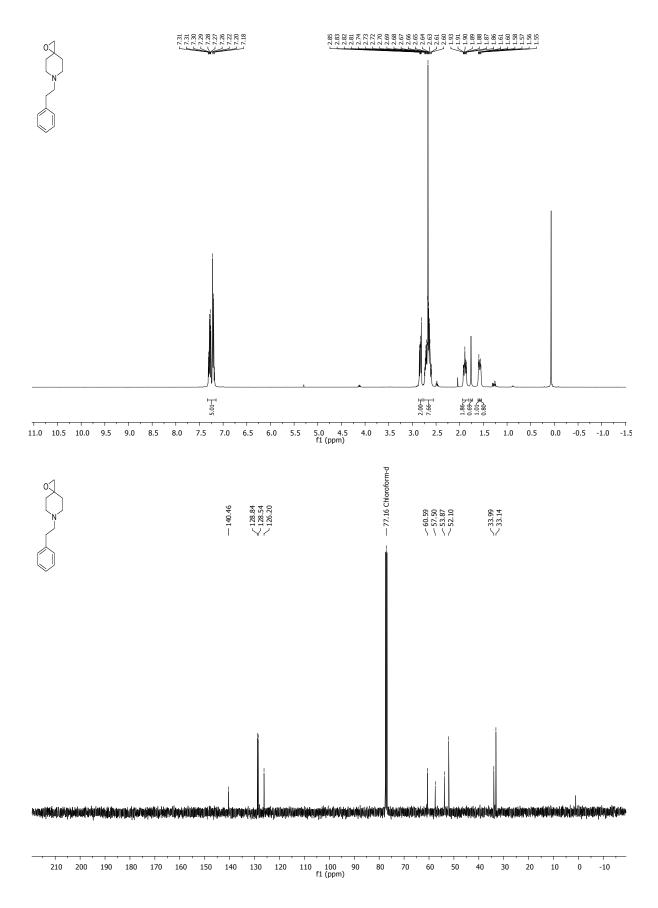

2-azido-5-methylphenol (832)

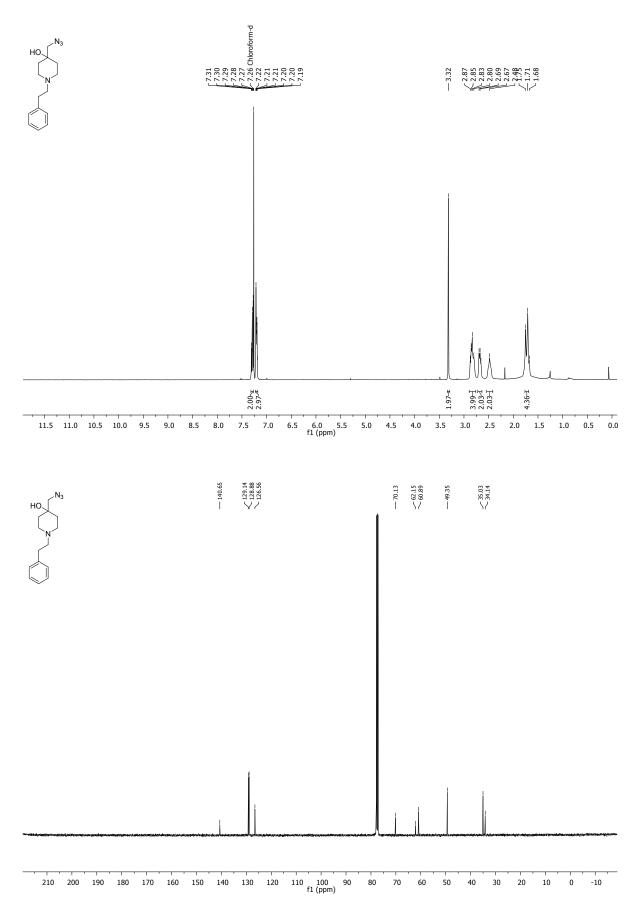

3-azidonaphthalen-2-ol (S34)

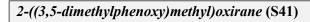


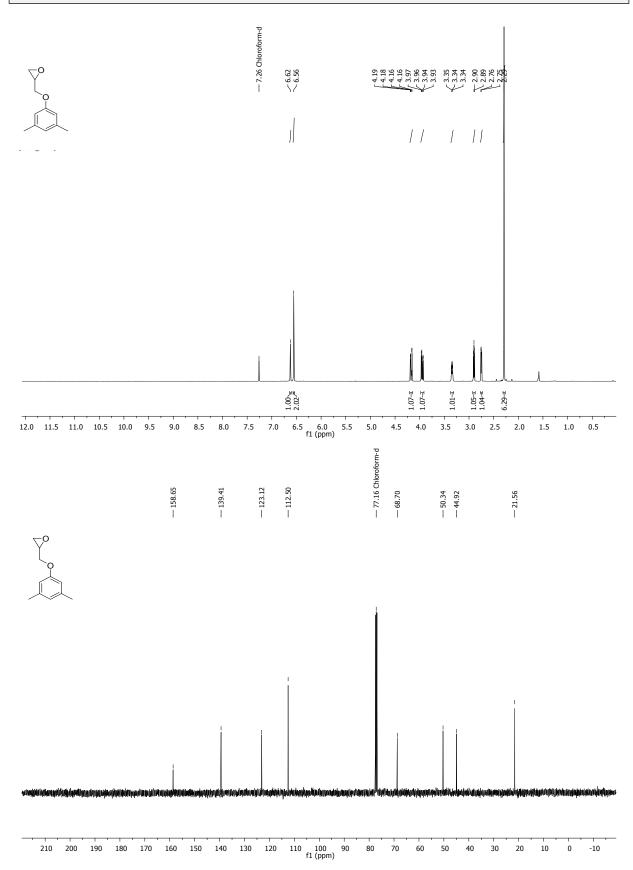


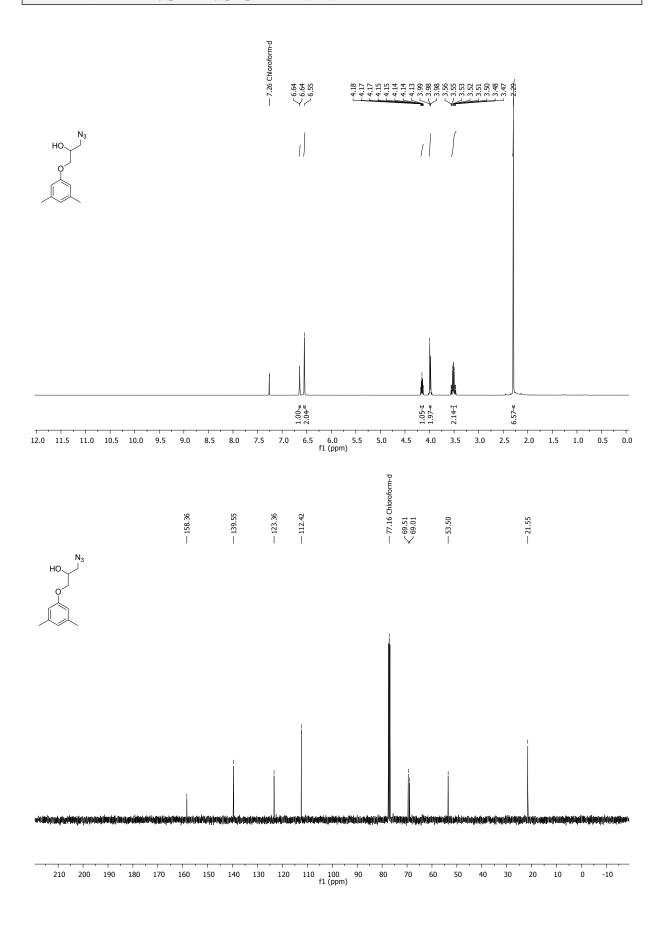


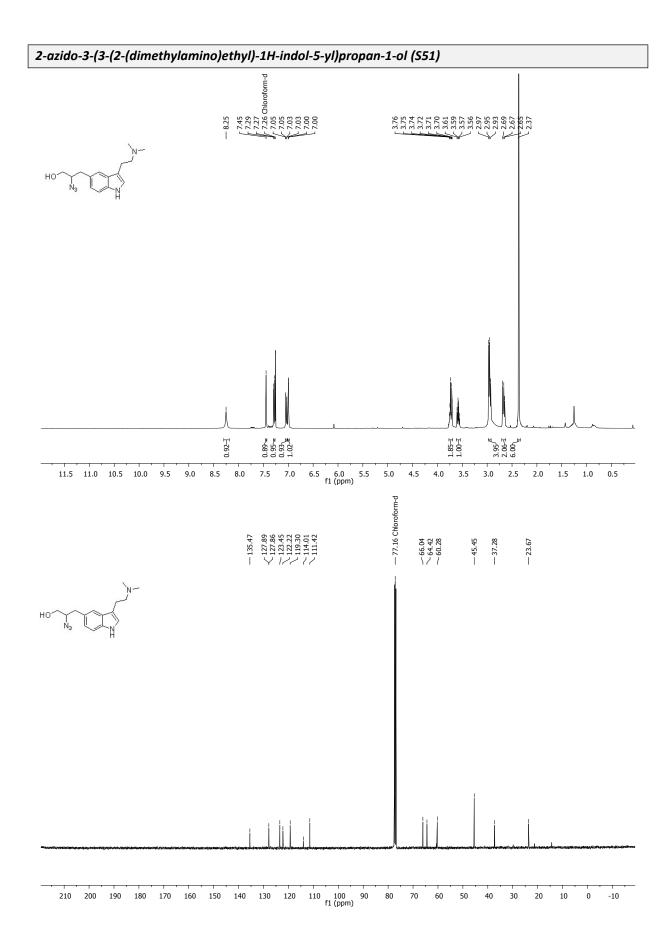


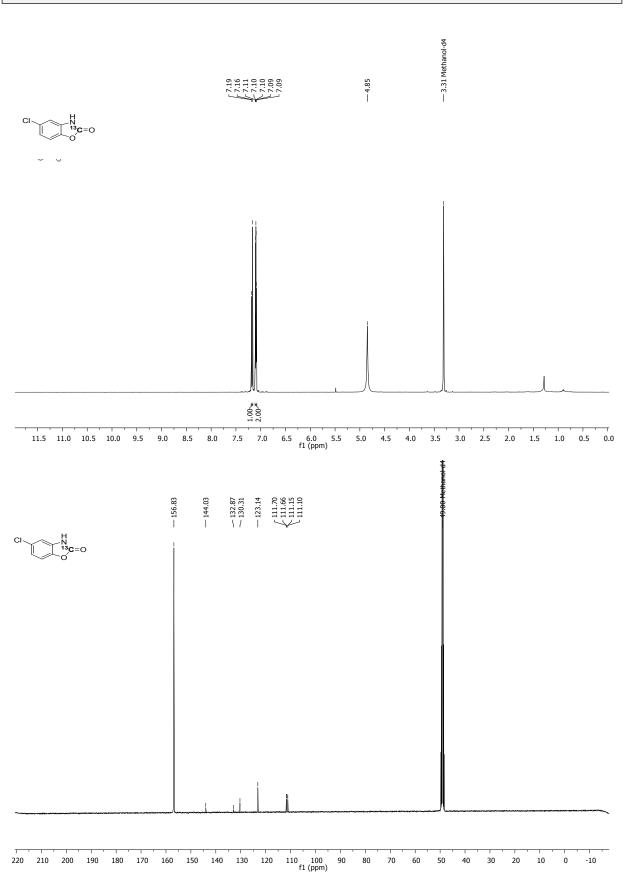


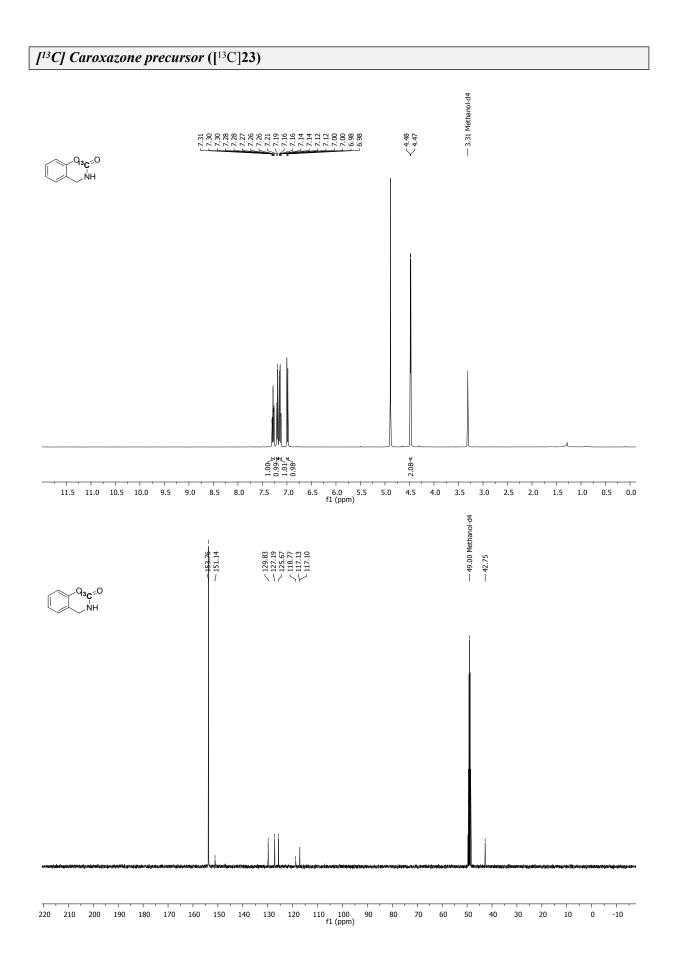

2-azido-4-chlorophenol (837)

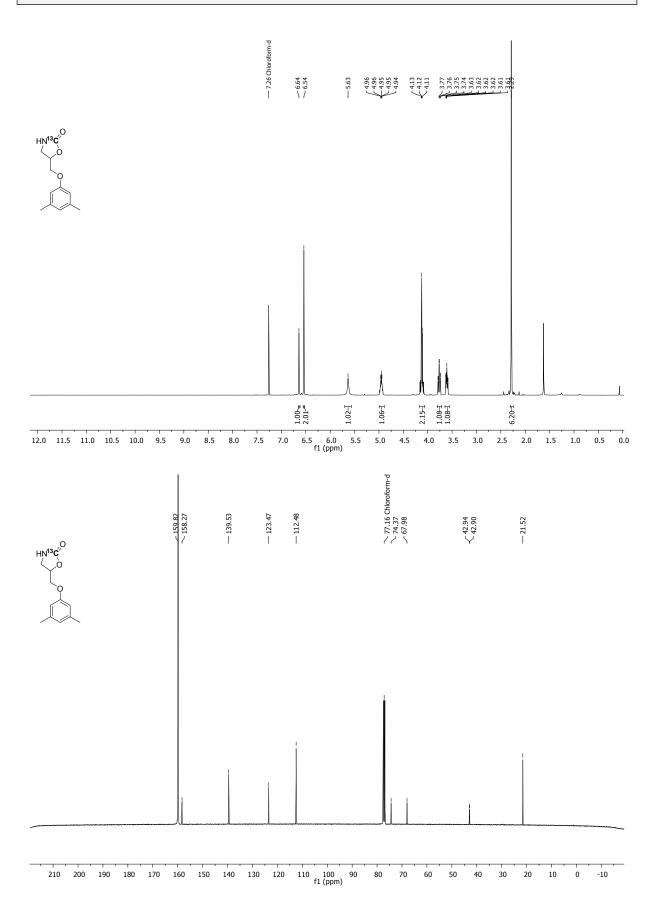


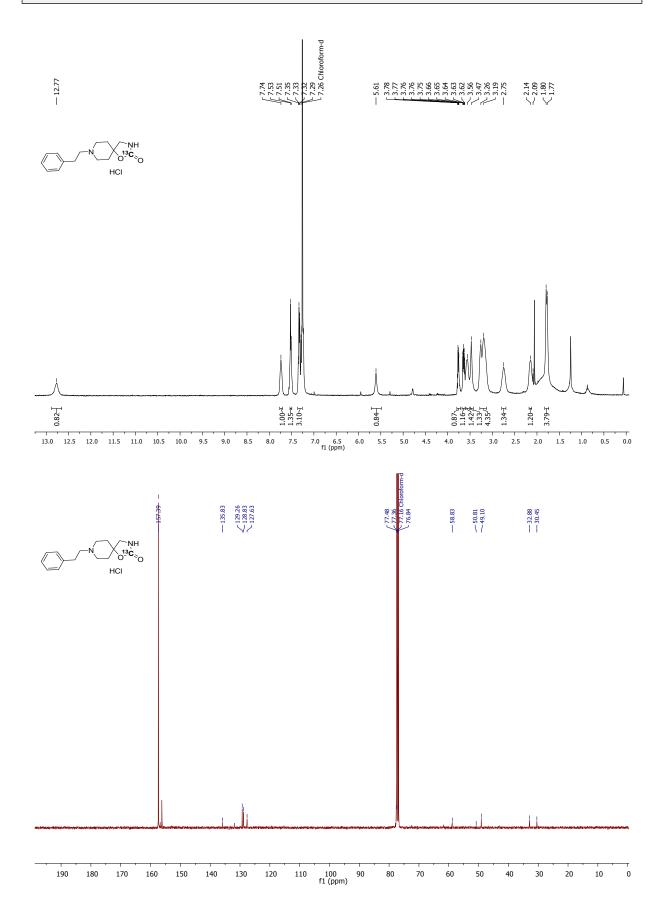


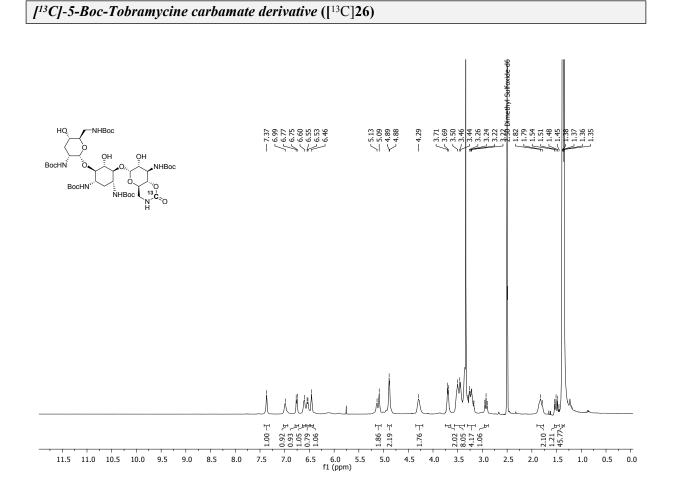


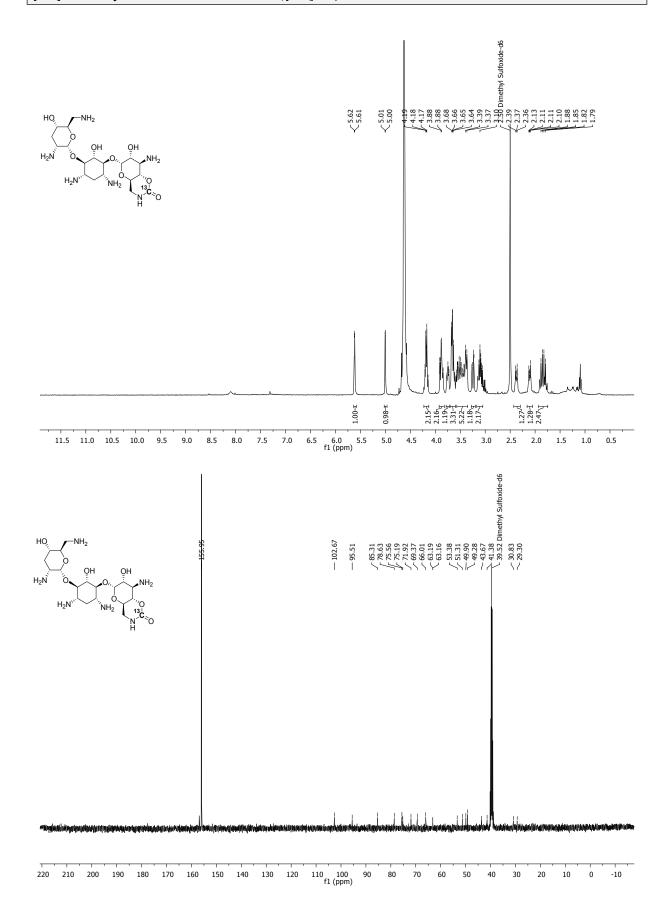


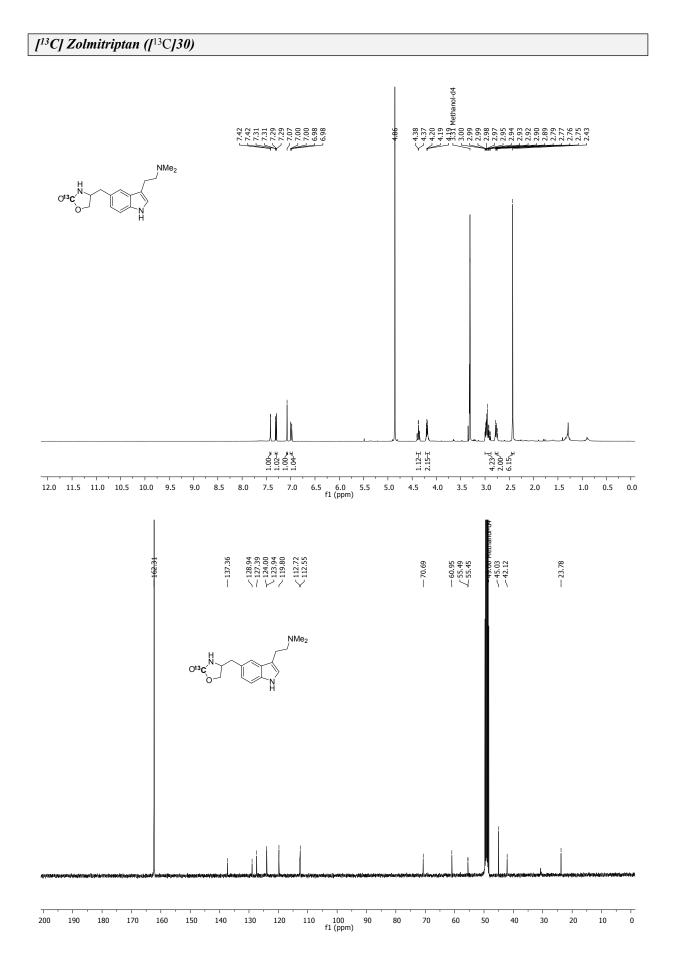


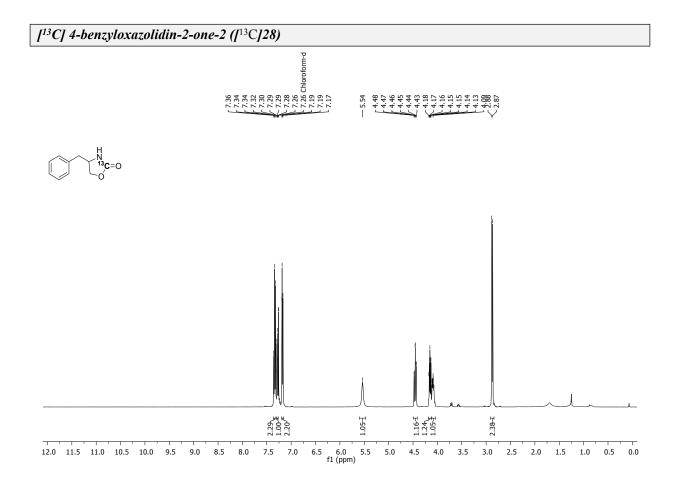


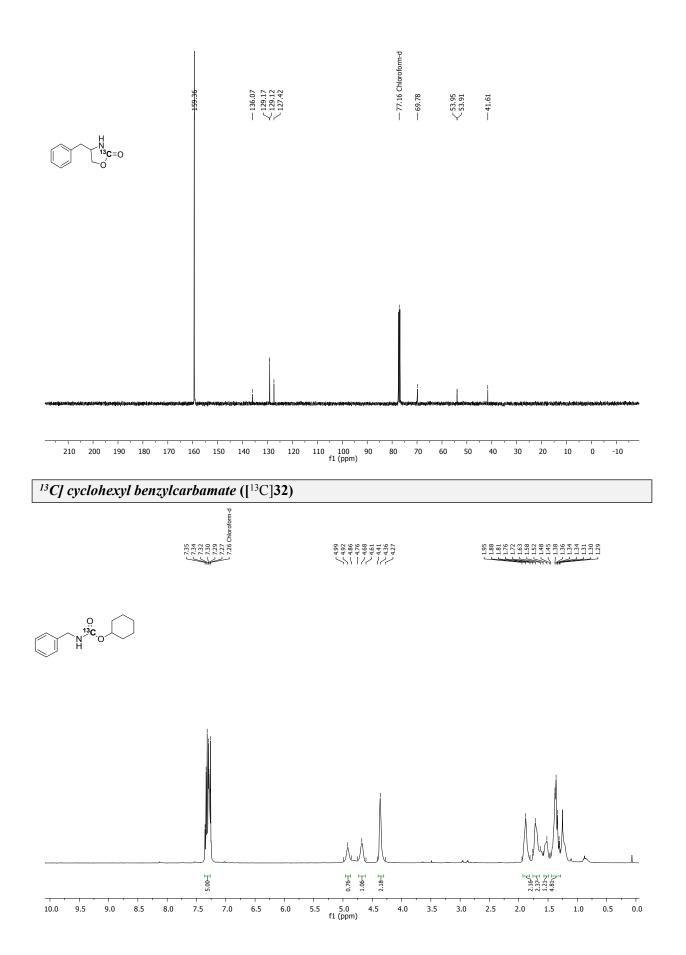

[¹³C]Chloroxazone ([¹³C]22)

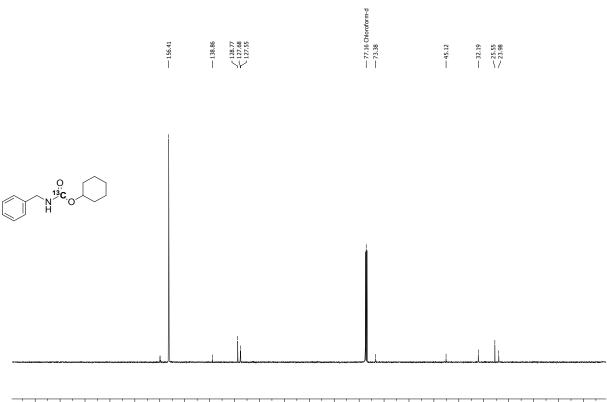


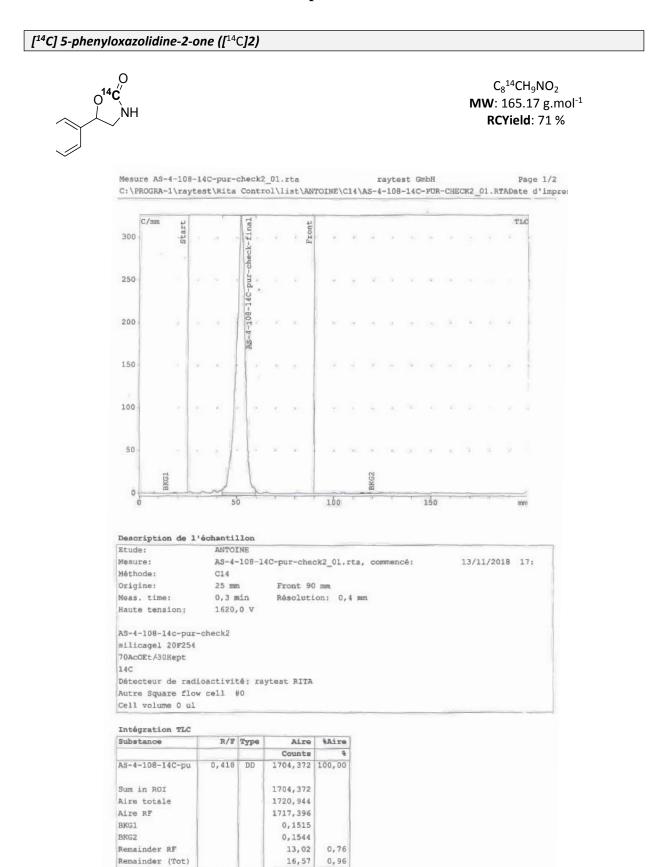

[¹³C]Metaxalone [¹³C]24

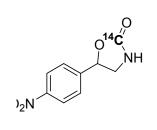






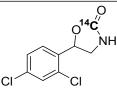

S161





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5. Radio-TLC of ¹⁴C-labeled compounds



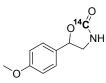
C₈¹⁴CH₈N₂O₄ MW: 210.17 g.mol⁻¹ Yield: 73 %

/PR	OGRA~1\	ray	cest	: \RIT	a co	ntr	01/1	ISC/	MINIC	DINE /	CT4 /	AD,-4-	-103	-140	-FOR	02.	KIND.	ale		16991
T.	1	-	_	-	10	_						-	_		-				TI	2
60	:/mm	Start	τ	a.	-109-14(1				¢	÷	Front	140	8	38	91	2			
40-			8	×.	18	3	*	18	$^{+}$		1			\mathcal{X}	×		18			-
20		-	×.	8	AS.	•		5	18	Ŕ.	*				ж		4			
200		- 1	a.	÷.,	1	.*		U	i a	¥)	1	*	×	2		•	1	2	10	-
80-				2	1	5	4	10	4	Ч.н. ж	÷.		*		08	3		•	+	1
.60		-	5		1	27		¥.	343	×	×			5	4	18	6		5	1
140-		•	5	3		2	•	×		8		-	2	1	ંગ	30	£.	0	85	
120		-			21	8		8	35	17	10	•	4	٠	*		¥.		×	
100					30	${\bf k}_{i}^{\prime}$		3		3	10	- 1		*	6			1		
80		•			-	۰.	17	e.	×	2	3		9		50	1		×.		ł
60-		-]	•		-		8	2	-	2	8	-	3		${\cal K}_{i}^{(i)}$	21		4		
40-		-		.1	-		*	4		×.			- 11		82	14.1	8			1
20-	BKG1			1	1									BKG2						
0	m	- h	7	4	50	-			-	100				m	150		-	-	-	in in its second s
ascr	iption	de	l'éc		TOINE															
esur						9-1-	4C-P	ur_0	2.rt	a, c	omme	ncé;		09/1	1/20	18	11:2	2		
étho				C14 25			The second	ront	105											
rigi	time:										4 -									
	number:			0,3 min Résolution: 0,4 mm 1,0 Position de scan: 215,0 mm																
rav					20,0	v					Juli									
'ray laute	tensio																			
laute	109-140																			
aute 8-4-	109-14C agel Me	rck	601																	
s-4-	109-140	rck	601																	
aute 8-4- ilic epta 4C	109-14C agel Me ne 10 A	COE	601 t 90	D				+ ==	10.0											
Aute A-4- Alic Ac AC Détec	109-14C agel Me	rck cOE	: 601 t 90	activ		ra	ytes	t RI	TA											

Substance	R/F	Type	Aire	%Aire
			Counts	8
AS-4-109-14C	0,245	DD	1408,933	100,00
Sum in ROI			1408,933	
Aire totale		1	1393,727	
Aire RF			1391,485	
BKG2		1 1	0,4132	
2 ROIS BKG			0,2273	
Remainder RF			-17,45	-1,25

[¹⁴C] 5-(2,4-dichlorophenyl)oxazolidin-2-one ([¹⁴C]6)

C₈¹⁴CH₇Cl₂NO₂ MW: 234.05 g.mol⁻¹ RCYield: 75 %


0-C/mm			Start			-final				Front							TI	LC.
10 -		7		28)	ė	NS4-162-14C-final	19	.*	4	y	1	12	(9)	5	ti.	10	-	
10 -	n	a.		2		A54-1	a	(*)	t.	1		10	+	e.	5	a		
10 -	21	1	2	55	ž	-	10	d.	τ.	19.	. A.	12	3	£.	<i>u</i>	32;		
10 -	20	14	с.	1.	2	-	A.	÷	1	1	÷	<i>k</i> i		Ŧ	e.			
10 -	Ţ.	a.	- 24	- (13)	÷		3		÷	3	÷	18	5	ĸ	ĸ			
10 -	*	4	a.	3	×	$\left \cdot \right $	ų	÷	ŧ.	-	×	- E:	a.	÷	e			
10 -												BKG2						

Description de l'échantillon

Etude:	ANTOINE			
Mesure:	AS4-162-14	C-final_01.rta, commencé:	19/04/2019	17:39
Méthode:	C14			
Origine:	50 mm.	Front 121 mm		
Meas. time:	0,1 min	Résolution: 0,4 mm		
Haute tension:	1620,0 V			
Détecteur de radi	oactivité: r	aytest RITA		
Autre Square flow	r cell #0			
Cell volume 0 ul				

Substance	R/F	Type	Aire	\$Aire
			Counts	8
AS4-162-14C-fin	0,423	DD	4020,000	100,00
Sum in ROI			4020,000	
Aire totale			4077,000	
Aire RF			4070,000	
2 ROIS BKG			0,0000	

[¹⁴C] 5-(4-methoxyphenyl)oxazolidin-2-one ([¹⁴C]8)

C₉¹⁴CH₁₁NO₃ MW: 195.19 g.mol⁻¹ RCYield: 55 %

Ó			1	50	2	1	Š.		100					150	h				mm
00	BKG1	1	1	6					-	BKGZ	_				_	_		_	
20-		1																	
40-	~			e					×.	4	×	2	ŝ,	×		3			4
60-	-		-	a	2	÷			2	a.	x	×	×	×	ġ.	4			1
80-		٠		ir.	×	÷	14	¢		A	n,			2	2	3			i.
00-		-	1	a.	2	29			G.	10	ĸ	8	8		2	10			
20			AS4	*1		4		24		÷			8		÷		4	*	
4 D	-		4-112-1		×	×.		98			÷	÷	14	×	×			*	
60-	star Star Star		4C-purif	64	8	£	Front	à		à	÷	•				÷	2		LC

Etude:	ANTOINE				
Mesure:	AS-4-112=1	4C-purif-tubes2-10_03.r	ta, commencé:	22/11/2018	16:
Méthode:	C14				
Origine:	25 mm	Front 82 mm			
Meas. time:	0,1 min	Résolution: 0,4 mm			
Tray number:	2,0	Position de scan:	220,0 mm		
Haute tension;	1620,0 V				
AS-4-112-14C-puri	f-tube2-10 s	ilicagel merck 60F254	7/3 AE/Hept		
Détecteur de radi	oactivité: ra	ytest RITA			
Autre Square flow	cell #0				
Cell volume 0 ul					

Substance	R/F	Type	Aire	%Aire
			Counts	8
AS4-112-14C-pur	0,263	DD	10955,19	100,00
Sum in ROI			10955,19	
Aire totale			11069,99	
Aire RF		1 1	11002,10	
BKG1		1 1	1,469	
BKG2			0,273	
Remainder RF			46,91	0,43
Remainder (Tot)		1 1	114,80	1,04

[¹⁴C] Chloroxazone ([¹⁴C]22)

C₆¹⁴CH₄ClNO₂ MW: 171.56 g.mol⁻¹ Radioactive Yield: 39 %

C/mm	8	1	Start		C-final		0		Front	ii.	8	242		3	25	т	LC
0	1		1		166-14C		З.	7		2	2	13					
0 -				э. А	A54-1							8					
0 +	3	*		-	-		÷	1K.			a.						÷
D -			12	8953 1		9				-		1	<i>ii</i>				
D		÷		×	*		91						10				
0					£.							i.	120	14			
0		BKG1									BKC3						

Description de l'échantillon

Etude:	ANTOINE					
Mesure:	AS4-166-14	C-tlc final_02.rta, comm	encé:	04/06/2019	17:	
Méthode:	C14					
Origine:	47 mm	Front 116 mm				
Meas. time:	0,1 min	Résolution: 0,4 mm				
Tray number:	1,0	Position de scan:	215,0 mm			
Haute tension:	1620,0 V					
Détecteur de radi	oactivité: ra	ytest RITA				
Autre Square flow	cell #0					
Cell volume 0 ul						

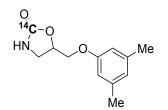
Substance	R/F	Type	Aire	%Aire
-		1	Counts	8
AS4-166-14C-fin	0,261	DD	1422,233	100,00
Sum in ROI			1422,233	
Aire totale			1455,938	
Aire RF		1 1	1448,063	
BKG2			0,1705	
2 ROIS BKG			0,0974	1
Remainder RF		1 1	25,83	1,78
Remainder (Tot)		1	33,70	2,31

[¹⁴C] Caroxazone precursor ([¹⁴C]23)

`NΗ 0¹⁴℃́<0

C₇¹⁴CH₇NO₂ MW: 151.14 g.mol⁻¹ RCYield: 30 %

Mesure AS4-189-14C-final_01.rta raytest GmbH C:\PROGRA~1\raytest\Rita Control\list\ANTOINE\C14\AS4-189-14C-FINAL_01


0	C/mm	Start			inal				Front										TLO
0		ŝ			91 4C-f				£	3		4				*			<u>a</u> - 1
50 -		the second second			AS4-18914C-final	1		020	N.			4		90					
00			×	-6	-	×.	đ	×.	R.	u.	×.	×		×	35	ē.	14		8
0					1			8			9	8	92 C	ő	2			×.	
0				-		4	×	9		n.	9	10	8	Ξ.	2	al.			
0				÷	-	8	*	U.	A CONTRACTOR	5		×	×	×	ж		98		
0			58		1	ά.	•		1		10	8			a.		28		
0				1															
0	BKC1			1	J			_		00- BKG2								(paralitation)	

Description de l'échantillon

Etude:	ANTOINE			
Mesure:	AS4-189-14	C-final_01.rta, commencé:	19/07/2019	15:08
Méthode:	C14			
Origine:	20 mm	Front 89 mm		
Meas. time:	0,1 min	Résolution: 0,4 mm		
Haute tension:	1620,0 V			
Détecteur de radio	oactivité: ra	ytest RITA		
Autre Square flow	cell #0			
Cell volume 0 ul				

Substance	R/F	Type	Aire	*Aire
			Counts	-
A84-18914C-fina	0,383	DD	2370,244	100,00
Sum in ROI			2370,244	
Aire totale			2411,125	
Aire RF		1 1	2397,000	
BKG1			0,1705	
2 ROIS BKG			0,0974	
Remainder RF			26,76	1,12
Remainder (Tot)			40,88	1,70

[¹⁴C] Metaxalone ([¹⁴C]24)

C₁₁¹⁴CH₁₅NO₃ MW: 223.25 g.mol⁻¹ Radioactive Yield: 59 %

00	5		:47	Start		1	NAL tic	e	37	ā.	10	Front	4	υ	14			Т	rc
50	2	2	1		4	1	14C-FINAL	•	- i i i	×	+1	9	i#	e.	9	π	1	9	
00		15			÷	-	54-164-	Π.	5	2	2	(7)	3	и			5		al or an
50-	14	з	81				1	4	R	a.	÷.	¥.	4	*	(4) (4)		۲		1
00		14			1 A		1.00	÷	¥.	а.	×	я.		÷	ť.	Ŧ	φ	1	
50-			٠		л		4	e.	2		20	2	a.	2		a.	+	81	
.00-	5	, i		ALC: NO	а	.	1	5	×.	14	×	÷	8	×	*	đ	(*	7.	
50-							1								14				

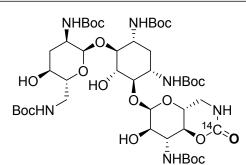
Description de l'échantillon

Etude:	ANTOINE			
Mesure:	AS4-164-14	C-FINAL 02.rta, commencé:	03/05/2019	16:06
Méthode:	C14			
Origine:	50 mm	Front 136 mm		
Meas. time:	0,1 min	Résolution: 0,4 mm		
Tray number:	1,0	Position de scan:	215,0 mm	
Haute tension;	1620,0 V			
Invalid parameter	:8.			
Détecteur de radi	oactivité: ra	ytest RITA		
Autre Square flow	v cell ‡0			
Cell volume 0 ul				

Substance	R/F	Type	Aire	*Aire
			Counts	8
AS4-164-14C-FIN	0,260	DD	3748,832	100,00
Sum in ROI			3748,832	
Aire totale			3799,004	
Aire RF			3798,140	
BKG1			0,3519	
BKG2			0,0957	
Remainder RF			49,31	1,30
Remainder (Tot)			50,17	1,32

HN 14**C** Ω

C₁₄¹⁴CH₂₀N₂O₂ MW: 262.33 g.mol⁻¹ RCYield: 45 %


Page 1/1 raytest GmbH Mesure AS4-173-14C-tlc final_01.rta C:\PROGRA-1\raytest\Rita Control\list\ANTOINE\Cl4\AS4-173-14C-TLC FINAL_01.RTADate d'impression TLC 500 C/mm Start AS4-173-14C-final Front 450 400 350 300 250 200-150 100 50 BKG2 BKG1 Ō 100 150 50 mo á

Description de l'échantillon

AS4-173-14	C-tlc final_01.rta, commencé:	04/06/2019	16;	
C14				
47 mm	Front 126 mm			
0,1 min	Résolution: 0,4 mm			
1620,0 V				
ctivité: ra	ytest RITA			
ell #0				
	Cl4 47 mm 0,1 min 1620,0 V ctivité: ra	47 mm Front 126 mm 0,1 min Résolution: 0,4 mm 1620,0 V ctivité: raytest RITA	Cl4 47 mm Front 126 mm 0,1 min Résolution: 0,4 mm 1620,0 V ctivité: raytest RITA	Cl4 47 mm Front 126 mm 0,1 min Résolution: 0,4 mm 1620,0 V ctivité: raytest RITA

Substance	R/F	Type	Aire	*Aire
			Counts	8
AS4-173-14C-fin	0,227	DD	2719,569	100,00
Sum in ROI			2719,569	
Aire totale		1	2771,552	
Aire RF		1	2755,000	
BKG1			0,3762	
2 ROIS BKG			0,2098	
Remainder RF			35,43	1,29
Remainder (Tot)			51,98	1,88

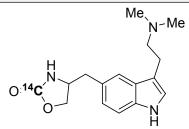
[¹⁴C] Tobramycine derivative ([¹⁴C]26)

 $\begin{array}{c} C_{43}{}^{14}CH_{76}N_6O_{19} \\ \textbf{MW: } 995.11 \ g.mol^{-1} \\ \textbf{Radioactive Yield: } 35 \ \% \end{array}$

Mesure AS4-188-14C-final_01.rta raytest GmbH Page 1/1 C:\PROGRA-1\raytest\Rita Control\list\ANTOINE\C14\AS4-188-14C-FINAL_01.RTADate d'impression : 1!

C/mm	۲t	1	1	TBL				ut											T	LC
0	Start		10 01	-188-14C-TINAL	1	27		Front	15	38	ĸ	2	7	τ	14	4	14		*	-
0			- UV	-221-	×	к	38	3		38	5	27	ίř.	91	(c		r	11	×	
				ASA																
10	1			-	2	1		8	1	141	×				1	- 4	7	÷:		
0				14		i.	×.					X	R	×	×		2			
i0 -				*	•	12		- 17	4	Υ.	8	а	×	н	2	ŝ,	34		i.	
0						-46	9	×	10	285	25	2	8	÷	4	÷.	÷		*	
50			-			2	.7	¥	£.	÷	*	e	a.	ý.	e.	,				
0		1		1						BKG2				~						mm

Description de l'échantillon

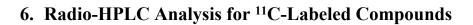

AS4-188-14	C-final 01.rta,			
		commence:	15/07/2019	16:00
C14				
20 mm	Front 85 mm			
0,1 min	Résolution:	0,4 mm		
1620,0 V				
ctivité: ra	ytest RITA			
ell #0				
	20 mm 0,1 min 1620,0 V	20 mm Front 85 mm 0,1 min Résolution: 1620,0 V activité: raytest RITA	20 mm Front 85 mm 0,1 min Résolution: 0,4 mm 1620,0 V activité: raytest RITA	20 mm Front 85 mm 0,1 min Résolution: 0,4 mm 1620,0 V activité: raytest RITA

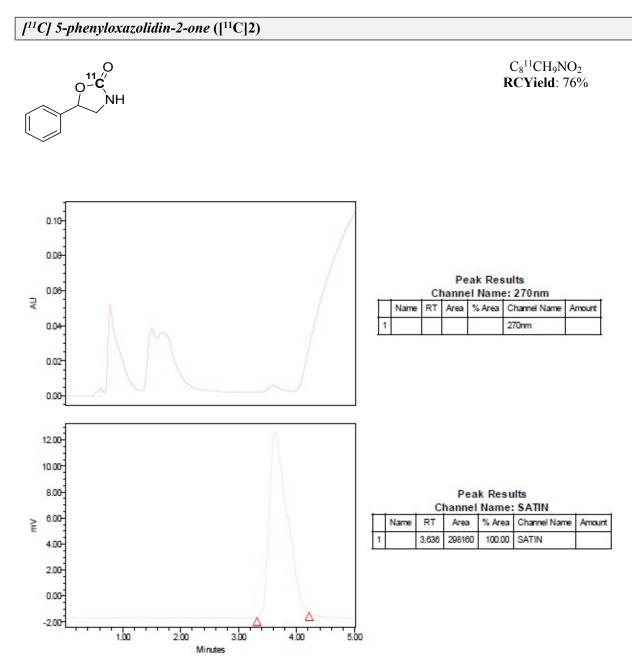
Intégration TLC

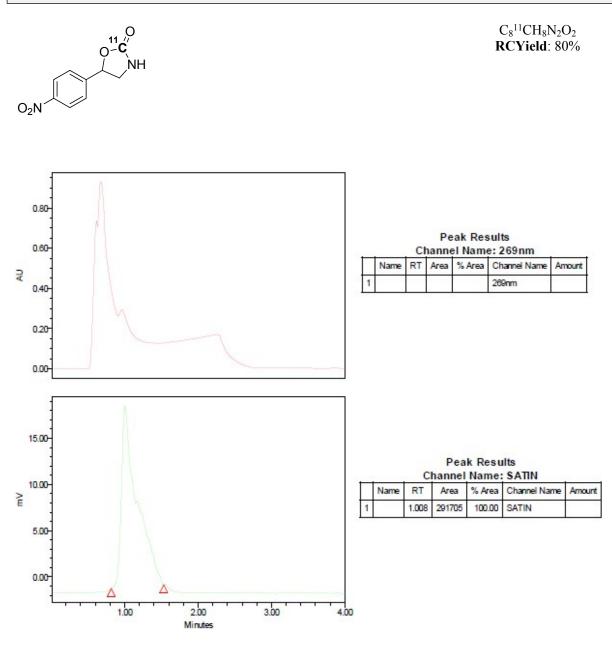
Substance	R/F	Type	Aire	%Aire
			Counts	÷
AS4-188-14C-fin	0,215	DD	2264,585	100,00
Sum in ROI			2264,585	
Aire totale		1 1	2299,288	
Aire RF			2286,882	
BKG1			0,6061	
BKG2			0,1604	
Remainder RF		1 1	22,30	0,98
Remainder (Tot)		1	34,70	1,51

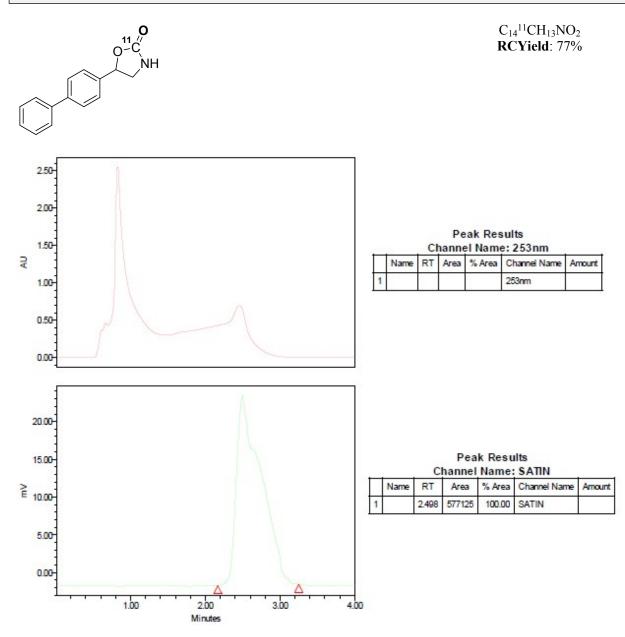
S175

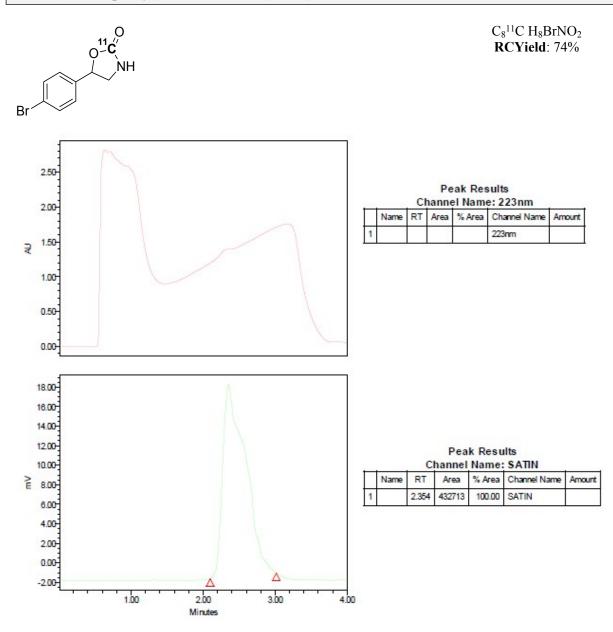
[¹⁴C] Zolmitriptan ([¹⁴C]30)

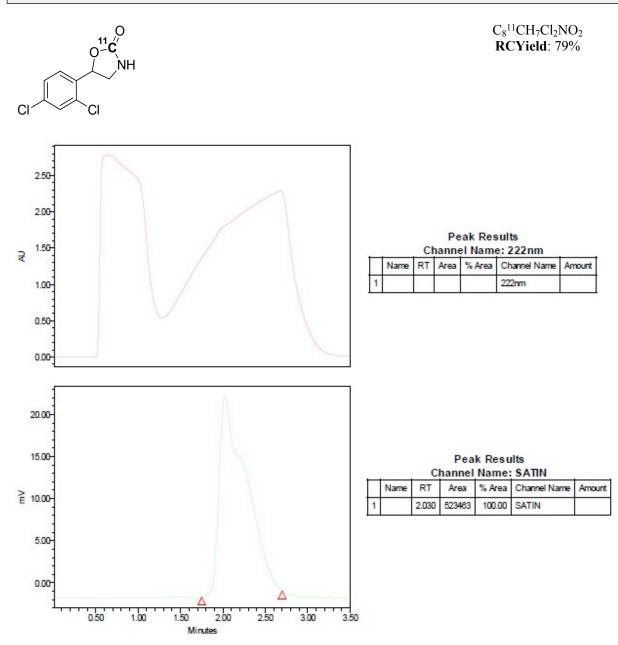

C₁₅¹⁴CH₂₁N₃O₂ MW: 289.16 g.mol⁻¹ RCYield: 8.3 %

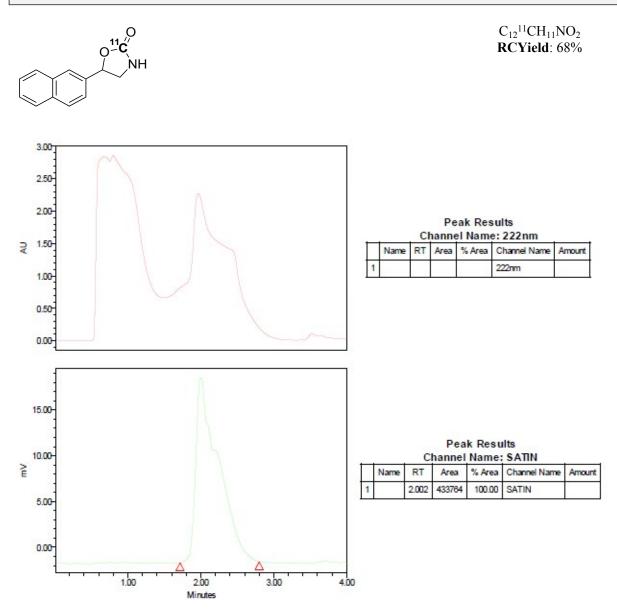

Mesure as4-193-14c-FINAL_01.rta raytest GmbH Page 1/1 C:\PROGRA~1\raytest\Rita Control\list\ANTOINE\Cl4\AS4-193-14C-FINAL_01.RTADate d'impression : 0

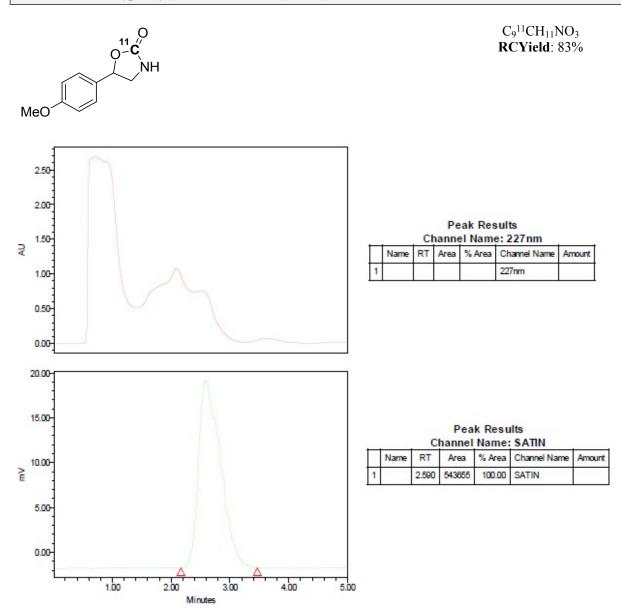

0	0		- C	-y	s'o	1		1	in line	100		1	- and and		150		1	1	570
	RKG1		5		[]	V					BKG2								
50			-		1		8	8	a.]		R.	28	\sim		19				
00						a.		r,	-	2	ī.'	F	ą.		4				
50						12		Ŕ	2	2	127			3	а.		19		•
00		I		•			80	30	э.	æ	5	5	v	2	÷	٠	۰.	÷	
50				5			i.	2	10	-	8	ŝ		34		75 8 -	390		
0.					aS 4-19	-	e.	a		121		ÿ.	59	Ψ (T	10 41		ü.	•	я
0		Contraction of the local distribution of the			aS 4-193-1 4c-FINAL	÷	ł.		ę.	2		${\rm P}^{\rm c}$	100	$\{0, j\}$			÷	2.002	
	C/mm	Start			-FINAL	A. Second			Front										TLĆ

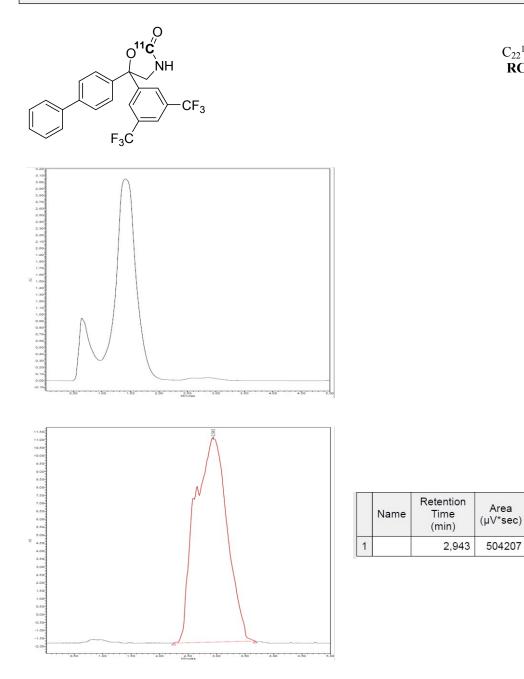

Etude:	ANTOINE					
Mesure:	as4-193-14	c-FINAL_01.rta	commencé:	01/08/2019	18:25	
Méthode:	C14					
Origine:	20 mm	Front 95 mm				
Meas. time:	0,2 min	Résolution:	0,4 mm			
Haute tension:	1620,0 V					
Détecteur de radi	oactivité: ra	ytest RITA				
Autre Square flow	cell #0					
Cell volume 0 ul						

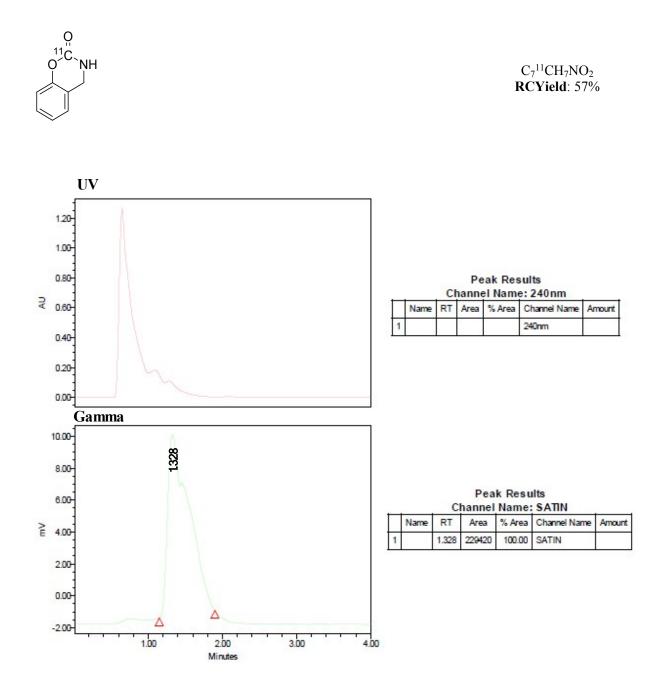

Substance	R/F	Type	Aire	*Aire
And the second se			Counts	8
aS4-193-14c-FIN	0,407	DD	1615,584	100,00
Sum in ROI			1615,584	
Aire totale		1 }	1687,600	
Aire RF			1687,714	
BKG1			0,5455	
BKG2			0,3896	
Remainder RF			72,13	4,27
Remainder (Tot)		1	72,02	4,27

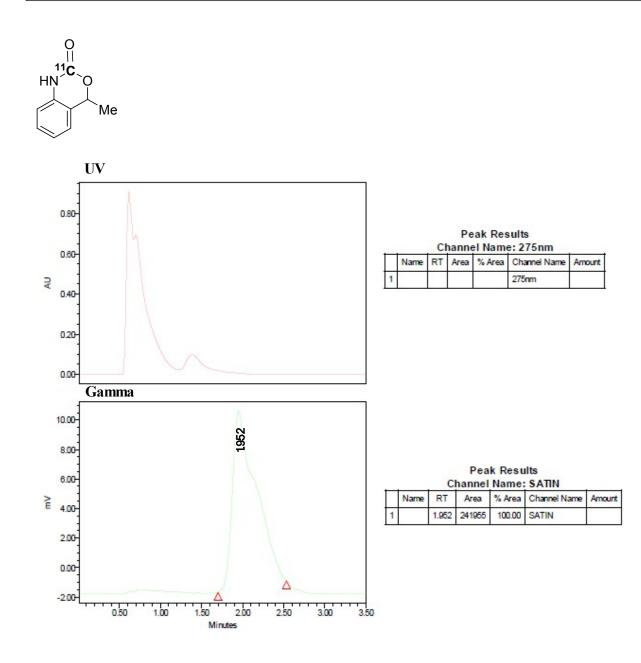


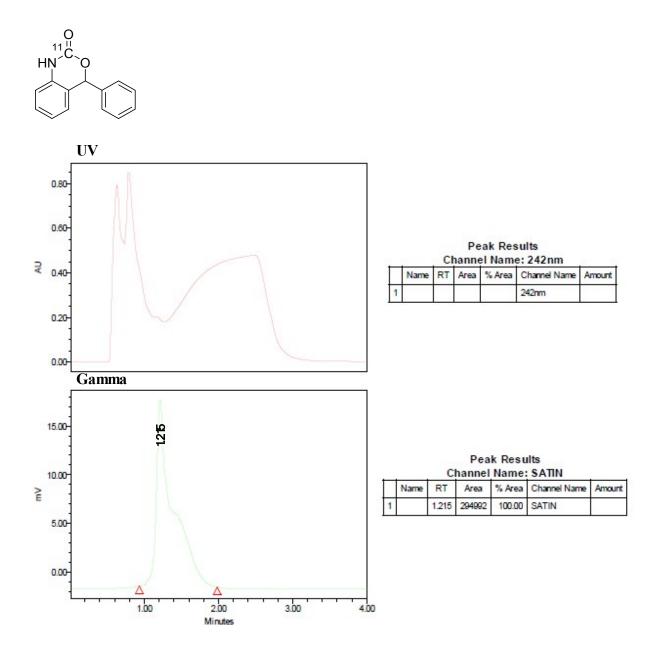


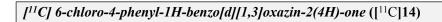


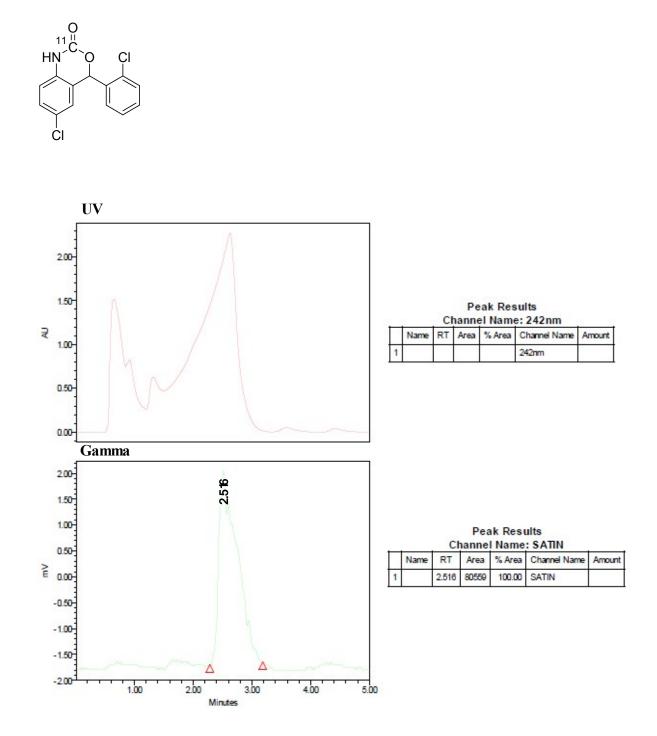


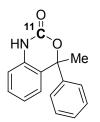

 $\begin{array}{c} C_{22}{}^{11}CH_{15}F_6NO_2 \\ \textbf{RCYield: 82\%} \end{array}$

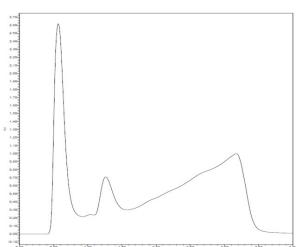

Height (µV)


12839

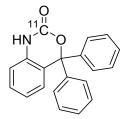

% Area


100,00

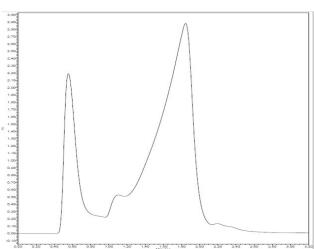




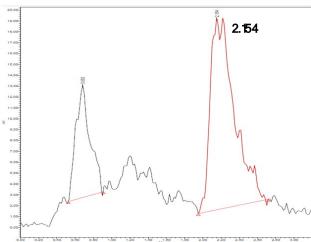

[¹¹C] 4-methyl-4-phenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]15)

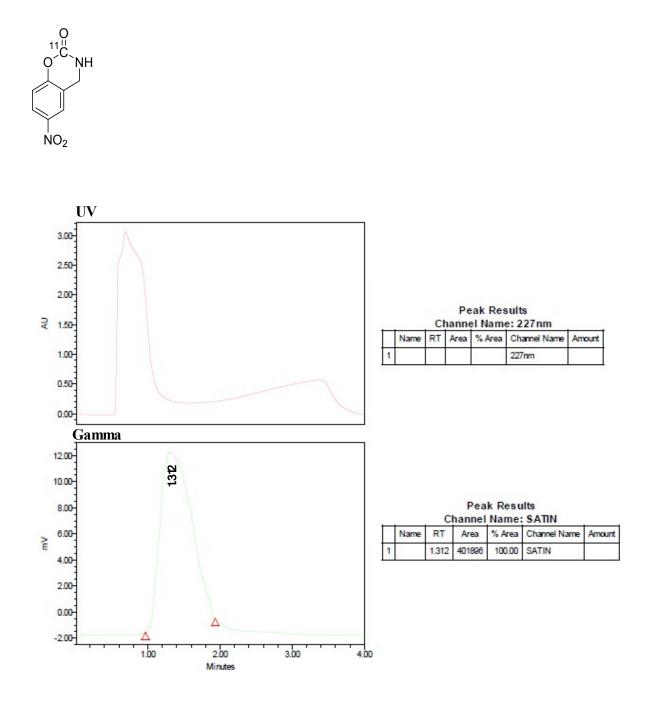


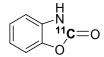
Gamma

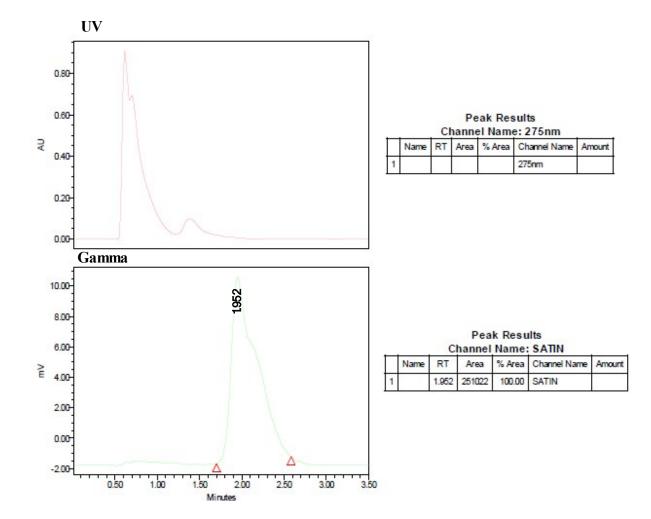


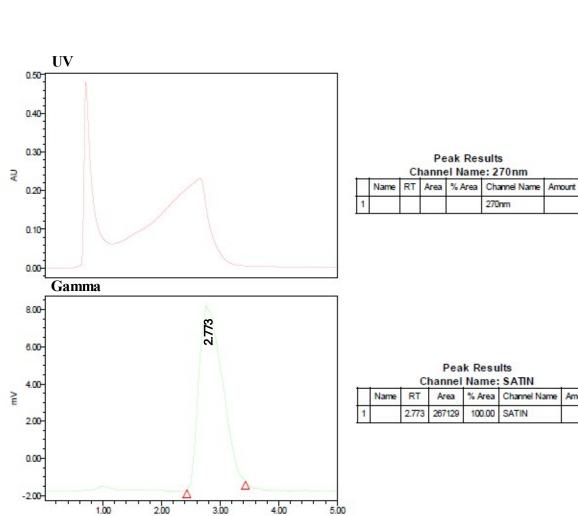
	Name	Retention Time (min)	Area (µV*sec)	% Area	Height (µV)
1		1,946	236655	24,89	8083
2		2,661	714282	7 <mark>5,1</mark> 1	30354


[¹¹C] 4,4-diphenyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one ([¹¹C]16)

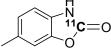


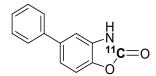


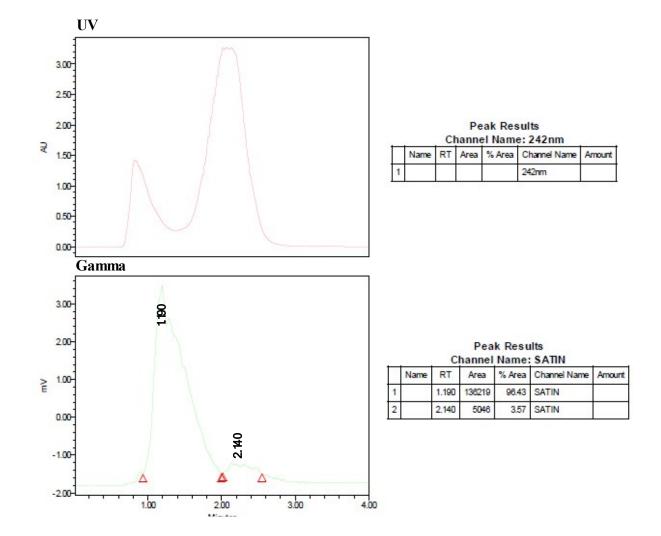

Gamma

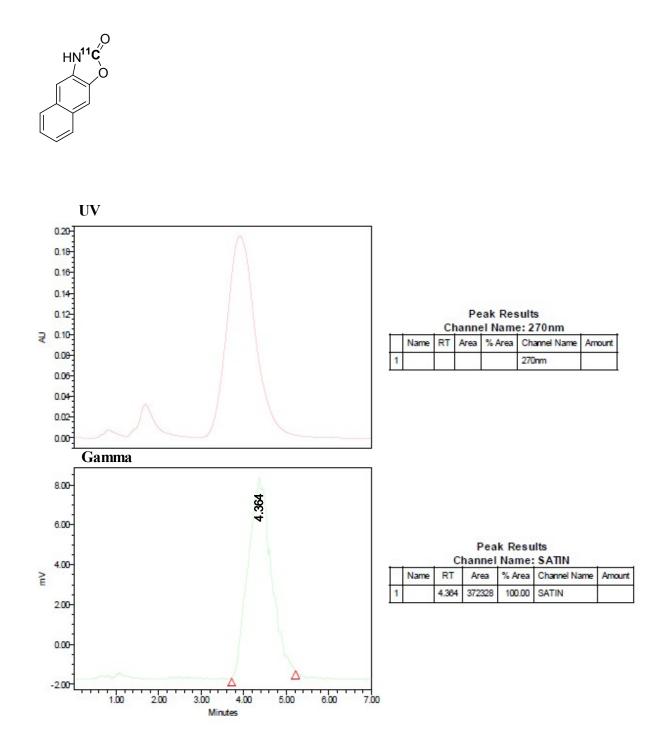


	Name	Retention Time (min)	Area (µV*sec)	% Area	Height (µV)
1		0,682	113304	25,28	10213
2		2,154	334813	74,72	17696

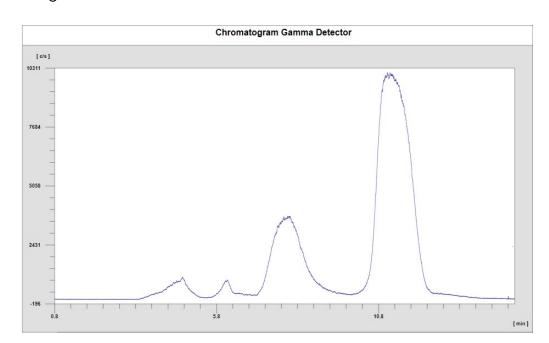


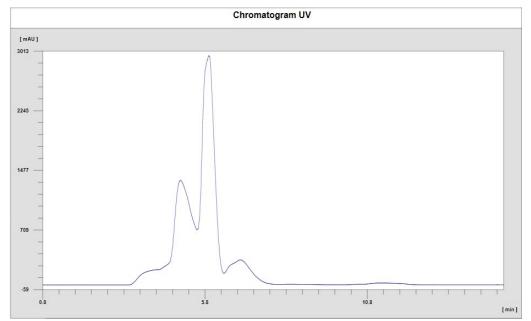


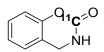



Minutes

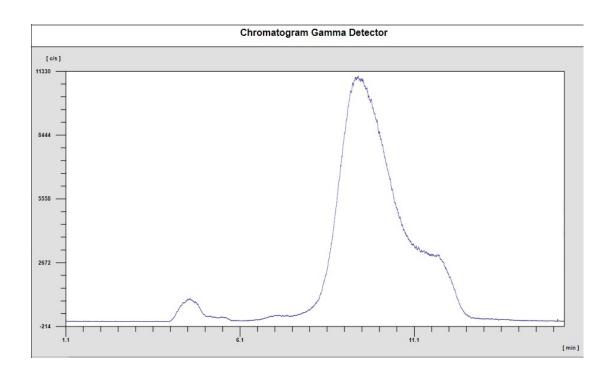
Amount

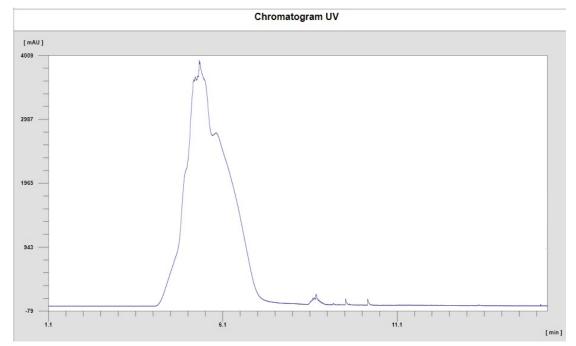


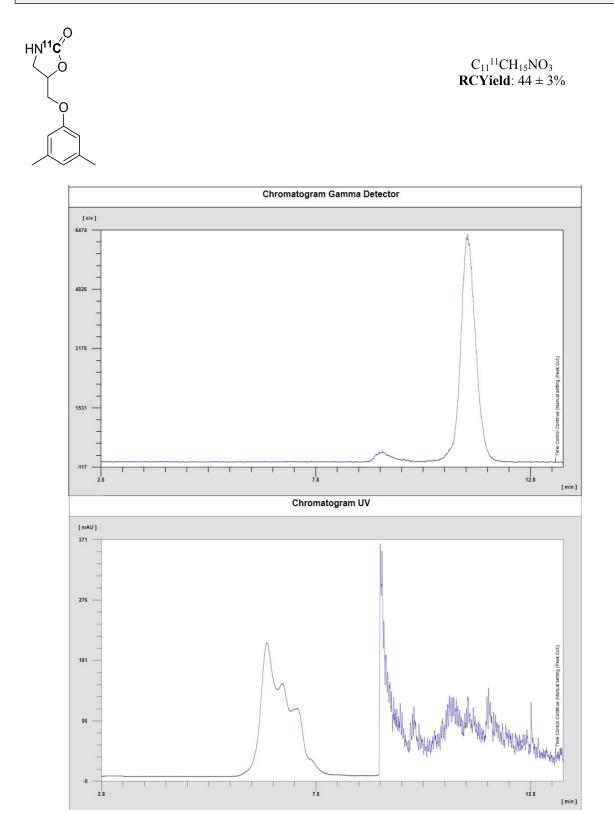


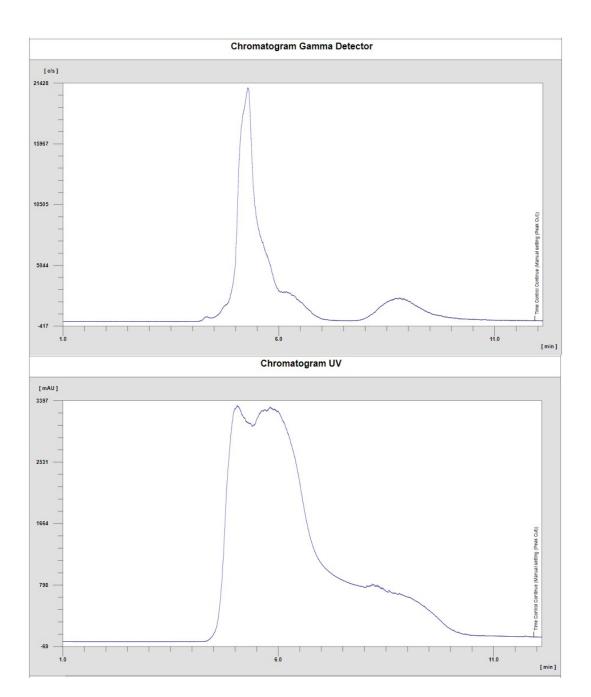

[¹¹C]Chloroxazone ([¹¹C]22)

$$C_6^{11}CH_4CINO_2$$
RCYield: 37 ± 2%

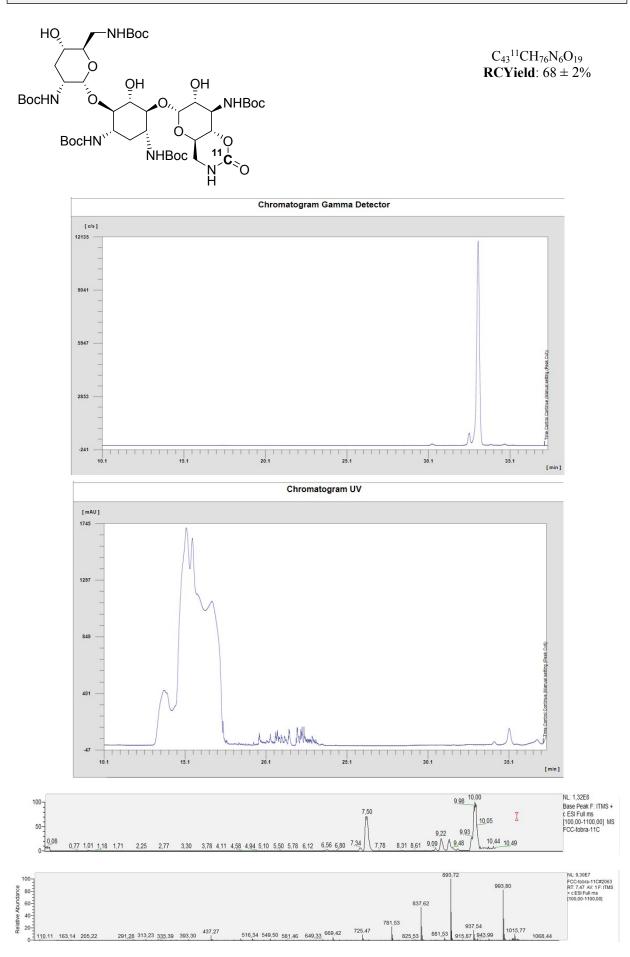


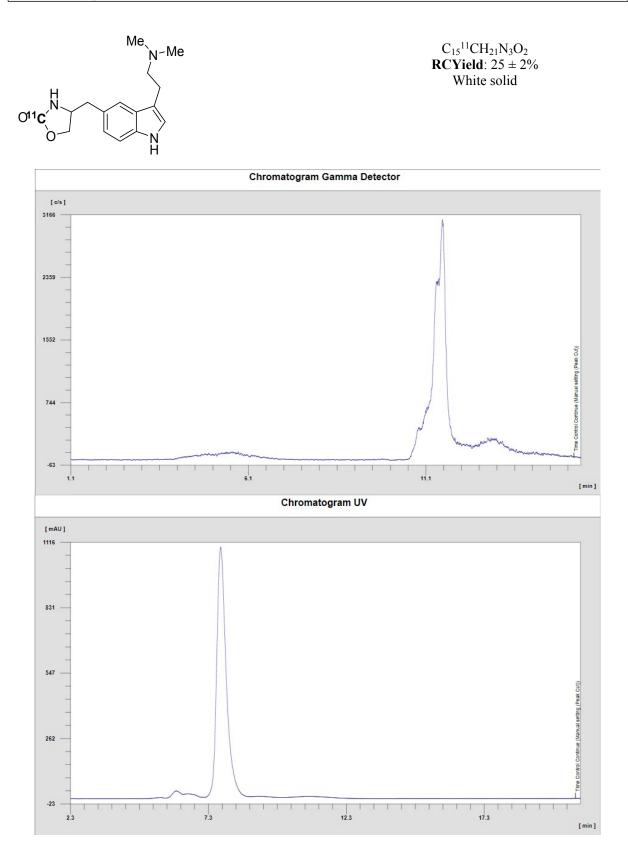



[¹¹C] Caroxazone precursor ([¹¹C]23)



 $\begin{array}{c} C_7{}^{11}CH_7NO_2 \\ \textbf{RCYield:} \ 25 \pm 5\% \end{array}$





 $\begin{array}{c} C_{14}{}^{11}CH_{20}N_2O_2 \\ \textbf{RCYield:} \ 23 \pm 3\% \end{array}$

