Cu-catalyzed Highly Regioselective 1,2-Hydrocarboxylation of

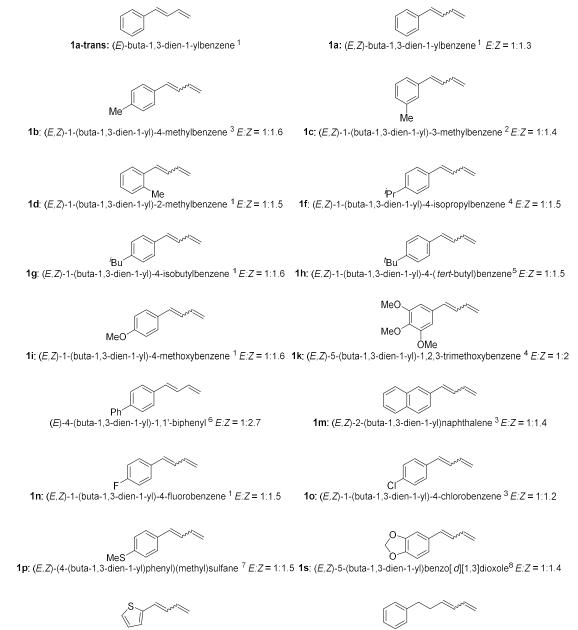
1,3-Dienes with CO₂

Penglin Zhang, ^a Zhanglang Zhou, ^a Rumeng Zhang, ^a Qian Zhao ^a and Chun Zhang * ^{a, b}

- a. Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Weijin Rd. 92, Tianjin300072, China
- b. State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin300071, China

E-mail: chunzhang@tju.edu.cn

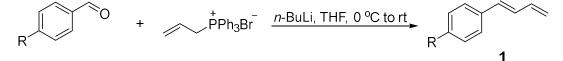
Supporting Information

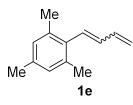

1.	General Information	S2
2.	Synthesis of substrates	S3
3.	The effect of different reaction conditions	S7
4.	General procedure for the reaction	S11
5.	Control experiments	S13
6.	Analytical data for compounds	S15
7.	Further transformation of product	S23
8.	References	S24
9.	NMR Spectra of Products	S25

1. General Considerations

All manipulations were conducted with Schlenk tube. ¹H NMR spectra were recorded on a Bruker AVIII-400 spectrometers. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) or $\delta = 7.26$ ppm in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were obtained by the same NMR and CF₃COOH was employed as external standard for the ¹⁹F-NMR measurement. ¹¹B NMR spectra were obtained by the same NMR and B(OMe)₃ was employed as external standard for the ¹¹B NMR measurement. High resolution mass spectrometry (HRMS) data were obtained on a QTOF mass analyzer with electrospray ionization (ESI) through a Bruker Daltonicmior OTOF-QII. Substrates were purchased from Aldrich, TCI, Acros, Energy, Aladdin, or synthesized according to the procedures outlined below. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Synthesis of Diene Substrates

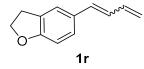

These substrates were prepared according to the corresponding literature reports. Analytical data (1 H NMR, 13 C NMR) matches with the literature.

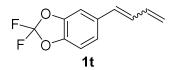

1u: (*E*,*Z*)-2-(buta-1,3-dien-1-yl)thiophene ⁶ *E*:*Z* = 1:1

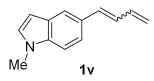
1w: (*E*,*Z*)-hexa-3,5-dien-1-ylbenzene⁹ *E*:*Z* = 1.2:1

Representative procedure for preparing 1,3-dienes via Wittig olefination


A suspension of allyltriphenylphosphonium bromide (3.1 g, 8.1 mmol) in dry THF (30 ml) under inert atmosphere was cooled at 0 °C with an ice bath. Then *n*-BuLi (3.2 ml, 2.5 M in n-hexane, 8.1 mmol) was added dropwise. After stirring for 30 min, corresponding aldehyde (5.4 mmol) (dissolved in THF (20 ml)) was added dropwise and the reaction mixture was warmed to room temperature for an additional hour. Then the reaction mixture was quenched with sat. NH₄Cl aq. (20 mL) and extracted with EtOAc (20 mL \times 3). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography to give the 1,3-dienes **1**.


(*E*,*Z*)-2-(buta-1,3-dien-1-yl)-1,3,5-trimethylbenzene (1e). The general procedure was followed using 2,4,6-trimethylbenzaldehyde (799 mg, 5.4 mmol), afforded product 1e (698 mg, 75% yield) as mixture of isomers (*E*:*Z* = 1:1). colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ : 6.89 (s, 2H), 6.62-6.51 (m, 1H), 6.39-6.26 (m, 1.52H), 6.17-6.10 (m, 0.49H), 5.31-5.24 (m, 1H), 5.16 (d, *J* = 10.4 Hz, 0.53H), 5.09 (d, *J* = 10.4 Hz, 0.50H), 2.32-2.29 (m, 6H), 2.19 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.7, 136.3, 136.0, 134.7, 133.9, 133.5, 133.3, 131.6, 131.0, 129.8, 128.7, 127.9, 118.0, 116.6, 21.0, 20.96, 20.92, 20.4 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₇ (M + H)⁺: 173.1330, found 173.1336.


(*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-phenoxybenzene (1j). The general procedure was followed using 4-phenoxybenzaldehyde (1.07 g, 5.4 mmol), afforded product 1j (960 mg, 80% yield) as mixture of isomers (*E*:*Z* = 1:2.8). colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ : 7.41-7.31 (m, 4H), 7.16-7.12 (m, 0.87H), 7.08-6.88 (m, 5.29H), 6.77-6.71 (m, 0.26H), 6.58-6.43 (m, 1H), 6.26 (t, *J* = 11.4 Hz, 0.7H), 5.43-5.32 (m, 1H), 5.26 (d, *J* = 10.0 Hz, 0.71H), 5.18 (d, *J* = 10.0 Hz, 0.25H); ¹³C NMR (CDCl₃, 100 MHz) δ : 157.0, 156.3, 137.2, 133.1, 132.4, 132.3, 132.0, 130.4, 130.2, 129.8, 129.6, 128.8, 128.1, 127.8, 123.4, 119.5, 119.0, 118.9, 118.7, 118.5, 117.2 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₁₅O (M + H)⁺: 223.1123, found 223.1131.


(*E*,*Z*)-2-(4-(buta-1,3-dien-1-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1q). The general procedure was followed using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -benzaldehyde (1.25 g, 5.4 mmol), afforded product 1q (954 mg, 69% yield) as mixture of isomers (*E*:*Z* = 1:2). light yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ: 7.80-7.75 (m, 2H), 7.41 (d, *J* = 8.0 Hz, 0.65H), 7.33 (d, *J* = 8.0 Hz, 1.36H), 6.95-6.83 (m, 1H), 6.59-6.46 (m, 1.32H), 6.29 (t, *J* = 11.4 Hz, 0.67H), 5.42-5.34 (m, 1H), 5.24 (d, *J* = 10.4 Hz, 0.66H), 5.20 (d, *J* = 10.4 Hz, 0.33H), 1.35 (s, 12H); ¹³C NMR (CDCl₃, 100 MHz) δ: 140.1, 139.8, 137.1, 135.0, 134.6, 133.1, 132.8, 131.4, 130.5, 130.3, 128.3, 125.7, 120.0, 118.2, 83.76, 83.74, 24.8; ¹¹B NMR (CDCl₃, 128 MHz) δ: 31.03 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₂BO₂ (M + H)⁺: 257.1716, found 257.1720.

(*E*,*Z*)-5-(buta-1,3-dien-1-yl)-2,3-dihydrobenzofuran (1r). The general procedure was followed using 2,3-dihydrobenzofuran-5-carbaldehyde (799 mg, 5.4 mmol), afforded product 1r (707 mg, 76% yield) as mixture of isomers (*E*:*Z* = 1:1.8). colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ : 7.30 (s, 0.35H), 7.19 (s, 0.61H), 7.17-7.08 (m, 1H), 6.95-6.85 (m, 0.67H), 6.78-6.62 (m, 1.41H), 6.53-6.38 (m, 1.36H), 6.17 (t, *J* = 11.2 Hz, 0.60H), 5.37-5.33 (m, 0.65H), 5.29-5.25 (m, 0.37H), 5.22-5.09 (m, 1H), 4.61-4.56 (m, 2H), 3.24-3.18 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 160.0, 159.3, 137.4, 133.4, 132.8, 130.4, 130.0, 129.2, 128.9, 127.04, 127.01, 125.5, 122.6, 118.7, 116.1, 109.3, 109.0, 71.42, 71.36, 29.6, 29.5 ppm; HRMS (ESI-TOF) *m*/*z* calcd for C₁₂H₁₃O (M + H)⁺: 173.0966, found 173.0977.

(*E*,*Z*)-5-(buta-1,3-dien-1-yl)-2,2-difluorobenzo[*d*][1,3]dioxole (1t). The general procedure was followed using 2,2-difluorobenzo[*d*][1,3]dioxole-5-carbaldehyde (1.00 g, 5.4 mmol), afforded product 1t (703 mg, 62% yield) as mixture of isomers (*E*:*Z* = 1:1.2). colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ: 7.14 (d, *J* = 1.6 Hz, 0.44H), 7.07-6.98 (m, 2.52H), 6.84-6.66 (m, 1H), 6.53-6.37 (m, 1.47H), 6.27 (t, *J* = 11.2 Hz, 0.53H), 5.44-5.34 (m, 1H), 5.28 (d, *J* = 10.0 Hz, 0.53H), 5.22 (d, *J* = 10.0 Hz, 0.45H); ¹³C NMR (CDCl₃, 100 MHz) δ: 144.3, 143.8, 143.1, 142.6, 136.6, 133.8, 133.5, 132.4, 131.3, 130.0, 128.8, 124.5, 122.5, 120.6, 118.4, 109.9, 109.4, 109.1, 106.5 ppm; ¹⁹F NMR (CDCl₃, 376 MHz) δ: -50.10, -50.21; HRMS (ESI-TOF) *m/z* calcd for $C_{11}H_9F_2O_2$ (M + H)⁺: 211.0571, found 211.0573.

(*E*,*Z*)-5-(buta-1,3-dien-1-yl)-1-methyl-1H-indole (1v). The general procedure was followed using 1-methyl-1H-indole-5-carbaldehyde (859mg, 5.4 mmol), afforded product 1v (712 mg, 72% yield) as mixture of isomers (*E*:*Z* = 1:1.6). light yellow solid. ¹H NMR (CDCl₃, 400 MHz) δ : 7.62-7.60 (m, 1H), 7.37-7.20 (m, 2H), 7.05-6.96 (m, 1.59H), 6.81-6.45 (m, 2.72H), 6.25-6.19 (m, 0.59H), 5.37-5.26 (m, 1H), 5.18 (d, *J* = 10.0 Hz, 0.61H), 5.09 (d, *J* = 10.0 Hz, 0.37H), 3.78 (s, 1.81H), 3.76 (s, 1.11H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.7, 135.9, 134.4, 133.9, 131.8, 129.4, 129.3, 128.73, 128.69, 128.4, 126.9, 123.2, 121.4, 120.1, 119.6, 118.3, 115.6, 109.4, 108.9, 101.3, 101.2, 32.9 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₄N (M + H)⁺: 184.1126, found 184.1135.

3. The effect of different reaction conditions

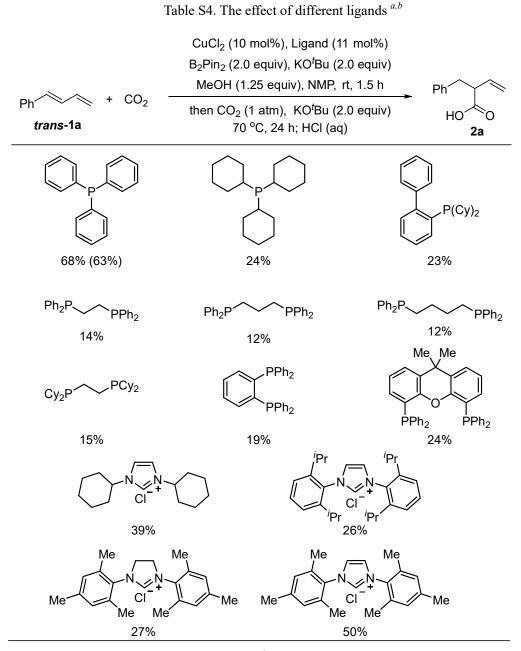
Ph + trans-1a	CO ₂	CuCl ₂ (10 mol%), IMes H B ₂ Pin ₂ (2.0 equiv), Base <u>MeOH (1.25 equiv), NM</u> then CO ₂ (1 atm), KO ^t B 70 °C, 24 h; HC	e (2.0 equiv) /IP, rt, 1.5 h u (2.0 equiv)	Ph HO 2a
-	entry	base	yield (%) ^b	
-	1	LiO ^t Bu	4	
	2	NaO ^t Bu	8	
	3	KO ^t Bu	50	
	4	KF	15	
	5	K ₂ CO ₃	10	
	6	Na ₂ CO ₃	7	
	7	K ₃ PO ₄	15	
	8	KOMe	12	

Table S1. The effect of different $bases^{a,b}$

^{*a*} *trans*-1a (0.2 mmol), B₂pin₂ (0.4 mmol), Base (0.4 mmol), CuCl₂ (10 mol%), PPh₃ (11 mol%), MeOH (1.25 equiv), NMP (1.5 ml), after 1.5 h; then CO₂ (1 atm), KO^tBu (0.4 mmol) 70 °C, 24 h; then HCI (aq) was added, r.t. ^{*b*} Yields were determined by GC using 2-Methoxynaphthalene as an internal standard.

Ph trans-1a	+ CO ₂ -	CuCl ₂ (10 mol%), IMes HC B ₂ Pin ₂ (2.0 equiv), KO ^t Bu MeOH (1.25 equiv), Solve then CO ₂ (1 atm), KO ^t Bu 70 °C, 24 h; HCl ((2.0 equiv) ent, rt, 1.5 h (2.0 equiv)	Ph HO 2a
	entry	solvent	yield (%) ^b	
	1	NMP	50	-
	2	DMA	43	
	3	DMF	41	
	4	DCE	0	
	5	Cyclohexne	8	
	6	THF	7	
	7	EA	6	
	8	toluene	9	
	9	DME	9	
	10	1,4-dioxane	11	

Table S2. The effect of different solvents *a,b*


^a *trans-***1a** (0.2 mmol), B₂pin₂ (0.4 mmol), KO^tBu (0.4 mmol), CuCl₂ (10 mol%), PPh₃ (11 mol%), MeOH (1.25 equiv), Solvent (1.5 ml), after 1.5 h; then CO₂ (1 atm), KO^tBu (0.4 mmol) 70 °C, 24 h; then HCl (aq) was added, r.t. ^b Yields were determined by GC using 2-Methoxynaphthalene as an internal standard.

Ph -	+ CO ₂ -	[Cu] (10 mol%), IMes·HCl (11 mol%) B ₂ Pin ₂ (2.0 equiv), KO ^t Bu (2.0 equiv) MeOH (1.25 equiv), NMP, rt, 1.5 h then CO ₂ (1 atm), KO ^t Bu (2.0 equiv)	
<i>trans</i> -1a		70 °C, 24 h; HCl	
	entry	[Cu]	yield (%) ^b
	1	CuCl ₂	50
	2	CuCl	46
	3	CuF_2	4
	4	CuBr ₂	29
	5	Cul	13
	6	Cu(OTf) ₂	24
	7	Cu(OAc) ₂	15
	8	Cu(acac) ₂	17
	9	CuTc	27

Table S3. The effect of different $[Cu]^{a,b}$

 \searrow

^a trans-1a (0.2 mmol), B₂pin₂ (0.4 mmol),KO^tBu (0.4 mmol), cat (10 mol%), PPh₃ (11 mol%), MeOH (1.25 equiv), NMP (1.5 ml), after 1.5 h; then CO₂ (1 atm), KO^tBu (0.4 mmol) 70 °C, 24 h; then HCI (aq) was added, r.t. ^b Yields were determined by GC using 2-Methoxynaphthalene as an internal standard.

^a *trans-1a* (0.2 mmol), B₂pin₂ (0.4 mmol),KO^{*t*}Bu (0.4 mmol), CuCl₂ (10 mol%), Ligand (11 mol%), MeOH (1.25 equiv), NMP (1.5 ml), after 1.5 h; then CO₂ (1 atm), KO^{*t*}Bu (0.4 mmol) 70 °C, 24 h; then HCl (aq) was added, r.t. ^{*b*} Yields were determined by GC using 2-Methoxynaphthalene as an internal standard.

4. General procedure for the reaction

GeneralprocedureforCu-catalyzedHighlyRegioselective1,2-Hydrocarboxylation of 1,3-Dienes with CO2:General procedure A

 $\begin{array}{c} CuCl_{2} \ (10 \ mol\%), \ PPh_{3} \ (11 \ mol\%) \\ B_{2}Pin_{2} \ (2.0 \ equiv), \ KO^{t}Bu \ (2.0 \ equiv) \\ \hline MeOH \ (1.25 \ equiv), \ NMP, \ rt, \ 1.5 \ h \\ \hline then \ CO_{2} \ (1 \ atm), \ KO^{t}Bu \ (2.0 \ equiv) \\ \hline NMP, \ 70 \ ^{o}C, \ 24 \ h; \ HCl \ (aq) \end{array} \begin{array}{c} Ph \\ \hline HO \ O \\ 2a \end{array}$

In an oven dried 25-ml Schlenk tube, which containing a stirring bar, was charged with CuCl₂ (2.7 mg, 0.02 mmol, 10 mol%), PPh₃ (5.8 mg, 0.022 mmol, 11 mol%), B₂Pin₂ (102 mg, 0.40 mmol, 2.0 equiv) and KO'Bu (45 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled under a N₂ flow (this sequence was repeated three times). Diene **1** (0.20 mmol, 1.0 equiv), MeOH (8 mg, 0.25 mmol), anhydrous NMP (1.5 ml) were added subsequently under N₂. The reaction mixture was stirred for 1.5 h at rt, then KO'Bu (45 mg, 0.4 mmol, 2.0 equiv) (dissolved in anhydrous NMP (0.5 ml)) were added, the tube was evacuated and back-filled with CO₂ (this sequence was repeated three times). the tube was stirred at 70 °C for 24 h. After cooling to room temperature, the resulting mixture was diluted with 2 mL EtOAc and quenched by 2 mL 2N HCl. Then it was extracted with EtOAc (10 ml \times 3). The organic layer was combined and dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography to afford the product **2a**.

General procedure B:

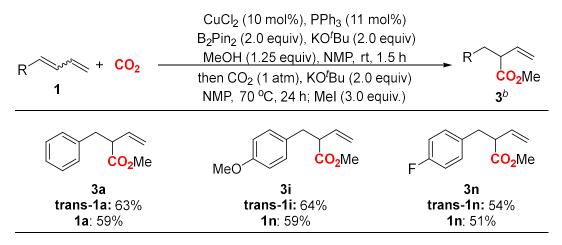
$$R \xrightarrow{\text{CuCl}_{2} (10 \text{ mol}\%), \text{PPh}_{3} (11 \text{ mol}\%)}_{\text{B}_{2}\text{Pin}_{2} (2.0 \text{ equiv}), \text{KO}^{t}\text{Bu} (2.0 \text{ equiv})}_{\text{MeOH} (1.25 \text{ equiv}), \text{NMP, rt, 1.5 h}}_{\text{then CO}_{2} (1 \text{ atm}), \text{KO}^{t}\text{Bu} (2.0 \text{ equiv})}_{\text{NMP, 70 °C, 24 h; Mel} (3.0 \text{ equiv})} \xrightarrow{\text{CO}_{2}\text{Me}}_{3}$$

In an oven dried 25-ml Schlenk tube, which containing a stirring bar, was charged with $CuCl_2$ (2.7 mg, 0.02 mmol, 10 mol%), PPh₃ (5.8 mg, 0.022 mmol, 11 mol%), B₂Pin₂ (102 mg, 0.40 mmol, 2.0 equiv) and KO'Bu (45 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled under a N₂ flow (this sequence was repeated three times). Diene **1** (0.20 mmol, 1.0 equiv), MeOH (8 mg, 0.25 mmol), anhydrous NMP (1.5 ml) were added subsequently under N₂. The reaction mixture was stirred for 1.5 h at rt, then KO'Bu (45 mg, 0.4 mmol, 2.0 equiv) (dissolved in anhydrous NMP (0.5 ml)) was added, the tube was evacuated and back-filled with CO₂ (this sequence was repeated three times). The reaction was stirred at 70 °C for 24 h. After cooling to room temperature, MeI (85 mg, 3.0 equiv) was added via syringe and the reaction tube was sealed. The resulting mixture was further stirred for 3 h at 60 °C. After cooling to room temperature, the resulting mixture was diluted with 2 mL EtOAc and quenched by 2 mL H₂O. Then it was extracted with EtOAc (10 mL \times 3). The organic layer was combined and dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography to afford the product **3**.

5. Control experiments

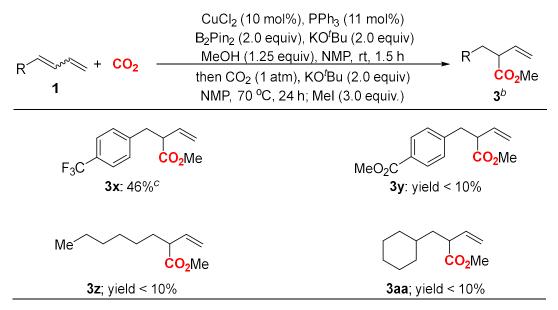
5-1. The reaction without CO₂

$$Ph \underbrace{ CuCl_{2} (10 \text{ mol}\%), PPh_{3} (11 \text{ mol}\%)}_{\text{1a}} + CO_{2} \underbrace{ \frac{B_{2}Pin_{2} (2.0 \text{ equiv}), KO^{t}Bu (2.0 \text{ equiv})}{MeOH (1.25 \text{ equiv}), NMP, rt, 1.5 h}}_{MeOH (1.25 \text{ equiv}), NMP, rt, 1.5 h} Ph \underbrace{ -\frac{BPin}{6} + Ph}_{6} + Ph$$

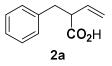

In an oven dried 25-ml Schlenk tube, which containing a stirring bar, was charged with CuCl₂ (2.7 mg, 0.02 mmol, 10 mol%), PPh₃ (5.8 mg, 0.022 mmol, 11 mol%), B₂Pin₂ (102 mg, 0.40 mmol, 2.0 equiv) and KO'Bu (45 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled under a N₂ flow (this sequence was repeated three times). Diene **1a** (0.20 mmol, 1.0 equiv), MeOH (8 mg, 0.25 mmol), anhydrous NMP (1.5 ml) were added subsequently under N₂. The reaction mixture was stirred for 1.5 h at r.t., the resulting mixture was diluted with 10 mL EtOAc and quenched by 10 mL H₂O, and then it was extracted with EtOAc (10 ml × 3). The organic layer was combined and dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography to afford the product **8** with 90% of GC yield (isolated 27mg, isolated yield was 52%). Spectral data matches that of the literature.^{[12] 1}H NMR (CDCl₃, 400 MHz) d: 7.28-7.14 (m, 5H), 5.68-5.54 (m, 2H), 3.39 (d, J = 6.8 Hz, 2H), 1.79 (d, J = 7.6 Hz, 2H), 1.24 (s, 12H); ¹³C NMR (CDCl₃, 100 MHz) d: 141.2, 128.4, 128.2, 128.0, 125.6, 125.2, 83.2, 33.2, 24.7 ppm; ¹¹B NMR (CDCl₃, 128 MHz) δ 33.00; HRMS (ESI-TOF) m/zcalcd for C₁₆H₂₃BO₂Na (M + Na)+: 281.1689, found 281.1693.

5-2. The reaction of 6 with CO₂

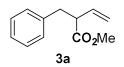
$$\begin{array}{c} CuCl_2 \ (10 \ mol\%), \ PPh_3 \ (11 \ mol\%) \\ B_2Pin_2 \ (2.0 \ equiv), \ KO^tBu \ (2.0 \ equiv) \\ \hline MeOH \ (1.25 \ equiv), \ NMP, \ rt, \ 1.5 \ h \\ \hline then \ CO_2 \ (1 \ atm), \ KO^tBu \ (2.0 \ equiv) \\ \hline MeO \ O \\ \hline 3a \ 74\% \ yield \end{array}$$


In an oven dried 25-ml Schlenk tube, which containing a stirring bar, was charged with CuCl₂ (2.7 mg, 0.02 mmol, 10 mol%), PPh₃ (5.8 mg, 0.022 mmol, 11 mol%), B₂Pin₂ (102 mg, 0.40 mmol, 2.0 equiv) and KO'Bu (45 mg, 0.4 mmol, 2.0 equiv). The tube was then evacuated and back-filled under a N₂ flow (this sequence was repeated three times). **6** (52 mg, 0.20 mmol, 1.0 equiv), MeOH (10.0 μ L, 1.25 equiv), anhydrous NMP (1.5 ml) were added subsequently under N₂. The reaction mixture was stirred for 1.5 h at rt, then KO'Bu (45 mg, 0.4 mmol, 2.0 equiv) (dissolved in anhydrous NMP (0.5 ml)) were added, the tube was evacuated and back-filled with CO₂ (this sequence was repeated three times). The tube was stirred at 70 °C for 24 h. After cooling to room temperature, MeI (85 mg, 3.0 equiv) was added via syringe and the reaction tube was sealed. The resulting mixture was diluted with 2 mL EtOAc and quenched by 2 mL H₂O. Then it was extracted with EtOAc (10 mL \times 3). The organic layer was combined and dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography to afford the product **3a** (28 mg, 74%).

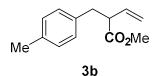
5-3: The effect of the substrate configuration (trans-and cis) on the reaction

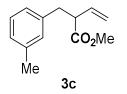

^a **1** (0.2 mmol), B₂Pin₂ (0.4 mmol), KO^tBu (0.4 mmol), [Cat] (10 mol%), PPh₃ (11 mol%), MeOH (0.25 mmol), NMP (1.5 ml), after 1.5 h; CO2 (1 atm), KO^tBu (0.4 mmol) 70 °C, 24 h, then MeI (0.6 mmol) was added, r.t., 3 h. ^b Isolated yield.

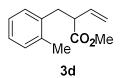
5-4: Some failed examples.

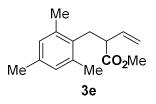


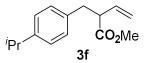
^{*a*} **1** (0.2 mmol), B_2Pin_2 (0.4 mmol), KO^tBu (0.4 mmol), [Cat] (10 mol%), PPh₃ (11 mol%), MeOH (0.25 mmol), NMP (1.5 ml), after 1.5 h; CO2 (1 atm), KO^tBu (0.4 mmol) 70 °C, 24 h, then MeI (0.6 mmol) was added, r.t., 3 h. ^{*b*} NMR yield. ^{*c*} this product can not be separated with an unknown byproduct by silica gel column .


6. Analytical data for compounds

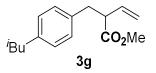

2-benzylbut-3-enoic acid (2a): The general procedure A was followed using (*E*)-buta-1,3-dien-1-ylbenzene (trans-1a, 26 mg, 0.20 mmol). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:1) afforded product **2a** as a colorless oil (22 mg, 63% yield): $R_f = 0.4$ (EtOAc: petroleum ether = 1:1); ¹H NMR (CDCl₃, 400 MHz) δ : 11.28 (brs, 1H), 7.29-7.26 (m, 2H), 7.22-7.16 (m, 3H), 5.89-5.81 (m, 1H), 5.16-5.09 (m, 2H), 3.37-3.32 (m, 1H), 3.15-3.09 (m, 1H), 2.88-2.83(m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 179.6, 138.2, 134.6, 129.0, 128.4, 126.5, 118.4, 51.7, 38.0 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{11}H_{13}O_2$ (M + H)⁺: 177.0916, found 177.0924.


methyl 2-benzylbut-3-enoate (**3a**): The general procedure B was followed using (E,Z)-buta-1,3-dien-1-ylbenzene (**1a**, 26 mg, 0.20 mmol, E:Z = 1:1.3). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3a** as a colorless oil (22 mg, 59% yield): $R_f = 0.6$ ((EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ : 7.29-7.25 (m, 2H), 7.22-7.15 (m, 3H), 5.90-5.81 (m, 1H), 5.13-5.06 (m, 2H), 3.64 (s, 3H), 3.37-3.31 (m, 1H), 3.12-3.07 (m, 1H), 2.87-2.82 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 173.8, 138.6, 135.3, 129.0, 128.3, 126.4, 117.7, 52.0, 51.8, 38.4 ppm; HRMS (ESI-TOF) *m*/zcalcd for C₁₂H₁₅O₂ (M + H)⁺: 191.1072, found 191.1073.

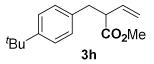

methyl 2-(4-methylbenzyl)but-3-enoate (**3b**): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-methylbenzene (**1b**, 29 mg, 0.20 mmol, *E*:*Z* = 1:1.6). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3b** as a colorless oil (24 mg, 59% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.09-7.03 (m, 4H), 5.89-5.81 (m, 1H), 5.12-5.06 (m, 2H), 3.64 (s, 3H), 3.32-3.28 (m, 1H), 3.08-3.03 (m, 1H), 2.83-2.78 (m, 1H) 2.31 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.8, 135.9, 135.5, 135.4, 129.0, 128.8, 117.6, 52.0, 51.8, 38.0, 21.0 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{13}H_{17}O_2$ (M + H)⁺: 205.1228, found 205.1239.


methyl 2-(3-methylbenzyl)but-3-enoate (3c): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-3-methylbenzene (**1c**, 29 mg, 0.20 mmol, *E*:*Z* = 1:1.4). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3c** as a colorless oil (27 mg, 65% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.16 (t, 1H), 7.03-6.95 (m, 3H), 5.91-5.82 (m, 1H), 5.13-5.07 (m, 2H), 3.64 (s, 3H), 3.36-3.30 (m, 1H), 3.09-3.04 (m, 1H), 2.83-2.78 (m, 1H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.8, 138.5, 137.8, 135.4, 129.8, 128.2, 127.1, 126.0, 117.6, 51.9, 51.8, 38.3, 21.4 ppm; **HRMS** (ESI-TOF) *m/z* calcd for $C_{13}H_{17}O_2$ (M + H)⁺: 205.1228, found 205.1223.

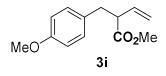
methyl 2-(2-methylbenzyl)but-3-enoate (3d): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-2-methylbenzene (1d, 29 mg, 0.20 mmol, *E*:*Z* = 1:1.5). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product 3d as a colorless oil (29 mg, 70% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ 7.15-7.08 (m, 4H), 5.94-5.85 (m, 1H), 5.13-5.04 (m, 2H), 3.64 (s, 3H), 3.37-3.31 (m, 1H), 3.14-3.09 (m, 1H), 2.88-2.82 (m, 1H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.9, 136.8, 136.2, 135.4, 130.3, 129.6, 126.5, 125.8, 117.5, 51.8, 50.7, 35.6, 19.4 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{13}H_{17}O_2$ (M + H)⁺: 205.1228, found 205.1228.

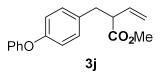


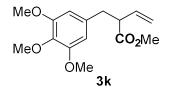
methyl 2-(2,4,6-trimethylbenzyl)but-3-enoate (**3e**): The general procedure B was followed using (*E*,*Z*)-2-(buta-1,3-dien-1-yl)-1,3,5-trimethylbenzene (**1e**, 34 mg, 0.20 mmol, *E*:*Z* = 1:1). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3e** as a colorless oil (27 mg, 57% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹**H NMR** (CDCl₃, 400 MHz) δ: 6.81 (s, 2H), 5.97-5.88 (m, 1H), 5.04-4.91 (m, 2H), 3.66 (s, 3H), 3.28-3.22 (m, 1H), 3.11-3.06 (m, 1H), 2.91-2.86 (m, 1H), 2.27 (s, 6H), 2.23 (s, 3H); ¹³**C NMR** (CDCl₃, 100 MHz) δ: 174.4, 136.6, 135.6, 135.3, 132.3, 129.0, 117.2, 51.8, 50.4, 32.0, 20.8, 20.2 ppm; **HRMS** (ESI-TOF) *m/z* calcd for $C_{15}H_{21}O_2$ (M + H)⁺: 233.1542, found 233.1543.

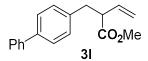


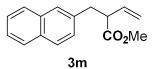
methyl 2-(4-isopropylbenzyl)but-3-enoate (3f): The general procedure B was followed using (E,Z)-1-(buta-1,3-dien-1-yl)-4-isopropylbenzene (1f, 34 mg, 0.20 mmol, E:Z = 1:1.5). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product 3f as a colorless oil (28 mg, 59% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.14-7.07 (m, 4H), 5.90-5.81 (m, 1H), 5.13-5.07 (m, 2H), 3.64 (s, 3H),

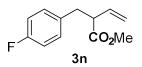

3.37-3.30 (m, 1H), 3.09-3.04 (m, 1H), 2.90-2.79 (m, 2H), 1.23 (s, 3H), 1.22 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 173.9, 146.9, 135.9, 135.5, 128.9, 126.4, 117.5, 51.9, 51.8, 38.0, 33.7, 24.0 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₅H₂₁O₂ (M + H)⁺: 233.1542, found 233.1548.

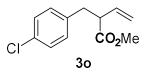

methyl 2-(4-isobutylbenzyl)but-3-enoate (3g): The general procedure B was followed using (E,Z)-1-(buta-1,3-dien-1-yl)-4-isobutylbenzene (**1g**, 37 mg, 0.20 mmol, E:Z = 1:1.6). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3f** as a colorless oil (33 mg, 68% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ 7.07-7.03 (m, 4H), 5.90-5.81 (m, 1H), 5.12-5.05 (m, 2H), 3.63 (s, 3H), 3.35-3.29 (m, 1H), 3.09-3.03 (m, 1H), 2.84-2.79 (m, 1H), 2.43 (d, J = 7.2 Hz, 2H), 1.89-1.80 (m, 1H), 0.89 (s, 3H), 0.87 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.9, 139.7, 135.8, 135.4, 129.0, 128.7, 117.5, 52.0, 51.8, 45.0, 38.1, 30.2, 22.34, 22.33 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{16}H_{21}O_2$ (M - H)⁻: 245.1542, found 245.1557.

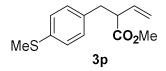

methyl 2-(4-(tert-butyl)benzyl)but-3-enoate (3h): The general procedure B was followed using (E,Z)-1-(buta-1,3-dien-1-yl)-4-(tert-butyl)benzene (1h, 37 mg, 0.20 mmol, E:Z = 1:1.5). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product 3h as a colorless oil (35 mg, 70% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ:7.30-7.27 (m, 2H), 7.10-7.08 (m, 2H), 5.91-5.82 (m, 1H), 5.13-5.08 (m, 2H), 3.64 (s, 3H), 3.37-3.31 (m, 1H), 3.09-3.04 (m, 1H), 2.84-2.79 (m, 1H), 1.30 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.9, 149.2, 135.5, 128.6, 125.2, 117.5, 51.82, 51.81, 37.8, 34.4, 31.3 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₂₃O₂ (M + H)⁺: 247.1698, found 247.1700.

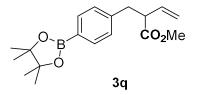

methyl 2-(4-methoxybenzyl)but-3-enoate (3i): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (**1i**, 32 mg, 0.20 mmol, *E*:*Z* = 1:1.6). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3i** as a colorless oil (29 mg, 59% yield): $R_f = 0.5$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.09-7.06 (m, 2H), 6.83-6.80 (m, 2H), 5.89-5.80 (m, 1H), 5.12-5.05 (m, 2H), 3.78 (s, 3H), 3.63 (s, 3H), 3.32-3.26 (m, 1H), 3.06-3.00 (m, 1H), 2.81-2.76 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.8, 158.1, 135.4, 130.6, 130.0, 117.6, 113.7, 55.2, 52.2, 51.8, 37.6 ppm; **HRMS** (ESI-TOF) *m/z* calcd for $C_{13}H_{17}O_3$ (M + H)⁺: 221.1178, found 221.1173.

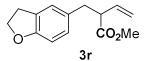

methyl 2-(4-phenoxybenzyl)but-3-enoate (3j): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-phenoxybenzene (**1j**, 45 mg, 0.20 mmol, *E*:*Z* = 1:2.8). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3j** as a colorless oil (30 mg, 53% yield): $R_f = 0.4$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ:7.34-7.30 (m, 2H), 7.13-7.07 (m, 3H), 6.99-6.97 (m, 2H), 6.93-6.91 (m, 2H), 5.91-5.82 (m, 1H), 5.12-5.08 (m, 2H), 3.65 (s, 3H), 3.35-3.29 (m, 1H), 3.10-3.05 (m, 1H), 2.85-2.80 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.7, 157.4, 155.7, 135.2, 133.5, 130.3, 129.7, 123.1, 118.8, 118.7, 117.7, 52.1, 51.9, 37.7 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₁₇O₃ (M - H)⁻: 281.1178, found 281.1183.


methyl 2-(3,4,5-trimethoxybenzyl)but-3-enoate (3k): The general procedure B was followed using (*E*,*Z*)-5-(buta-1,3-dien-1-yl)-1,2,3-trimethoxybenzene (**1k**, 44 mg, 0.20 mmol, *E*:*Z* = 1:1.8). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3k** as a colorless oil (36 mg, 64% yiel): R_f = 0.1 (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 6.37 (s, 2H), 5.90-5.81 (m, 1H), 5.15-5.09 (m, 2H), 3.83 (s, 6H), 3.81 (s, 3H) 3.65 (s, 3H), 3.35-3.29 (m, 1H), 3.06-3.01 (m, 1H), 2.80-2.75 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.7, 153.0, 136.5, 135.3, 134.3, 117.7, 105.8, 60.8, 56.0, 52.0, 51.9, 38.7 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₅H₁₉O₅ (M - H)⁻: 279.1233, found 279.1225.

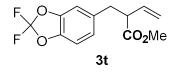

methyl 2-([1,1'-biphenyl]-4-ylmethyl)but-3-enoate (3l): The general procedure B was followed using (*E*,*Z*)-4-(buta-1,3-dien-1-yl)-1,1'-biphenyl (**1l**, 41 mg, 0.20 mmol, *E*:*Z* = 1:2.7). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3l** as a colorless oil (22 mg, 40% yield): $R_f = 0.5$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ 7.60-7.58 (m, 2H), 7.53-7.51 (m, 2H), 7.45-7.41 (m, 2H), 7.35-7.32 (m, 1H), 7.25-7.23 (m, 2H), 5.94-5.85 (m, 1H), 5.17-5.11 (m, 2H), 3.66 (s, 3H), 3.42-3.36 (m, 1H), 3.18-3.12 (m, 1H), 2.92-2.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 173.7, 140.8, 139.3, 137.7, 135.3, 129.4, 128.7, 127.1, 127.0, 126.95, 117.8, 51.9, 38.0 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{18}H_{19}O_2$ (M + H)⁺: 267.1385, found 267.1400.

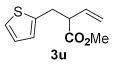

methyl 2-(naphthalen-2-ylmethyl)but-3-enoate (**3m**): The general procedure B was followed using (*E*,*Z*)-2-(buta-1,3-dien-1-yl)naphthalene (**1m**, 36 mg, 0.20 mmol, *E*:*Z* = 1:1.4). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3m** as a colorless oil (16 mg, 34% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.81-7.75 (m, 3H), 7.61 (s, 1H), 7.47-7.40 (m, 2H), 7.31-7.29 (m, 1H), 5.95-5.86 (m, 1H), 5.13-5.08 (m, 2H), 3.63 (s, 3H), 3.47-3.41 (m, 1H), 3.29-3.24 (m, 1H), 3.03-2.98 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.8, 136.1, 135.3, 133.5, 132.2, 127.9, 127.59, 127.56, 127.5, 127.4, 125.9, 125.4, 117.8, 51.91, 51.88, 38.5 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₁₇O₂ (M + H)⁺: 241.1228, found 241.1229.

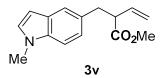

methyl 2-(4-fluorobenzyl)but-3-enoate (3n): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-fluorobenzene (**1n**, 30 mg, 0.20 mmol, *E*:*Z* = 1:1.5). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3n** as a colorless oil (21 mg, 51% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ 7.13-7.09 (m, 2H), 6.98-6.93 (m, 2H), 5.88-5.79 (m, 1H), 5.14-5.06 (m, 2H), 3.64 (s, 3H), 3.32-3.26 (m, 1H), 3.09-3.03 (m, 1H), 2.84-2.79 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.6, 161.6 (d, *J* = 240.0 Hz), 135.1, 134.25, 134.22, 130.5, 130.4, 117.9, 115.2, 115.0, 52.1, 51.9, 37.6 ppm; ¹⁹F NMR (CDCl₃, 376 MHz) δ: -116.69, -116.70, -116.71, -116.72, -116.74, -116.75, -116.76; HRMS (ESI-TOF) *m*/*z* calcd for C₁₂H₁₄FO₂ (M + H)⁺: 209.0978, found 209.0978.

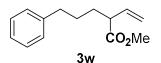

methyl 2-(4-chlorobenzyl)but-3-enoate (**3o**): The general procedure B was followed using (*E*,*Z*)-1-(buta-1,3-dien-1-yl)-4-chlorobenzene (**1o**, 33 mg, 0.20 mmol, *E*:*Z* = 1:1.2). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3o** as a colorless oil (18 mg, 39% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.25-7.23 (m, 2H), 7.10-7.08 (m, 2H), 5.87-5.79 (m, 1H), 5.14-5.06 (m, 2H), 3.64 (s, 3H), 3.32-3.26 (m, 1H), 3.09-3.03 (m, 1H), 2.84-2.78 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.5, 137.0, 135.0, 132.2, 130.4, 128.5, 118.0, 51.9, 51.8, 37.6 ppm; HRMS (ESI-TOF) *m/z* calcd for $C_{12}H_{14}O_2Cl (M + H)^+$: 225.0682, found 225.0688.

methyl 2-(4-(methylthio)benzyl)but-3-enoate (3p): The general procedure B was followed using (E,Z)-(4-(buta-1,3-dien-1-yl)phenyl)(methyl)sulfane (1p, 35 mg, 0.20 mmol, E:Z = 1:1.5). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3p** as a colorless oil (25 mg, 53% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ : 7.18-7.16 (m, 2H), 7.09-7.07 (m, 2H), 5.88-5.80 (m, 1H), 5.13-5.06 (m, 2H), 3.64 (s, 3H), 3.33-3.27 (m, 1H), 3.08-3.02 (m, 1H), 2.83-2.77 (m, 1H), 2.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 173.7, 136.1, 135.5, 135.2, 129.5, 126.7, 117.8, 51.90, 51.85, 37.8, 16.0 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₇O₂S (M + H)⁺: 237.0949, found 237.0936.

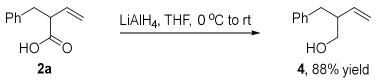

methyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)but-3-enoate (3q): The general procedure B was followed using (*E*,*Z*)-2-(4-(buta-1,3-dien-1-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1q, 51 mg, 0.20 mmol, *E*:*Z* = 1:2). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:10) afforded product 3q as a colorless oil (26 mg, 41% yield): $R_f = 0.4$ (EtOAc: petroleum ether = 1:5); ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.89-5.80 (m, 1H), 5.11-5.05 (m, 2H), 3.63 (s, 3H), 3.37-3.31 (m, 1H), 3.13-3.08 (m, 1H), 2.88-2.82 (m, 1H), 1.33 (s, 12H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.7, 141.9, 135.2, 134.8, 128.4, 127.6, 117.7, 83.7, 51.83, 51.77, 38.5, 24.85, 24.82 ppm; ¹¹B NMR (CDCl₃, 128 MHz) δ: 31.38; HRMS (ESI-TOF) *m/z* calcd for $C_{18}H_{26}BO_4$ (M + H)⁺: 316.1960, found 316.1964.


methyl 2-((2,3-dihydrobenzofuran-5-yl)methyl)but-3-enoate (3r): The general procedure B was followed using (*E*,*Z*)-5-(buta-1,3-dien-1-yl)-2,3-dihydrobenzofuran (**1r**, 34 mg, 0.20 mmol, *E*:*Z* = 1:1.8). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:10) afforded product **3r** as a colorless oil (20 mg, 44% yieldr): $R_f = 0.4$ (EtOAc: petroleum ether = 1:10); ¹**H NMR** (CDCl₃, 400 MHz) δ: 6.99 (s, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.68 (d, 1H), 5.89-5.80 (m, 1H), 5.13-5.06 (m, 2H), 4.54 (t, *J* = 8.8 Hz, 2H), 3.64 (s, 3H), 3.31-3.25 (m, 1H), 3.17 (t, *J* = 8.8 Hz, 2H), 3.04-2.99 (m, 1H), 2.79-2.74 (m, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ: 173.9, 158.7, 135.5, 130.5, 128.5, 127.0, 125.5, 117.5, 108.9, 71.1, 52.4, 51.8, 37.9, 29.7 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₄H₁₅O₃ (M - H)⁻: 231.1021, found 231.1026.

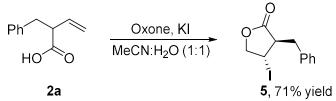

methyl 2-(benzo[d][1,3]dioxol-5-ylmethyl)but-3-enoate (**3s**): The general procedure B was followed using (*E*,*Z*)-5-(buta-1,3-dien-1-yl)benzo[d][1,3]dioxole (**1s**, 35 mg, 0.20 mmol, *E*:*Z* = 1:1.4). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:10) afforded product **3s** as a colorless oil (31 mg, 66% yield): $R_f = 0.4$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ :6.72-6.59 (m, 3H), 5.92 (s, 2H), 5.85-5.79 (m, 1H), 5.13-5.07 (m, 2H), 3.65 (s, 3H), 3.30-3.24 (m, 1H), 3.03-2.98 (m, 1H), 2.79-2.73 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 173.7, 147.5, 146.0, 135.2, 132.3, 122.0, 117.7, 109.4, 108.1, 100.8, 52.2, 51.8, 38.2 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₃O₄ (M - H)⁻: 233.0814, found 233.0807.


methyl 2-((2,2-difluorobenzo[*d*][1,3]dioxol-5-yl)methyl)but-3-enoate (3t): The general procedure B was followed using (*E*,*Z*)-5-(buta-1,3-dien-1-yl)-2,2-difluorobenzo[*d*][1,3]dioxole (1t, 42 mg, 0.20 mmol, *E*:*Z* = 1:1.2). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:10) afforded product **3t** as a colorless oil (27 mg, 50% yield): R_f = 0.4 (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 6.96-6.84 (m, 3H), 5.87-5.78 (m, 1H), 5.16-5.08 (m, 2H), 3.65 (s, 3H), 3.31-3.26 (m, 1H), 3.11-3.05 (m, 1H), 2.85-2.80 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.3, 143.7, 142.4, 134.8, 134.7, 131.6, 124.0, 118.2, 110.2, 109.1, 52.03, 51.98, 38.0 ppm; ¹⁹F NMR (CDCl₃, 376 MHz) δ: -49.97; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₁F₂O₄ (M - H)⁻: 269.0625, found 269.0644.

methyl 2-(thiophen-2-ylmethyl)but-3-enoate (3u): The general procedure B was followed using (*E*,*Z*)-2-(buta-1,3-dien-1-yl)thiophene (**1u**, 27 mg, 0.20 mmol, *E*:*Z* = 1:1). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3u** as a colorless oil (21 mg, 52% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ: 7.14-7.12 (m, 1H), 6.92-6.89 (m, 1H), 6.81-6.80 (m, 1H), 5.88-5.81 (m, 1H), 5.19-5.15 (m, 2H), 3.68 (s, 3H), 3.39-3.29 (m, 2H), 3.12-3.05 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.4, 140.9, 134.8, 126.7, 125.7, 123.9, 118.2, 52.1, 52.0, 32.3 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₁₁O₂S (M - H)⁻: 195.0480, found 195.0486.


methyl 2-((1-methyl-1H-indol-5-yl)methyl)but-3-enoate (**3v**): The general procedure B was followed using (*E*,*Z*)-5-(buta-1,3-dien-1-yl)-1-methyl-1H-indole (**1v**, 37 mg, 0.20 mmol, *E*:*Z* = 1:1.6). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:10) afforded product **3v** as a colorless oil (24 mg, 48% yield): $R_f = 0.3$ (EtOAc: petroleum ether = 1:10); ¹H NMR (CDCl₃, 400 MHz) δ :7.41 (d, *J* = 0.8 Hz,1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.04-7.01 (m, 2H), 6.42-6.41 (m, 1H), 5.92-5.85 (m, 1H), 5.11-5.06 (m, 2H), 3.77 (s, 3H), 3.63 (s, 3H), 3.42-3.36 (m, 1H), 3.23-3.17 (m, 1H), 2.97-2.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 174.1, 135.7, 135.6, 129.3, 128.9, 128.5, 122.8, 120.9, 117.3, 109.0, 100.6, 52.8, 51.8, 38.7, 32.8 ppm; HRMS (ESI-TOF) *m/z* calcd for C₁₅H₁₆NO₂ (M - H)⁻: 242.1181, found 242.1184.

methyl 5-phenyl-2-vinylpentanoate (**3w**): The general procedure B was followed using (*E*,*Z*)-hexa-3,5-dien-1-ylbenzene (**1w**, 32 mg, 0.20 mmol, *E*:*Z* = 1.2:1). Purification of this material by chromatography on silica gel (EtOAc: petroleum ether = 1:20) afforded product **3w** as a colorless oil (9 mg, 20% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:10); ¹**H** NMR (CDCl₃, 400 MHz) δ: 7.29-7.26 (m, 2H), 7.20-7.15 (m, 3H), 5.84-5.75 (m, 1H), 5.15-5.10 (m, 2H), 3.68 (s, 3H), 3.06-3.00 (m, 1H), 2,63-2.60 (m, 2H), 1.86-1.73 (m, 1H), 1.67-1.56 (m, 2H); ¹³**C** NMR (CDCl₃, 100 MHz) δ: 174.4, 142.0, 135.9, 128.4, 128.3, 125.8, 117.3, 51.8, 50.1, 35.6, 31.7, 28.9 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₄H₁₇O₂ (M - H)⁻: 217.1228, found 217.1229.


7. Further transformations for the product

7-1 Procedure for synthesis of 4^{10}

In an oven dried 10 mL Schlenk tube, to a suspension of LiAlH₄ (46mg, 1.2 mmol, 3 equiv) in 2.0 mL dry THF was added dropwise to a solution of **2a** (0.40mmol, 70 mg, 1.0 equiv) in dry THF (2.0 mL) at 0 °C, The reaction mixture was stirred at room temperature under N₂ for 12 h, H₂O (2.0 mL) was added, followed by 1 N NaOH (1.0 mL) The resulting mixture was filtered through celite and washed with EtOAc. The filtrate was extracted with EtOAc (3 × 10 ml). The organic layer was separated and dried with Na₂SO₄, and solvent was removed under reduced pressure. The product was purified by silica gel column chromatography (EtOAc: petroleum ether = 1:4) to afford the product **4** as a colourless liquid (57 mg, 88% yield): R_f = 0.3 (EtOAc: petroleum ether = 1:4); ¹**H NMR** (CDCl₃, 400 MHz) δ 7.28-7.24 (m, 2H), 7.19-7.14 (m, 3H), 5.73-5.64 (m, 1H), 5.12-5.03 (m, 2H), 3.59-3.55 (m, 1H), 3.48-3.43 (m, 1H), 2.76-2.71 (m, 1H), 2.66-2.60 (m, 1H), 2.57-2.50 (m, 1H), 1.84 (brs, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ : 139.6, 139.1, 129.0, 128.2, 125.9, 117.1, 64.7, 47.9, 37.2 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₁H₁₅O (M + H)⁺: 163.1123, found 163.1119.

7-2 Procedure for synthesis of 5^{11}

In an 10 mL round-bottomed flask, to the acid **2a** (0.32mmol, 56 mg, 1.0 equiv) in CH₃CN:H₂O = 1:1 (4.0 mL) was added Oxone (196 mg, 0.64 mmol) and KI (106.4 mg, 0.64 mmol). The mixture was then stirred at room temperature for 2 h. H₂O (2.0 mL) was added, followed by Na₂S₂O₃ (2.0 mL), The mixture was extracted with EtOAc (3 × 10 ml). The organic layer was separated and dried with Na₂SO₄, and solvent was removed under reduced pressure. The product was purified by silica gel column chromatography (EtOAc: petroleum ether = 1:8) to afford the product **6** a yellow solid (68 mg, 71% yield): $R_f = 0.6$ (EtOAc: petroleum ether = 1:4); ¹**H NMR** (CDCl₃, 400 MHz) δ 7.36-7.32 (m, 2H), 7.29-7.22 (m, 3H), 4.36-4.35 (m, 1H), 3.65-3.64 (m, 1H), 3.45-3.41 (m, 1H), 3.26 (t, *J* = 9.6 Hz, 1H), 3.19-3.09 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 168.7, 136.2, 129.0, 128.9, 127.3, 74.1, 59.0, 33.3, 3.5 ppm; **HRMS** (ESI-TOF) *m/z* calcd for C₁₁H₁₂IO₂ (M + H)⁺: 302.9882, found 302.9893.

8. References

1. A. Tortajada, R. Ninokata and R. Martin, J. Am. Chem. Soc. 2018, 140, 2050.

2. Y. Liu, Y.-J. Xie, H.-L. Wang and H.-M. Huang, J. Am. Chem. Soc. 2016, 138, 4314.

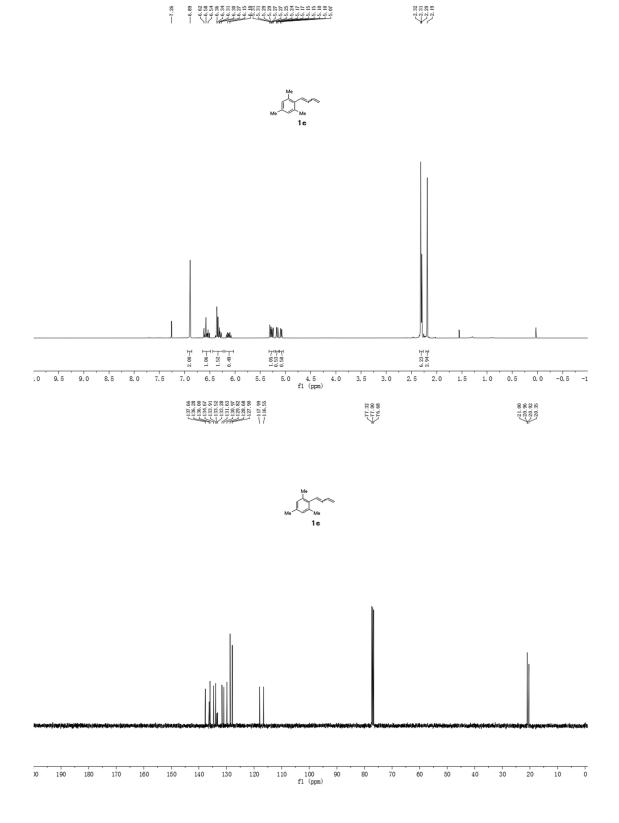
3. A. Lishchynskyi and K. Muniz, Chem. Eur. J. 2012, 18, 2212.

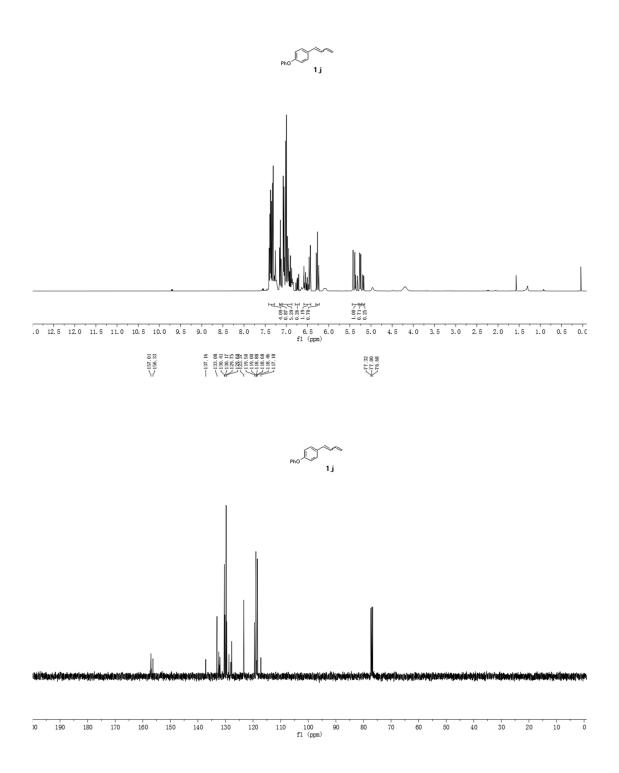
4. F. Ahmed Khan and B. M. Budanur, Tetrahedron. 2015, 71, 7600.

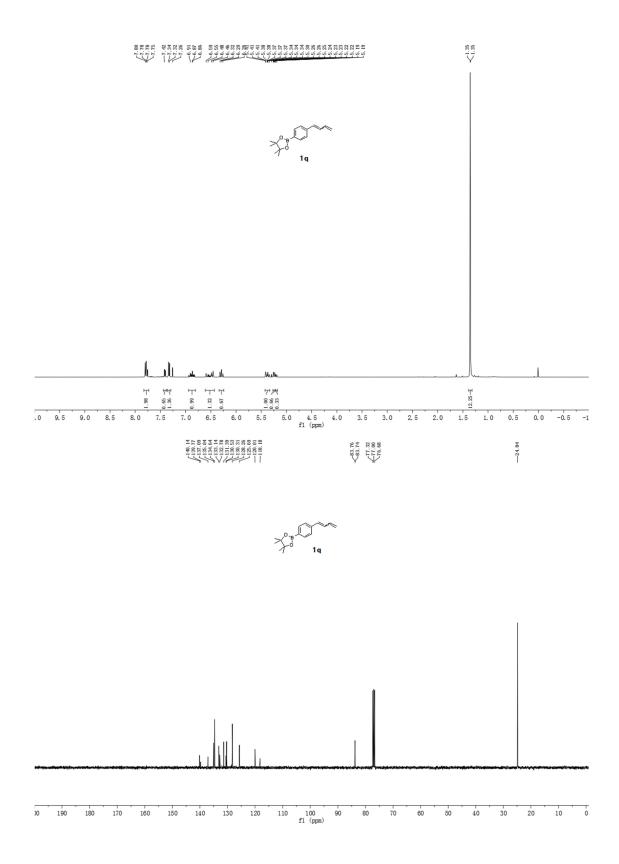
5. B. M. Trost and Z.-X, Huang, Angew. Chem. Int. Ed. 2019, 58, 6396.

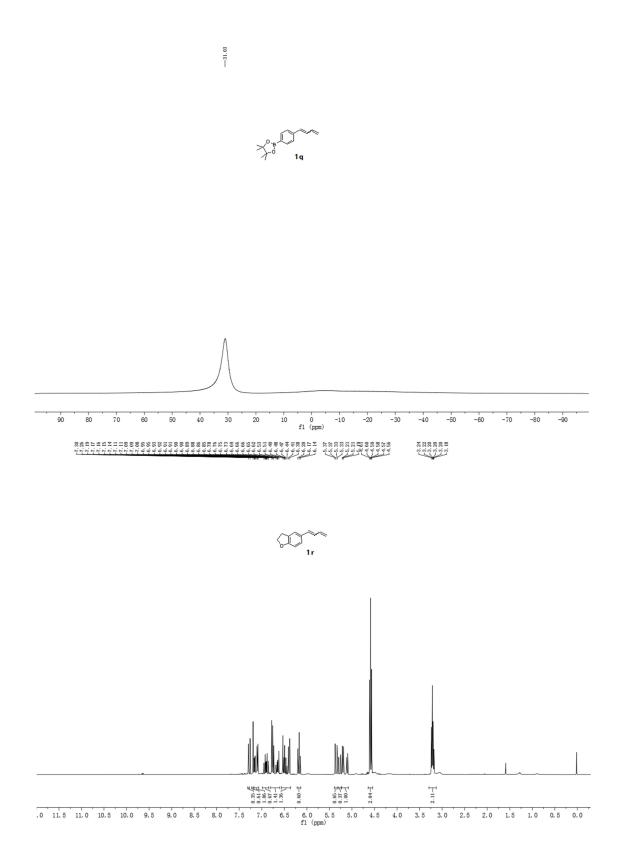
6. N. Yasukawa, H. Yokoyama, M. Masuda, Y. Monguchi, H. Sajiki and Y. Sawama, *Green Chem.*, 2018, 20, 1213.

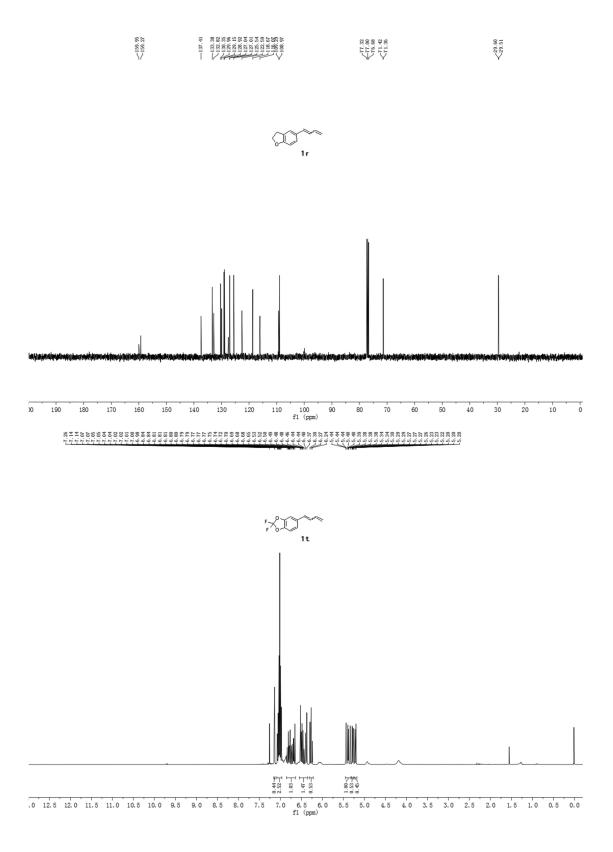
7. T. J. A. Graham, T. H. Poole, C. N. Reese and B. C. Goess, J. Org. Chem. 2011, 76, 4132.

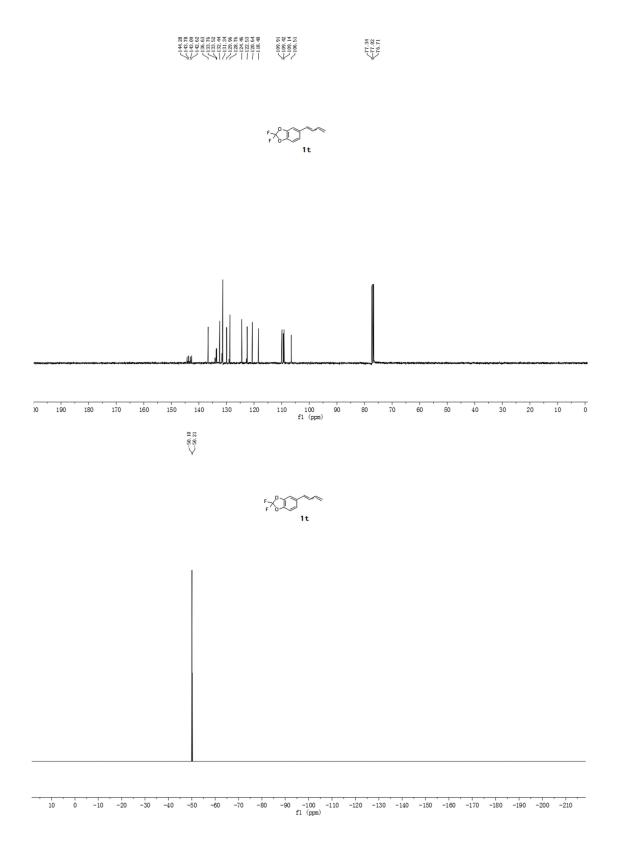

8. S. V.A.-M. Legendre, M. Jevric, J. Klepp, C. J. Sumby and B. W. Greatrex, Tetrahedron. 2018, 74, 1229.

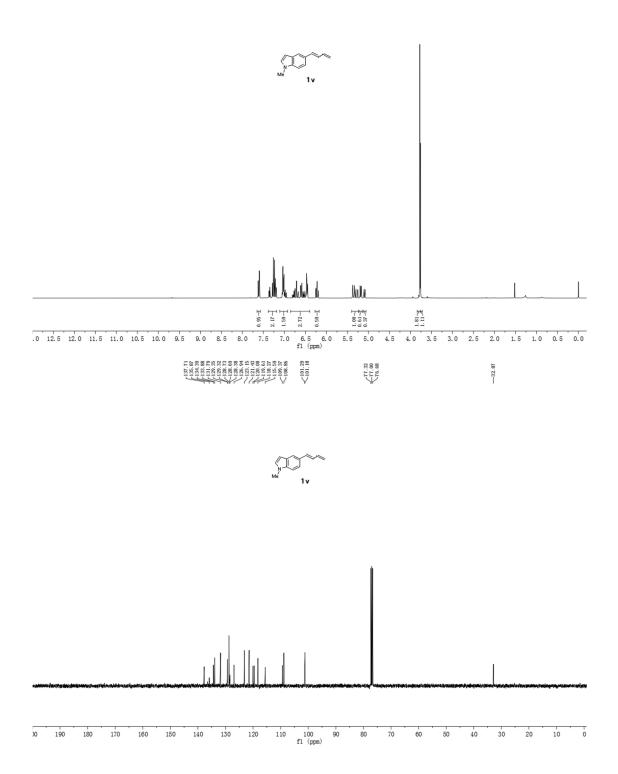

9. F. Billard, R. Robiette and J. Pospíšil, J. Org. Chem. 2012, 77, 6358.

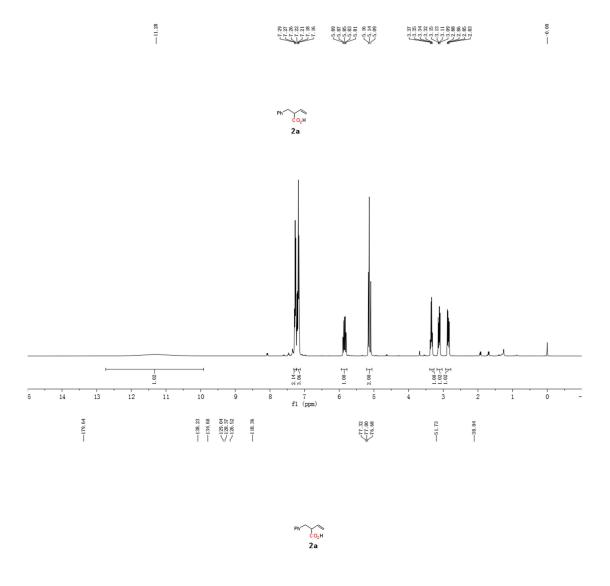

10. M. C. Paderes and S. R. Chemler, Org. Lett. 2009, 11, 1915.

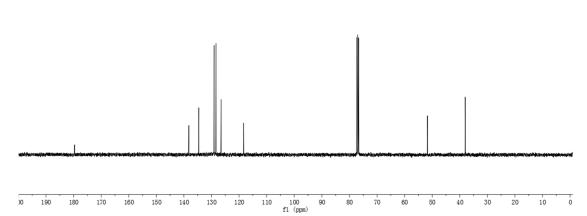

11. A. Sengupta and S. Hosokawa, Tetrahedron Letters. 2019, 60, 411.

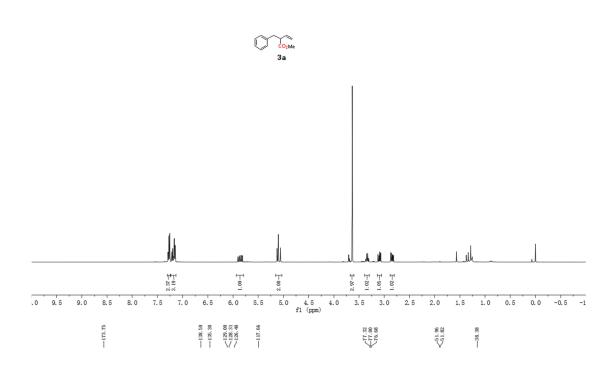

12. K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, Chem. Eur. J. 2013, 19, 7125.

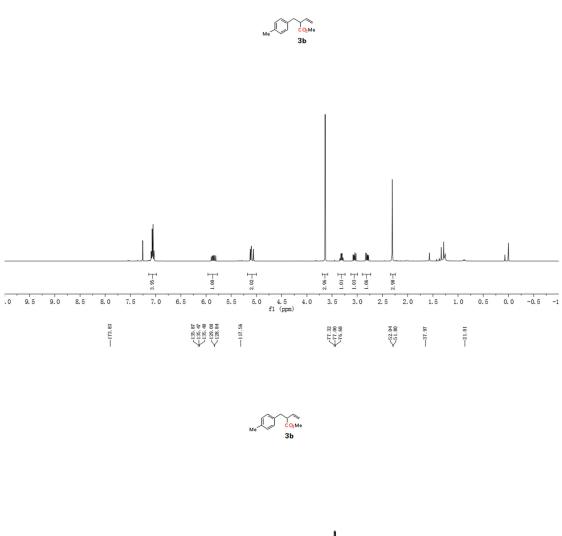


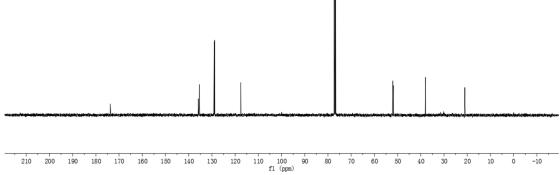


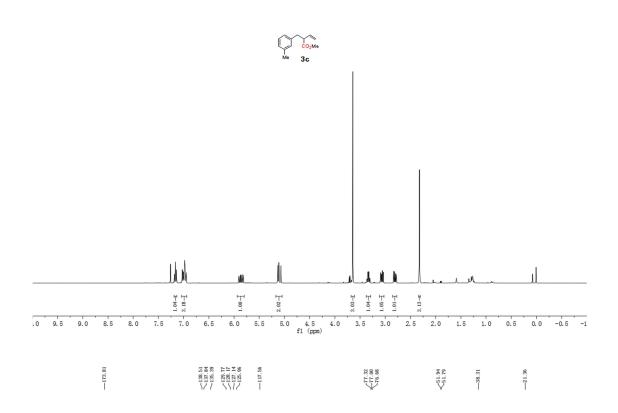


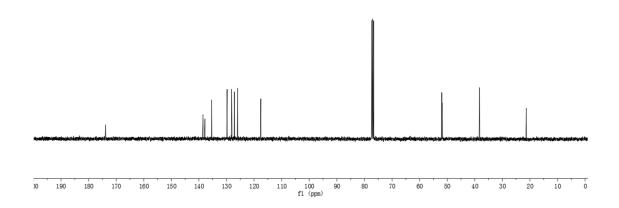


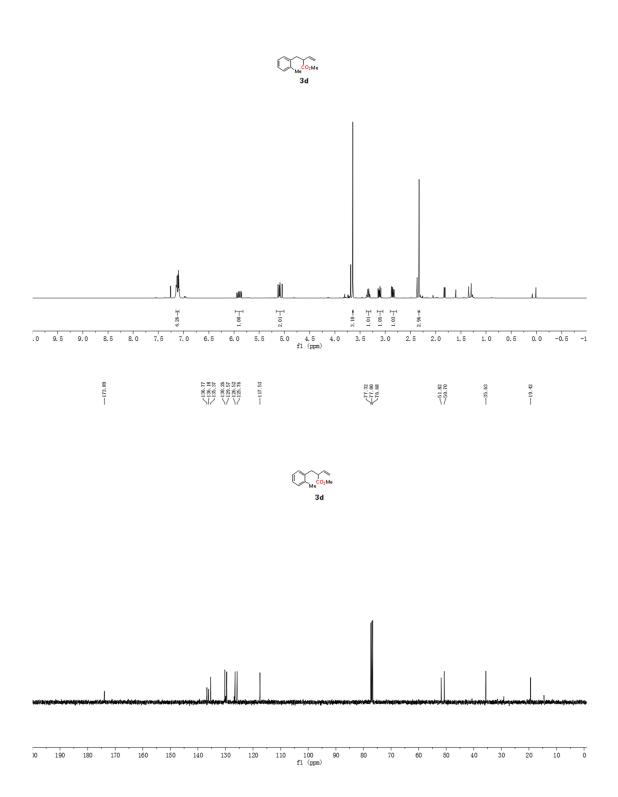

----0.00

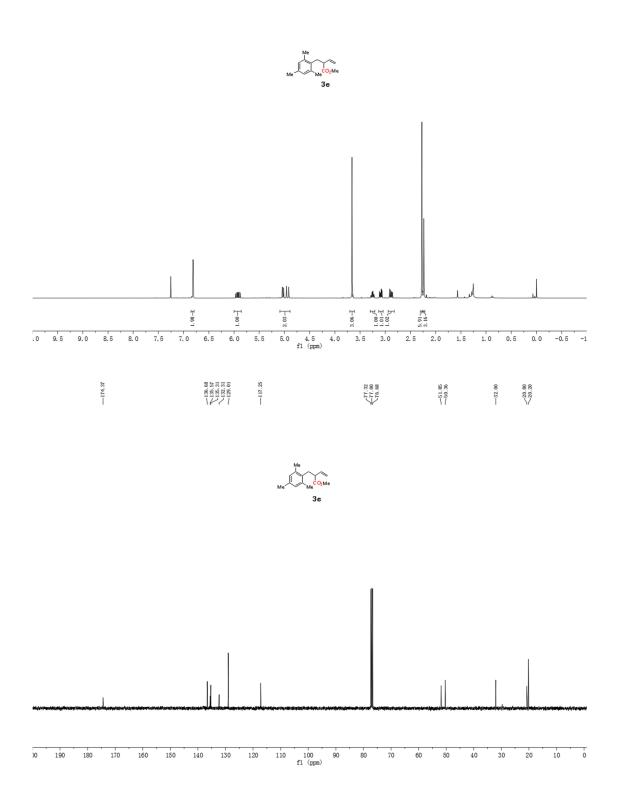


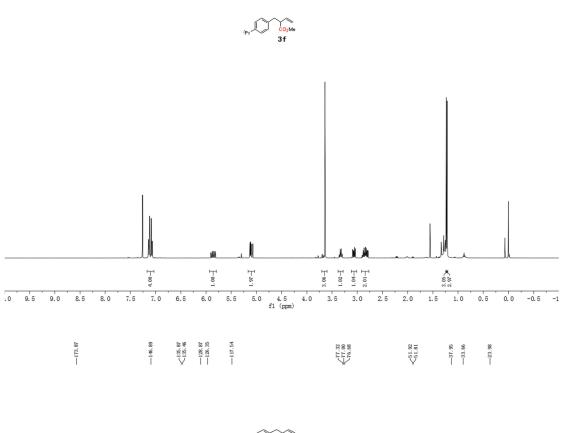


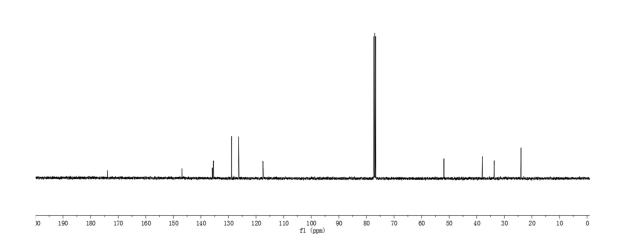


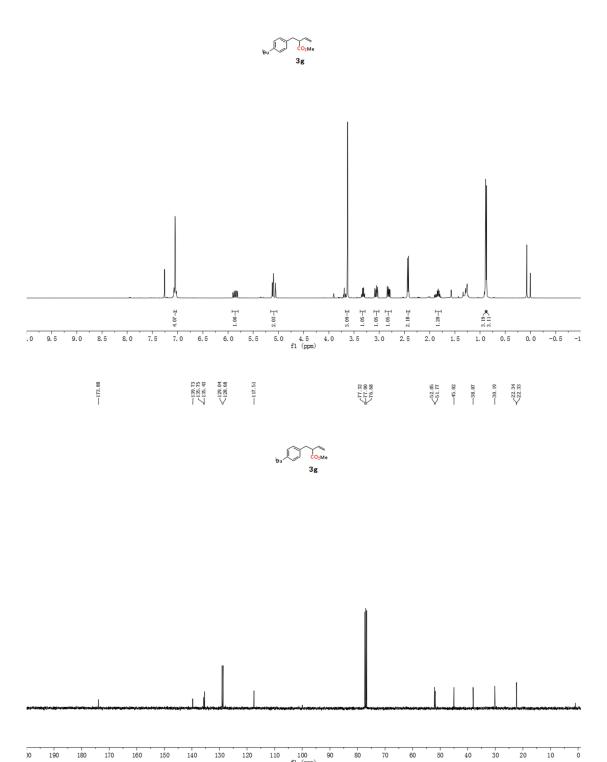


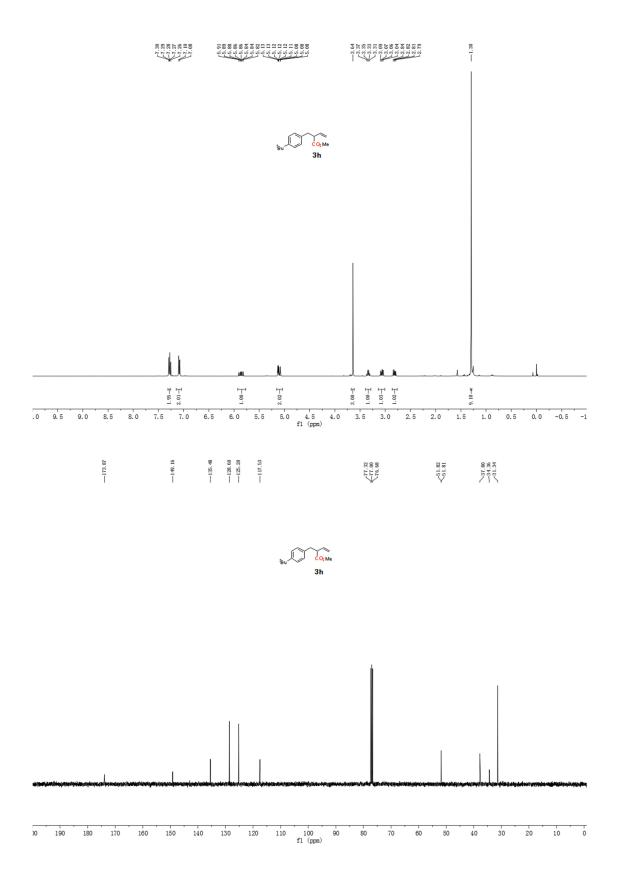


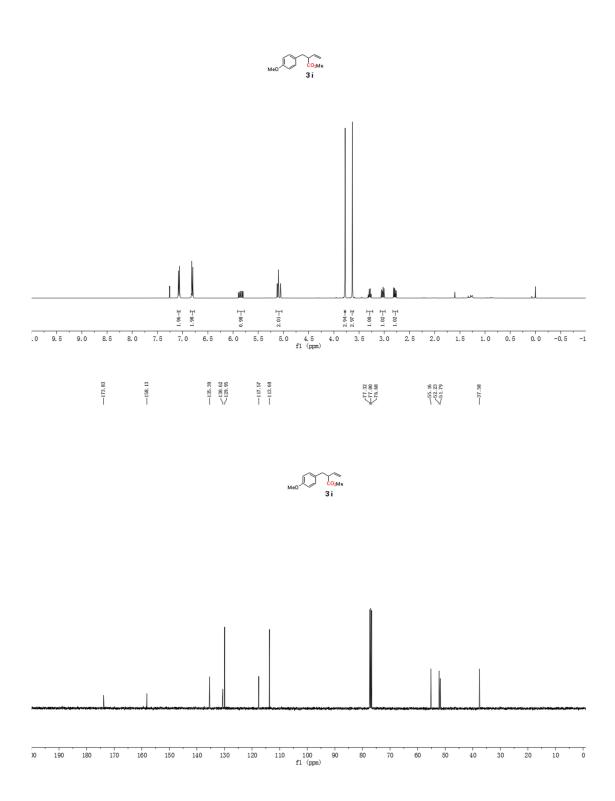


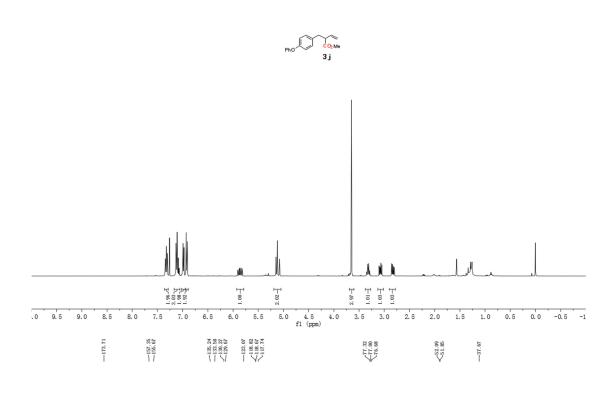


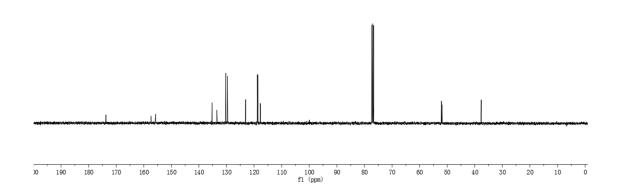


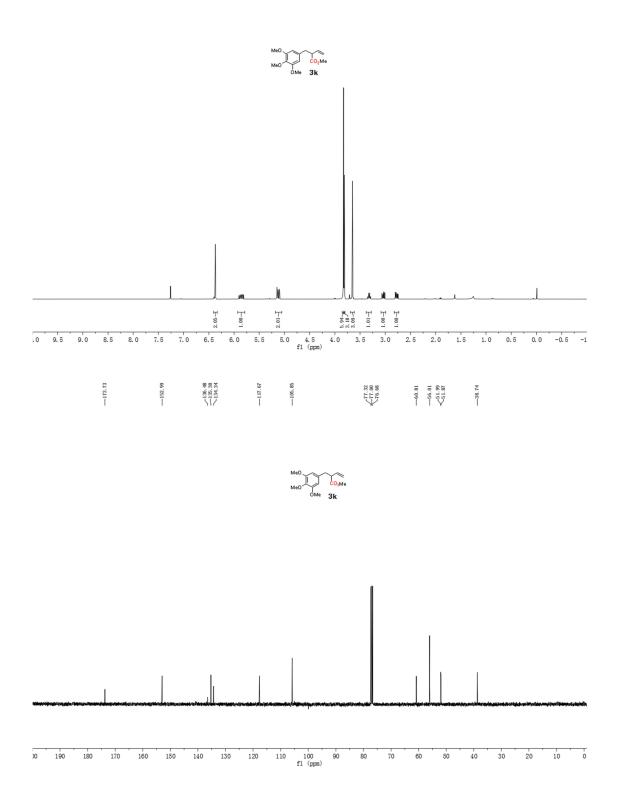


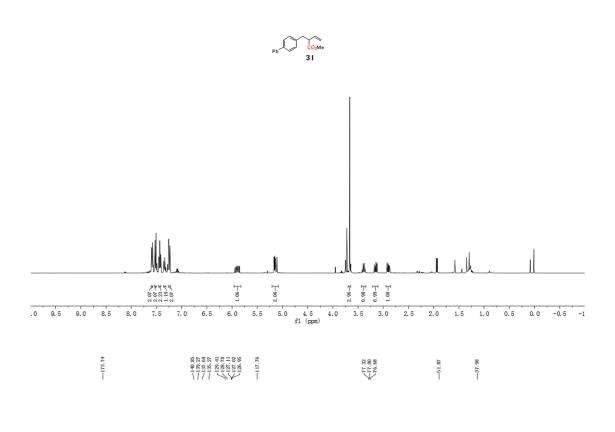


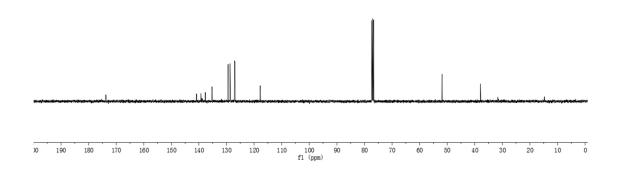


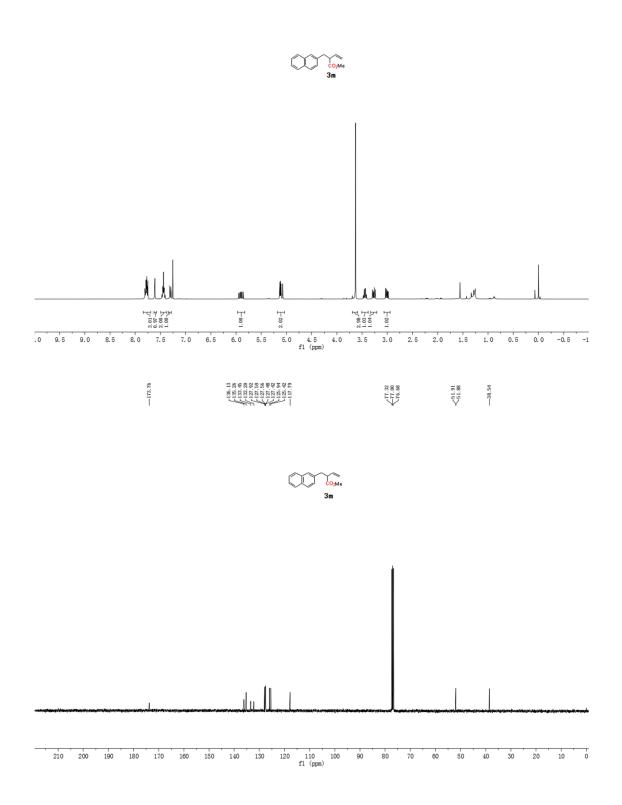

110 100 90 80 70 f1 (ppm) 0 190 130 120

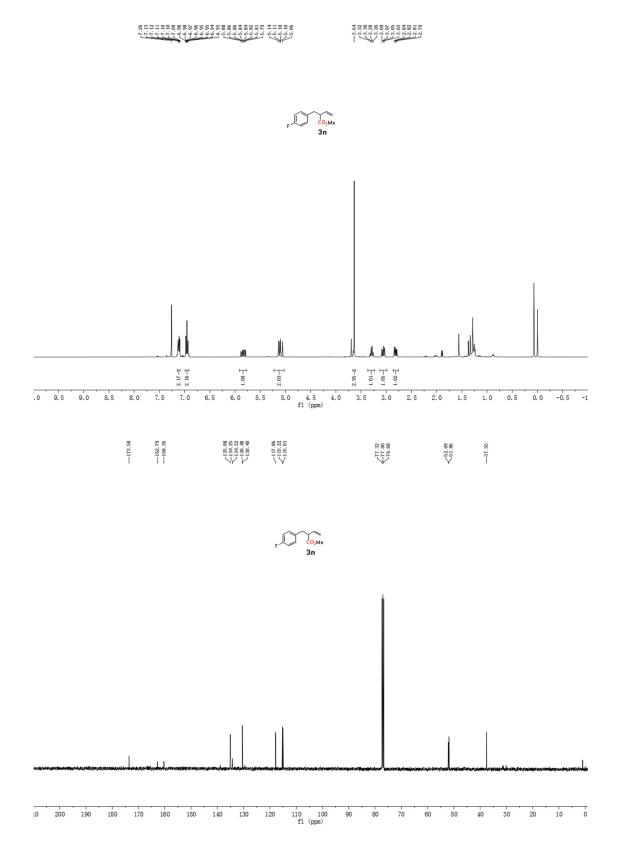


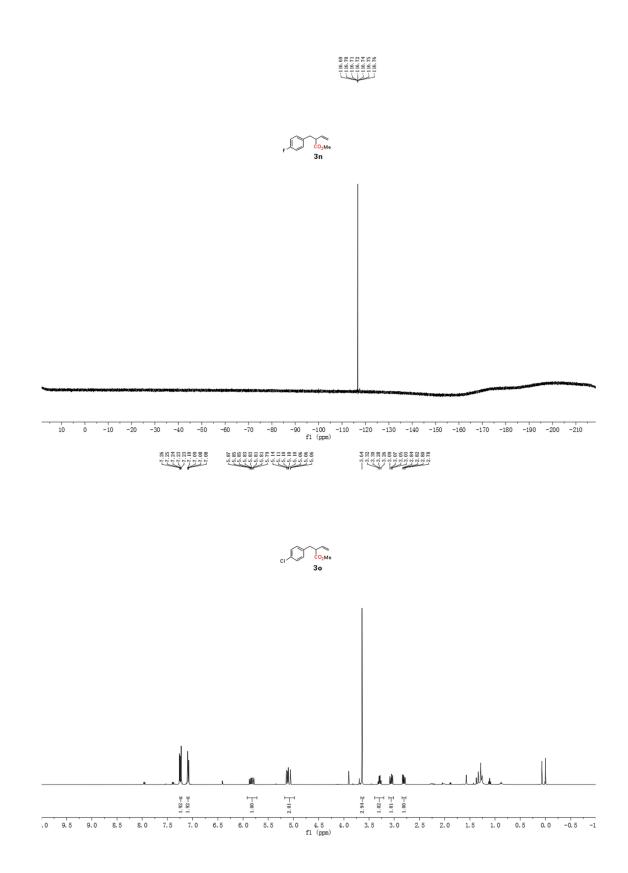


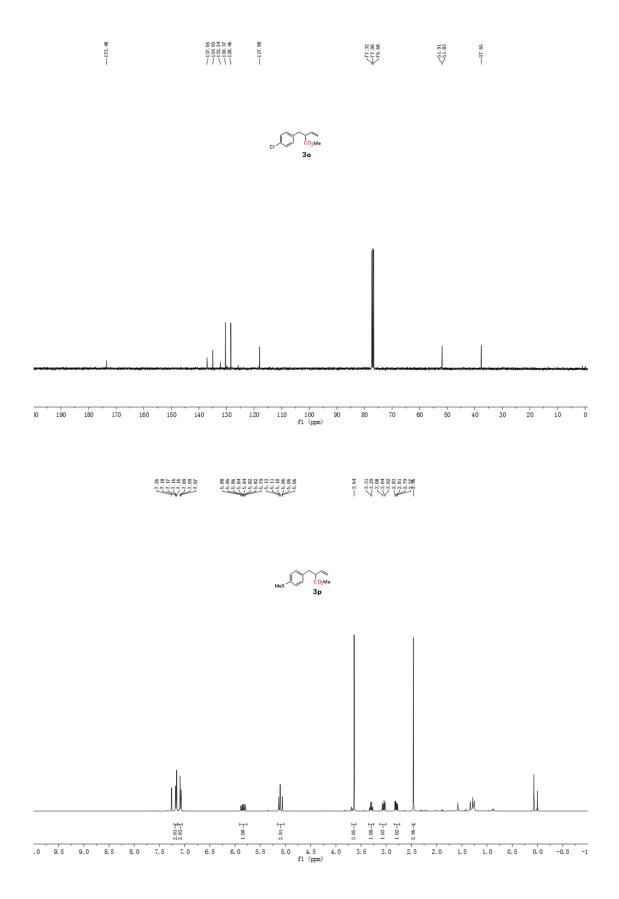


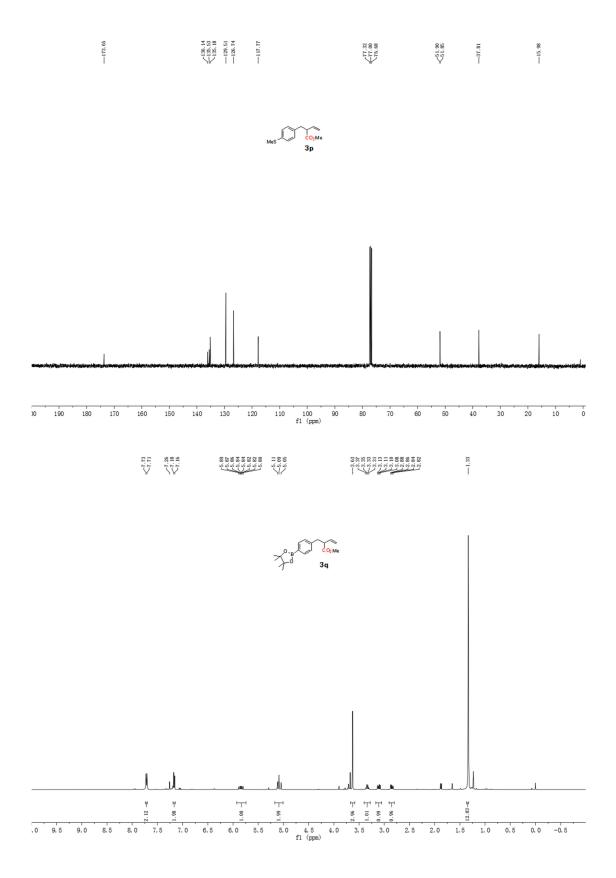


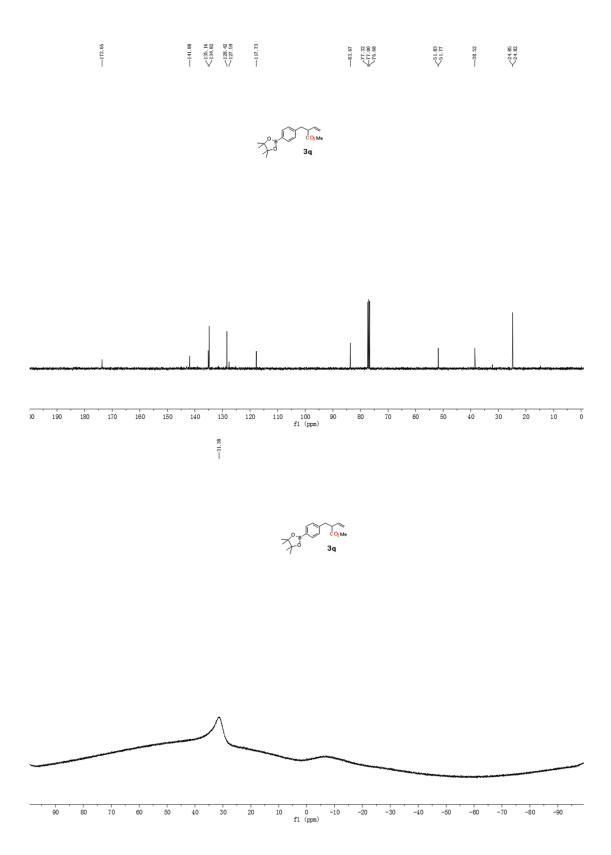


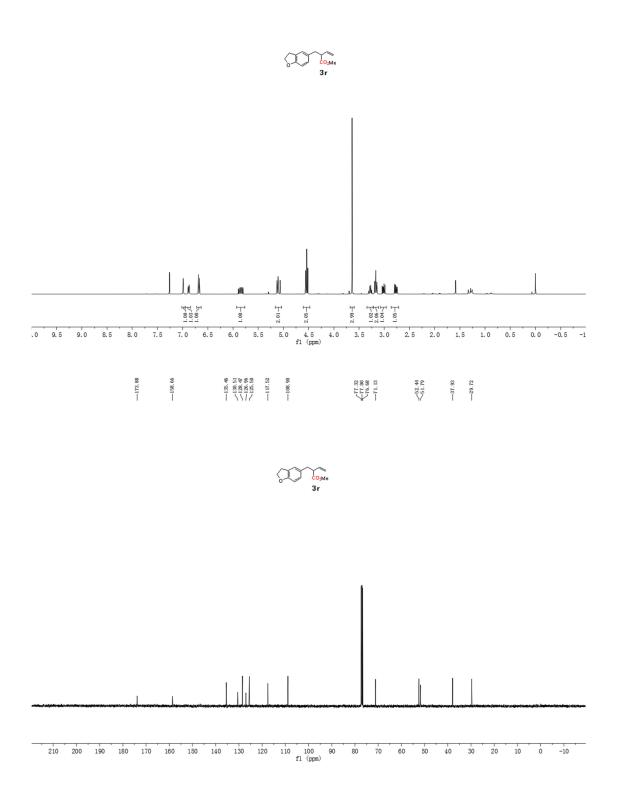


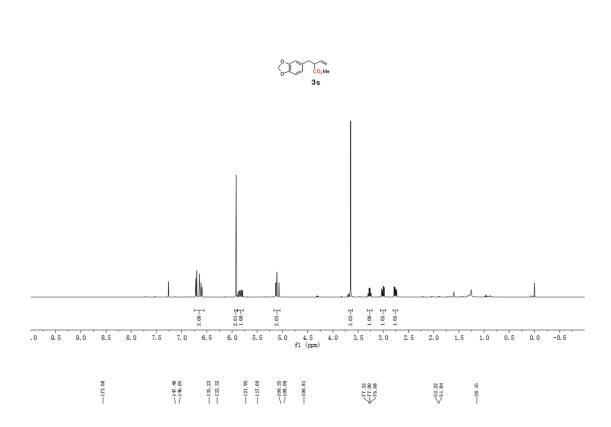


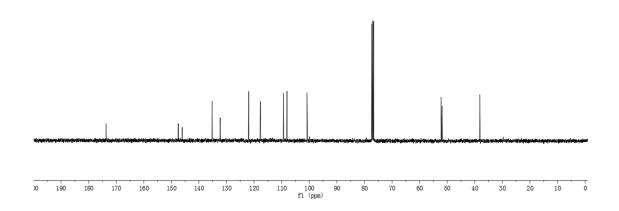


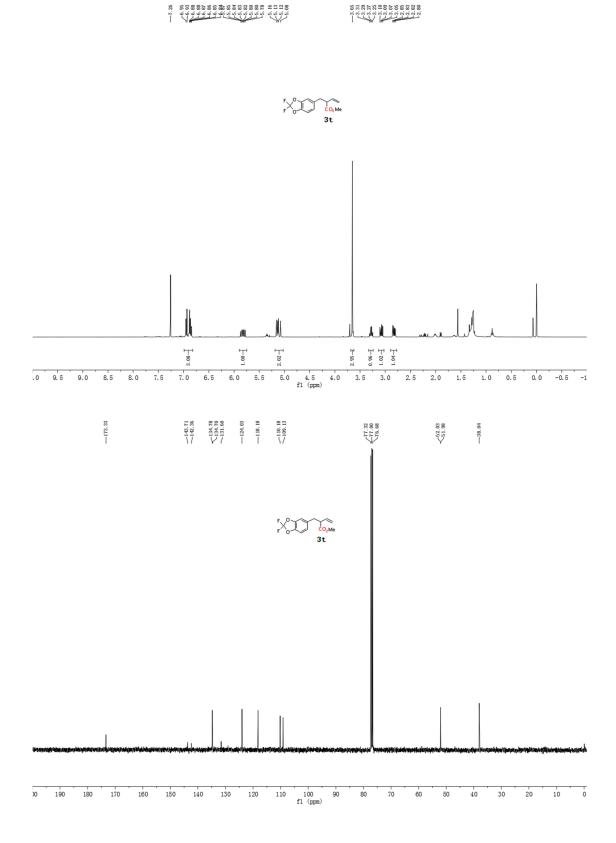


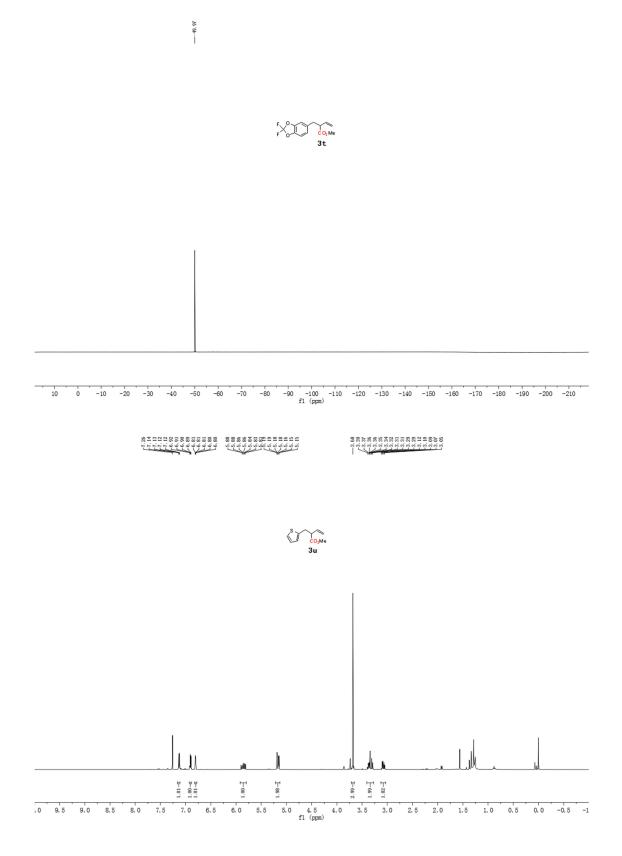


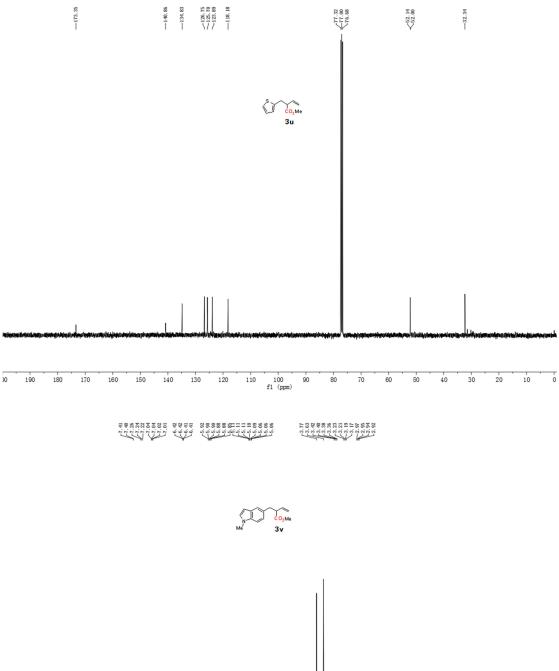











0.00

