Electronic Supplementary Information

A [4+3] annulation of benzofuran-derived azadienes and

 α -bromohydroxamates for the synthesis of benzofuran-fused

1,4-diazepinones

Qing-Yun Fang^a and Li-Ming Zhao*,a,b

^aSchool of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116,

Jiangsu, China

^bState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of

Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,

Beijing 100050, China

*E-mail: lmzhao@jsnu.edu.cn

Table of Contents

1. General Methods	S3
2. Synthesis of Product 3 and Characterization Data	S3-S12
3. Gram-Scale Synthesis of Compound 3la	S12
4. Synthesis of Compound 4 and Characterization Data	
5. Synthesis of Compound 5 and Characterization Data	
6. References	S14
7. Copies of ¹ H and ¹³ C NMR Spectra for Compound 3	
8. Copies of ¹ H and ¹³ C NMR Spectra for Compound 4	S38
9. Copies of ¹ H and ¹³ C NMR Spectra for Compound 5	S39
10. Crystal Structure of Compound 3aa	S40-S41

General Methods Solvents were treated prior to use according to the standard methods. Other reagents were used as purchased without further purification. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel plates. Chromatographic purification was performed on silica gel columns (100-200 mesh size). Melting points were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz in CDCl₃ with chemical shift (δ) given in ppm relative to TMS as the internal standard. Multiplicities were indicated as followed: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth; the coupling constant (*J*) was given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) and time-of-flight (TOF) mass analysis. Benzofuran-derived azadienes (BDAs) 1¹⁻⁵ and α -bromohydroxamates 2^{6,7} were prepared according to literature procedures.

General Procedure for the Synthesis of Product 3. To a solution of benzofuran-derived azadienes 1 (0.1 mmol) and α -bromohydroxamates 2 (0.12 mmol) in anhydrous MeCN (2 mL) were added Cs₂CO₃ (0.12 mmol). The reaction mixture was stirred at room temperature for 1-3 h. After the completion of the reaction, the solid was filtered and washed with dicholomethane, and the combined filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:5) to afford product 3.

4-(*Benzyloxy*)-5-*phenyl*-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-on e (**3aa**). White solid (43 mg, 78% yield); mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.16 (m, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.45-7.38 (m, 3H), 7.33-7.21 (m, 10H), 7.13-7.10 (m, 2H), 5.90 (s, 1H), 4.72 (d, J = 16.8 Hz, 1H), 4.11 and 4.06 (ABq, J = 10.0 Hz, 2H), 3.99 (d, J = 16.8 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.8, 144.0, 137.5, 134.5, 134.2, 129.7, 129.0, 128.9, 128.8, 128.5, 126.5, 125.7, 124.5, 123.7, 123.2, 121.6, 111.3, 76.9, 63.5, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₁H₂₇N₂O₅S [M + H]⁺ 539.1641; found 539.1668.

4-(*Benzyloxy*)-5-(4-fluorophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ba**). White solid (46 mg, 82% yield); mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.45-7.37 (m, 3H), 7.34-7.29 (m, 5H), 7.25-7.21 (m, 2H), 7.11-7.08 (m, 2H), 6.94 (t, J = 8.8 Hz, 2H), 5.86 (s, 1H), 4.72 (d, J = 16.8Hz, 1H), 4.11 and 4.06 (ABq, J = 10.0 Hz, 2H), 3.96 (d, J = 16.8 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 162.7 (J = 247.3 Hz), 153.0, 144.9, 143.7, 134.4, 134.2, 133.4 (J = 3.4 Hz), 129.8, 128.9, 128.8, 128.6, 128.5, 124.4, 123.8, 123.2, 121.8, 116.0 (J =21.6 Hz), 111.3, 76.9, 62.9, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₁H₂₅FN₂NaO₅S [M + Na]⁺ 579.1366; found 579.1394.

4-(*Benzyloxy*)-5-(4-chlorophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ca**). White solid (45 mg, 78% yield); mp 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.13 (m, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.46-7.37 (m, 3H), 7.34-7.29 (m, 5H), 7.25-7.21 (m, 4H), 7.05 (d, J = 8.4 Hz, 2H), 5.85 (s, 1H), 4.72 (d, J = 16.8 Hz, 1H), 4.11 and 4.07 (ABq, J = 10.0 Hz, 2H), 3.94 (d, J = 16.8 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 144.9, 136.0, 134.9, 134.4, 134.2, 129.8, 129.2, 128.9, 128.9, 128.8, 128.6, 128.0, 125.9, 124.4, 123.8, 123.2, 121.9, 111.3, 77.0, 63.0, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₁H₂₅ClN₂NaO₅S [M + Na]⁺ 595.1070; found 595.1049. 4-(Benzyloxy)-5-(p-tolyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-o

ne (**3da**). White solid (45 mg, 82% yield); mp 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16 (m, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.45-7.37 (m, 3H), 7.32-7.28 (m, 5H), 7.24-7.21 (m, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.99 (t, J = 8.4 Hz, 2H), 5.86 (s, 1H), 4.72 (d, J = 16.4 Hz, 1H), 4.08 and 4.04 (ABq, J = 10.0 Hz, 2H), 4.00 (d, J = 16.4 Hz, 1H), 2.27 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.8, 144.2, 138.8, 134.6, 134.2, 129.7, 129.7, 128.9, 128.8, 128.7, 128.5, 126.4, 125.7, 124.5, 123.6, 123.2, 121.5, 111.3, 76.8, 63.3, 54.9, 21.5, 21.0. HRMS (ESI) m/z calcd for C₃₂H₂₈N₂NaO₅S [M + Na]⁺ 575.1617; found 575.1638.

4-(*Benzyloxy*)-5-(4-methoxyphenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]di azepin-3-one (**3ea**). White solid (49 mg, 86% yield); mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16 (m, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.45-7.37 (m, 3H), 7.34-7.28 (m, 5H), 7.24-7.22 (m, 2H), 7.02 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 5.96 (s, 1H), 4.73 (d, J =16.8 Hz, 1H), 4.07 and 4.02 (ABq, J = 10.0 Hz, 2H), 4.01 (d, J = 16.8 Hz, 1H), 3.73 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 159.8, 153.0, 144.8, 144.3, 134.6, 134.3, 129.7, 129.6, 128.9, 128.8, 128.7, 128.5, 127.9, 125.7, 124.5, 123.6, 123.1, 121.6, 114.3, 111.3, 76.8, 63.1, 55.3, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₂H₂₉N₂O₆S [M + H]⁺ 569.1746; found 569.1749.

4-(*Benzyloxy*)-5-(4-(*methylthio*)*phenyl*)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1, 4]diazepin-3-one (**3fa**). White solid (48 mg, 82% yield); mp 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.14 (m, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.45-7.38 (m, 3H), 7.33-7.28 (m, 5H), 7.24-7.21 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 5.85 (s, 1H), 4.72 (d, *J* = 16.8 Hz, 1H), 4.09 and 4.05 (ABq, J = 10.0 Hz, 2H), 3.98 (d, J = 16.4 Hz, 1H), 2.40 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 144.8, 143.9, 139.8, 134.5, 134.3, 134.1, 129.8, 128.9, 128.8, 128.6, 127.0, 126.6, 125.8, 124.5, 123.7, 123.2, 121.7, 111.3, 76.9, 63.2, 55.0, 21.5, 15.4. HRMS (ESI) m/z calcd for C₃₂H₂₈N₂NaO₅S₂ [M + Na]⁺ 607.1337; found 607.1363.

5-([1,1'-Biphenyl]-4-yl)-4-(benzyloxy)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4] diazepin-3-one (**3ga**). White solid (44 mg, 72% yield); mp 124-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.17 (m, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.49-7.45 (m, 5H), 7.43-7.38 (m, 4H), 7.35-7.29 (m, 6H), 7.25-7.23 (m, 2H), 7.18 (d, J = 8.4 Hz, 2H), 5.94 (s, 1H), 4.75 (d, J = 16.8Hz, 1H), 4.13 and 4.09 (ABq, J = 10.0 Hz, 2H), 4.06 (d, J = 16.8 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 144.8, 144.0, 141.8, 140.1, 136.4, 134.5, 134.2, 129.8, 128.9, 128.8, 128.8, 128.6, 127.7, 127.6, 127.0, 127.0, 125.8, 124.5, 123.7, 123.2, 121.7, 111.3, 76.9, 63.3, 55.0, 21.5. HRMS (ESI) m/z calcd for C₃₇H₃₀N₂NaO₅S [M + Na]⁺ 637.1773; found 637.1790.

4-(*Benzyloxy*)-5-(3-chlorophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ha**). White solid (42 mg, 74% yield); mp 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.46-7.39 (m, 3H), 7.34-7.27 (m, 6H), 7.22-7.18 (m, 3H), 7.13 (t, J = 2.0 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 5.82 (s, 1H), 4.71 (d, J = 16.8 Hz, 1H), 4.12 and 4.06 (ABq, J = 10.0 Hz, 2H), 4.00 (d, J = 16.8 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.9, 143.2, 139.4, 135.0, 134.3, 134.2, 130.3, 129.8, 129.1, 129.0, 128.9, 128.8, 128.6, 126.9, 125.9, 124.7, 124.3, 123.8, 123.2, 121.9, 111.4, 76.7, 63.1, 55.0, 21.5. HRMS (ESI) m/z calcd for C₃₁H₂₅ClN₂NaO₅S [M + Na]⁺ 595.1070; found 595.1068.

4-(*Benzyloxy*)-5-(3-methoxyphenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]di azepin-3-one (**3ia**). White solid (43 mg, 76% yield); mp 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.45-7.36 (m, 3H), 7.32-7.28 (m, 5H), 7.23-7.21 (m, 2H), 7.17 (t, J = 8.0 Hz, 1H), 6.80 (dd, J = 8.0, 2.0 Hz, 1H), 6.71 (t, J = 2.0 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 5.84 (s, 1H), 4.71 (d, J = 16.4 Hz, 1H), 4.09 (s, 2H), 4.01 (d, J = 16.8 Hz, 1H), 3.69 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 159.9, 153.0, 144.8, 143.9, 139.1, 134.6, 134.2, 130.1, 129.8, 128.9, 128.8, 128.8, 128.5, 125.7, 124.4, 123.7, 123.2, 121.6, 118.5, 113.7, 113.0, 111.3, 76.9, 63.4, 55.2, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₂H₂₉N₂O₆S [M + H]⁺ 569.1746; found 569.1766.

4-(*Benzyloxy*)-5-(2-fluorophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ja**). White solid (43 mg, 78% yield); mp 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-8.00 (m, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.38-7.28 (m, 9H), 7.21-7.17 (m, 2H), 7.08-6.98 (m, 3H), 6.13 (s, 1H), 4.88 (d, J = 17.6 Hz, 1H), 4.53 (d, J = 17.2 Hz, 1H), 4.16 (d, J = 9.6 Hz, 1H), 3.95 (d, J = 9.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 160.7 (J = 247.8 Hz), 153.3, 144.8, 143.9, 134.7, 134.3, 131.0 (J = 8.6 Hz), 129.9, 129.4 (J = 3.2 Hz), 128.8, 128.7, 128.5, 128.4, 125.8, 124.8, 124.6 (J = 3.6 Hz), 123.9 (J = 13.1 Hz), 123.7, 122.4, 121.1, 116.4 (J = 2.2 Hz), 111.3, 76.1, 59.0, 55.8, 21.5. HRMS (ESI) m/z calcd for C₃₁H₂₅FN₂NaO₅S [M + Na]⁺ 579.1366; found 579.1395.

4-(Benzyloxy)-5-(2-chlorophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ka**). White solid (44 mg, 77% yield); mp 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.95 (m, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.41 (dd, J = 8.0, 1.2 Hz, 1H), 7.37-7.30 (m, 5H), 7.29-7.27 (m, 3H), 7.17-7.10 (m, 3H), 6.95 (dd, J = 8.0, 1.6 Hz, 1H), 6.46 (s, 1H), 4.86 (d, J = 17.6 Hz, 1H), 4.66 (d, J = 17.2 Hz, 1H), 4.25 (d, J = 9.2 Hz, 1H), 3.77 (d, J = 9.2 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 153.4, 144.9, 144.6, 134.7, 134.7, 134.6, 134.1, 130.3, 130.2, 130.0, 129.0, 128.8, 128.6, 128.5, 128.4, 127.4, 125.8, 124.9, 123.7, 122.2, 121.0, 111.4, 76.2, 60.9, 56.2, 21.6. HRMS (ESI) m/z calcd for C₃₁H₂₅ClN₂NaO₅S [M + Na]⁺ 595.1070; found 595.1071.

4-(*Benzyloxy*)-5-(2-bromophenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3la**). White solid (46 mg, 75% yield); mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.61-7.59 (m, 1H), 7.36-7.30 (m, 5H), 7.29-7.26 (m, 3H), 7.21-7.15 (m, 2H), 7.13-7.10 (m, 2H), 6.94-6.92 (m, 1H), 6.49 (s, 1H), 4.85 (d, J = 15.6 Hz, 1H), 4.68 (d, J = 15.2 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 3.74 (d, J = 9.2Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 153.5, 144.9, 144.8, 136.3, 134.7, 134.0, 133.6, 130.4, 130.0, 129.0, 128.7, 128.6, 128.5, 128.3, 128.0, 125.8, 125.2, 124.9, 123.7, 122.2, 120.9, 111.4, 76.2, 63.4, 56.3, 21.6. HRMS (ESI) m/z calcd for C₃₁H₂₅BrN₂NaO₅S [M + Na]⁺ 639.0565; found 639.0593.

4-(*Benzyloxy*)-5-(*o*-tolyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-o ne (**3ma**). White solid (43 mg, 78% yield); mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.99 (m, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.36-7.31 (m, 4H), 7.29-7.23 (m, 4H), 7.21-7.18 (m, 2H), 7.07-7.00 (m, 3H), 6.76 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 4.72 and 4.71 (ABq, J =15.6 Hz, 2H), 4.19 (d, J = 9.2 Hz, 1H), 3.72 (d, J = 9.2 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 153.3, 145.7, 144.9, 137.6, 135.3, 134.7, 134.2, 131.2, 130.0, 129.1, 128.8, 128.7, 128.6, 128.4, 127.3, 126.3, 125.6, 124.9, 123.6, 122.2, 120.9, 111.3, 76.5, 61.0, 56.0, 21.5, 19.8. HRMS (ESI) m/z calcd for C₃₂H₂₈N₂NaO₅S [M + Na]⁺ 575.1617; found 575.1631.

4-(*Benzyloxy*)-5-(*naphthalen-1-yl*)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]dia zepin-3-one (**3na**). White solid (49 mg, 83% yield); mp 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.87-7.82 (m, 4H), 7.49 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.37-7.28 (m, 5H), 7.24-7.17 (m, 4H), 6.99 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 7.2 Hz, 2H), 6.66 (s, 1H), 4.78 and 4.69 (ABq, J = 17.2 Hz, 2H), 4.21 (d, J = 9.6 Hz, 1H), 3.81 (d, J = 9.6 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 153.1, 145.1, 144.9, 134.6, 134.2, 134.1, 131.8, 129.9, 128.9, 128.7, 128.7, 128.6, 128.3, 126.6, 126.1, 125.7, 124.9, 124.8, 123.7, 123.6, 122.4, 121.5, 111.3, 77.0, 76.7, 55.8, 21.6. HRMS (ESI) m/z calcd for C₃₅H₂₈N₂NaO₅S [M + Na]⁺ 611.1617; found 611.1644.

4-(*Benzyloxy*)-5-(*naphthalen-2-yl*)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]dia zepin-3-one (**3oa**). White solid (50 mg, 84% yield); mp 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.19 (m, 1H), 7.78-7.73 (m, 4H), 7.70-7.68 (m, 1H), 7.48-7.40 (m, 6H), 7.36-7.29 (m, 6H), 7.23-7.21 (m, 2H), 6.04 (s, 1H), 4.72 (d, J = 16.4 Hz, 1H), 4.15 and 4.08 (ABq, J = 10.0 Hz, 1H), 4.06 (d, J = 16.4 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 153.0, 144.8, 144.0, 135.0, 134.5, 134.2, 133.1, 132.9, 129.8, 129.1, 128.9, 128.8, 128.8, 128.6, 128.2, 127.6, 126.8, 126.6, 125.8, 125.7, 124.5, 124.1, 123.7, 123.2, 121.8, 111.4, 77.0, 63.7, 55.0, 21.5. HRMS (ESI) m/z calcd for C₃₅H₂₈N₂NaO₅S [M + Na]⁺ 611.1617; found 611.1645.

4-(Benzyloxy)-8-methoxy-5-phenyl-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]dia zepin-3-one (**3ta**). White solid (42 mg, 73% yield); mp 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.43-7.33 (m, 3H), 7.30-7.26 (m, 5H), 7.23-7.19 (m, 2H), 7.15 (t, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 6.64 (d, J =7.6 Hz, 1H), 5.82 (s, 1H), 4.69 (d, J = 16.8 Hz, 1H), 4.10 (s, 2H), 4.00 (d, J = 16.4 Hz, 1H), 3.67 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 160.0, 153.0, 144.8, 144.0, 139.1, 134.7, 134.3, 130.1, 129.8, 128.9, 128.8, 128.7, 128.5, 125.7, 124.5, 123.6, 123.2, 121.6, 118.6, 113.8, 113.0, 111.3, 76.9, 63.5, 55.2, 54.9, 21.5. HRMS (ESI) m/z calcd for C₃₂H₂₉N₂O₆S [M + H]⁺ 569.1746; found 569.1746.

4-Methoxy-5-phenyl-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-one (**3ab**). White solid (35 mg, 75% yield); mp 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.14 (m, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.47-7.33 (m, 4H), 7.30-7.28 (m, 4H), 7.16-7.12 (m, 2H), 5.93 (s, 1H), 4.76 (d, J = 16.8 Hz, 1H), 3.99 (d, J = 16.8 Hz, 1H), 3.09 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.1, 144.6, 144.0, 137.3, 134.1, 129.7, 129.1, 128.9, 128.6, 126.6, 125.8, 124.5, 123.7, 123.2, 121.6, 111.3, 61.5, 55.0, 21.5. HRMS (ESI) m/z calcd for C₂₅H₂₃N₂O₅S [M + H]⁺ 463.1328; found 463.1312.

4-Ethoxy-5-phenyl-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-one (**3ac**). White solid (35 mg, 74% yield); mp 109-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.15 (m, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.46-7.44 (m, 1H), 7.42-7.36 (m, 2H), 7.30-7.25 (m, 5H), 7.17-7.12 (m, 2H), 5.92 (s, 1H), 4.72 (d, J = 16.4 Hz, 1H), 3.95 (d, J = 16.8 Hz, 1H), 3.23-3.11 (m, 2H), 2.39 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.5, 144.0, 137.6, 134.1, 129.7, 129.1, 129.1, 128.8, 128.7, 126.5, 125.8, 124.5, 123.7, 123.3, 121.7, 111.3, 70.1, 63.5, 54.9, 21.5, 13.8. HRMS (ESI) m/z calcd for C₂₆H₂₄N₂NaO₅S [M + Na]⁺ 499.1304; found 499.1321. 4-(Allyloxy)-5-phenyl-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-one

(**3ad**). White solid (38 mg, 77% yield); mp 111-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.46-7.44 (m, 1H), 7.40-7.37 (m, 2H), 7.29-7.26 (m, 5H), 7.17-7.13 (m, 2H), 5.97 (s, 1H), 5.78-5.68 (m, 1H), 5.22-5.19 (m, 2H), 4.71 (d, J =16.4 Hz, 1H), 3.96 (d, J = 16.8 Hz, 1H), 3.65 (dd, J = 11.2, 6.4 Hz, 1H), 3.54 (dd, J = 10.8, 6.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 144.7, 144.0, 137.5, 134.1, 131.6, 129.7, 129.1, 128.9, 128.7, 126.5, 125.8, 124.5, 123.7, 123.2, 121.7, 120.3, 111.3, 75.8, 63.7, 54.9, 21.5. HRMS (ESI) m/z calcd for C₂₇H₂₄N₂NaO₅S [M + Na]⁺ 511.1304; found 511.1293.

4-(Allyloxy)-5-(p-tolyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diazepin-3-one (**3dd**). White solid (31 mg, 61% yield); mp 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.14 (m, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.45-7.43 (m, 1H), 7.40-7.37 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.93 (s, 1H), 5.78-5.68 (m, 1H), 5.20 (d, J = 11.6 Hz, 2H), 4.71 (d, J = 16.8 Hz, 1H), 3.97 (d, J = 16.4 Hz, 1H), 3.64 (dd, J = 11.2, 6.4 Hz, 1H), 3.51 (d, J = 11.2, 6.4 Hz, 1H), 2.37 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.7, 144.2, 138.8, 134.5, 134.2, 131.6, 129.7, 128.7, 126.4, 125.7, 124.5, 123.6, 123.2, 121.6, 120.2, 111.3, 75.8, 63.5, 54.9, 21.5, 21.0. HRMS (ESI) m/z calcd for C₂₈H₂₆N₂NaO₅S [M + Na]⁺ 525.1460; found 525.1444.

4-(*Allyloxy*)-5-(4-methoxyphenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]diaz epin-3-one (**3ed**). White solid (33 mg, 64% yield); mp 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.14 (m, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.45-7.36 (m, 3H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 5.91 (s, 1H), 5.78-5.68 (m, 1H), 5.21 (d, J = 11.6 Hz, 2H), 4.71 (d, J = 16.4 Hz, 1H), 3.97 (d, J = 16.4 Hz, 1H), 3.75 (s, 3H), 3.64 (dd, J = 11.2, 6.4 Hz, 1H), 3.51 (dd, J = 11.2, 6.4 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 159.8, 153.0, 144.7, 144.3, 134.2, 131.6, 129.7, 129.6, 128.7, 127.9, 125.7, 124.5, 123.7, 123.2, 121.6, 120.2, 114.3, 111.3, 75.8, 63.3, 55.3, 54.9, 21.5. HRMS (ESI) m/z calcd for C₂₈H₂₇N₂O₆S [M + H]⁺ 519.1590; found 519.1572.

4-(Allyloxy)-5-(4-(methylthio)phenyl)-1-tosyl-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4] diazepin-3-one (**3fd**). White solid (33 mg, 62% yield); mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.14 (m, 1H), 7.67-7.65 (m, 2H), 7.46-7.38 (m, 3H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 5.92 (s, 1H), 5.78-5.68 (m, 1H), 5.24-5.19 (m, 2H), 4.71 (d, *J* = 16.8 Hz, 1H), 3.94 (d, *J* = 16.8 Hz, 1H), 3.65 (dd, *J* = 11.2, 6.4 Hz, 1H), 3.52 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.42 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.0, 144.7, 143.9, 139.8, 134.1, 134.0, 131.5, 129.7, 128.7, 127.0, 126.6, 125.8, 124.5, 123.7, 123.2, 121.7, 120.3, 111.3, 75.8, 63.4, 54.9, 21.5, 15.4. HRMS (ESI) m/z calcd for C₂₈H₂₆N₂NaO₅S₂ [M + Na]⁺ 557.1181; found 557.1166.

4-(*Benzyloxy*)-5-*phenyl*-1-(*phenylsulfonyl*)-1,2,4,5-tetrahydro-3H-benzofuro[3,2-e][1,4]dia zepin-3-one (**3ua**). White solid (42 mg, 81% yield); mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.17 (m, 1H), 7.86 (dd, J = 7.2, 1.6 Hz, 2H), 7.59-7.55 (m, 3H), 7.46-7.39 (m, 3H), 7.33-7.29 (m, 3H), 7.28-7.25 (m, 3H), 7.22-7.19 (m, 2H), 7.13-7.10 (m, 2H), 5.88 (s, 1H), 4.74 (d, J = 16.4 Hz, 1H), 4.07-4.00 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 153.0, 144.1, 137.5, 137.2, 134.4, 133.6, 129.2, 129.0, 128.8, 128.8, 128.7, 128.5, 126.5, 125.8, 124.3, 123.7, 123.1, 121.5, 111.3, 76.8, 63.5, 55.0. HRMS (ESI) m/z calcd for C₃₀H₂₄N₂NaO₅S [M + Na]⁺ 547.1304; found 547.1297. **Gram-Scale Synthesis of Compound 3la.** To a solution of compound **1l** (1.04 g, 2.3 mmol) and *N*-(benzyloxy)-2-bromoacetamide **2a** (0.67 g, 2.76 mmol) in anhydrous MeCN (5 mL) was added Cs_2CO_3 (0.91 g, 2.8 mmol). The resulting mixture was stirred at room temperature for 1 h. After the completion of the reaction, the solid was filtered and washed with 2-3 mL of dichloromethane (10 mL), and the combined filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:5) to afford the product **3la** as a white solid (1.08 g, 76% yield).

Synthesis of Compound 4. To a solution of compound 3la (61.6 mg, 0.1 mmol) in MeCN/H₂O (9:1, 2 mL) was added Mo(CO)₆ (60.7 mg, 0.23 mmol). The reaction mixture was stirred and heated to 85 °C for 3 h under nitrogen (monitored by TLC). After the completion of the reaction, the mixture was filtered through a pad of Celite. The filter cake was washed with 2-3 mL of ethyl acetate (10 mL), and the combined filtrates were evaporated to afford a crude product that was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1:5) to afford the compound 4 as a white solid (39.3 mg, 77% yield); mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.11 (m, 1H), 7.60 (d, *J* = 8.0 Hz, 3H), 7.41-7.31 (m, 3H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.23-7.15 (m, 2H), 6.49 (dd, *J* = 7.2, 2.0 Hz, 1H), 5.86 (d, *J* = 4.4 Hz, 1H), 5.63 (d, *J* = 3.6 Hz, 1H), 4.57 (d, *J* = 16.8 Hz, 1H), 4.40 (d, *J* = 16.4 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 153.1, 144.5, 144.3, 137.8, 133.6, 133.0, 130.6, 129.3, 128.6, 128.5, 128.1, 125.8, 125.0, 123.8, 123.8, 123.0, 122.8, 111.3, 56.5, 54.6, 21.7. HRMS (ESI) m/z calcd for C₂₄H₁₈BrN₂O₄S [M - H]⁺ 509.0171; found 509.0192.

Synthesis of Compound 5. To a solution of compound 4 (51.1 mg, 0.1 mmol) in THF (1 mL) was added K_2CO_3 (16.6 mg, 0.12 mmol,) and MeI (7.5 μ L, 0.12 mmol). The resulting

mixture was stirred at room temperature for 6 h (monitored by TLC). After the completion of the reaction, the mixture was quenched with water and extracted with ethyl acetate (3 X 5 mL). The combined organic layers were dried and concentrated under reduced pressure followed by silica gel column chromatography purification (ethyl acetate/petroleum ether = 1:5) to give the compound **5** as a white solid (33.1 mg, 63% yield); mp 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.36-7.28 (m, 5H), 7.25-7.16 (m, 2H), 6.91 (d, *J* = 8.0 Hz, 1H), 5.77 (s, 1H), 4.99 (d, *J* = 16.8 Hz, 1H), 4.50 (d, *J* = 17.2 Hz, 1H), 2.45 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.3, 145.7, 144.4, 137.1, 133.6, 133.6, 130.4, 129.4, 128.6, 128.1, 128.1, 125.6, 125.0, 124.2, 123.7, 122.1, 121.0, 111.3, 62.2, 58.1, 36.2, 21.6. HRMS (ESI) m/z calcd for C₂₅H₂₁BrN₂NaO₄S [M + Na]⁺ 547.0303; found 547.0315.

References

- [1] Rong, Z. Q.; Wang, M.; Chow, C. H. E.; Zhao, Y. Chem. Eur. J. 2016, 22, 9483-9487.
- [2] Gu, Z.; Zhou, J.; Jiang, G.-F.; Zhou, Y.-G. Org. Chem. Front. 2018, 5, 1148-1151.
- [3] Marques, A.-S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau,
- X. Angew. Chem. Int. Ed. 2019, 58, 9969-9973.
- [4] Trost, B. M.; Zuo, Z. Angew. Chem. Int. Ed. 2020, 59, 1243-1247.
- [5] Fang, Q.-Y.; Yi, M.-H.; Wu, X.-X.; Zhao, L.-M. Org. Lett. 2020, 22, 5266-5270.
- [6] Zhou, J.; Zhang, H.; Chen, X.-L.; Qu, Y.-L.; Zhu, Q.; Feng, C.-G.; Chen, Y.-J. J. Org.*Chem.* 2019, 84, 9179-9187.
- [7] Jin, Q.; Zhang, D.; Zhang, J. Org. Biomol. Chem. 2019, 17, 9708-9711.

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3aa**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ba**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ca

-0.000

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of Compound $\mathbf{3da}$

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ea**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3fa**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ga

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ha**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ia**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ja**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ka**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3la**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ma**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3na**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 30a

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ta**

-0.000

¹H NMR Spectrum (400 MHz, CDCl₃) of Compound **3ab**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ab**

¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 3ac

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ac**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ad

¹H NMR Spectrum (400 MHz, CDCl₃) of Compound **3dd**

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of Compound 3dd

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ed

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3fd**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ua**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 4

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **5**

Figure S1. Crystal Structure of 3aa (50% probability level for the thermal ellipsoids).

Formula	$C_{31}H_{26}N_2O_5S$
Formula weight	538.60
Temperature	293 (2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	$a = 9.9502$ (7) Å, $\alpha = 113.915$ (6) deg.
	$b = 11.9913$ (7) Å, $\beta = 96.434$ (6) deg.
	$c = 14.0968 (10) \text{ Å}, \gamma = 93.254 (5) \text{ deg.}$
Volume	1518.19 (19) Å ³
Ζ	2
Density (calculated)	1.178 g / cm ³
Absorption coefficient	0.146 mm^{-1}
<i>F</i> (000)	564.0
Crystal	0.22 x 0.19 x 0.12 mm
Theta range for data collection	5.572 to 48.994 deg
Limiting indices	-11<=h<=10, -13<=k<=13, -16<=l<=14
Reflections collected	10614
Independent reflections	5045 [R(int) = 0.0274, Rsigma = 0.0447]
Data / restraints / parameters	5045 / 0 / 353
Goodness-of-fit on F^2	1.048
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0677, wR_2 = 0.1935$
R indices (all data)	$R_1 = 0.0846, wR_2 = 0.2084$
Largest diff. peak and hole	0.70 and -0.68 e. $Å^{-3}$

Table S1. Crystal Data for Compound 3aa