Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Transition Metal-free Cross-Dehydrogenative Arylation of Unactivated Benzylic C–H Bonds

Andrew R. A. Spencer, Rachel Grainger, Adyasha Panigrahi, Thomas J. Lepper, Katarzyna Bentkowska and Igor Larrosa*

Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Contents

1.1 General Experimental Information	S3
1.2 Experimental procedures and characterisation data	S3
1.3 References	S26
1.4 NMR spectral data	S27

1.1 General experimental information

All solvents and reagents were purchased from commercial suppliers and used without further purification unless otherwise stated. Compound **1k** was prepared according to the procedure described by Wu and co-workers.¹

Column chromatography was performed on silica gel (40-63 μ m) unless otherwise stated. AgNO₃ impregnated silica gel was prepared by absorbing a solution of AgNO₃ in MeCN (10% wt of AgNO₃ to silica) on silica. The MeCN was removed under reduced pressure on a rotary evaporator and the silica was further dried at 80 °C and < 1 mbar for 1-2 h (for long term storage, silica was kept in the fridge in the absence of light). Thin layer chromatography (TLC) was carried out on pre-coated silica gel F_{254} plates with visualization under UV light or using an aqueous basic KMnO₄ solution.

Melting points (mp) are uncorrected and were obtained using a Stuart SMP11 apparatus. IR spectra were recorded using a Thermo Scientific Nicolet iS5 FTIR spectrometer and the relevant peaks are quoted in cm⁻¹. NMR data was collected on a Bruker Avance III 400 MHz or Bruker AvanceII+ 500 MHz spectrometers. Chemical shifts are given in ppm (δ) and are referenced to the residual CDCl₃ solvent peak at 7.26 ppm (¹H NMR) and 77.16 ppm (¹³C NMR). Conventional one-dimensional (1D) ¹H NMR, ¹⁹F NMR, were recorded at room temperature under routine conditions. High Resolution Mass Spectra (HRMS) were performed by the School of Chemistry Mass Spectrometry Service of the University of Manchester on a Thermo Finnigan MAT95XP spectrometer.

1.2 Experimental procedures and characterisation data

General experimental procedure

In an argon filled glovebox, a flame-dried crimpable glass schlenk vial (CEM Microwave Technologies, 10 mL volume) was loaded with the ethyl benzene derivative (0.4 mmol), Selectfluor® (354.3 mg, 0.8 mmol), 9-fluorenone (3.60 mg, 0.02 mmol) and MeCN (5 mL). The vial was sealed with a crimpable cap and removed from the glovebox. The reaction was allowed to stir for 24 h at room temperature and irradiated with an 18W CFL bulb. Under a positive pressure of nitrogen, arene (0.8 mmol) was added and the reaction was re-sealed and heated to 90 °C for 30 minutes. After cooling, the reaction mixture was filtered through a short plug of silica with acetone (3 x 15 mL). The products were purified using flash chromatography using the eluents specified.

Glovebox free experimental procedure

A flame-dried crimpable glass schlenk vial (CEM Microwave Technologies, 10 mL volume) was loaded with the 4-ethyl-1,1'-biphenyl **1c** (73.0 mg, 0.4 mmol), Selectfluor® (354.3 mg, 0.8 mmol) and 9-fluorenone (3.60 mg, 0.02 mmol). After evacuating and backfilling 3 times with nitrogen, MeCN that had been degassed three times by *freeze-pump-thaw* cycles (5 mL) was added. The vial was sealed with a crimpable cap and stirred for 3 h at room temperature and irradiated with an 18W CFL bulb. Under a positive pressure of nitrogen, 2,4-dimethoxytoluene **2a** (118 μL, 0.8 mmol) was added and the reaction was re-sealed and heated to 90 °C for 30 minutes. After cooling, the reaction mixture was filtered through a short plug of silica with acetone (3 x 15 mL). A 75% yield of 4-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)-1,1'-biphenyl **3ac** was determined by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard.

Experimental procedure for 4 mmol scale reaction

In an argon filled glovebox, a 100 mL Ace pressure tube was loaded with the 4-ethyl-1,1'-biphenyl **1c** (730 mg, 4 mmol), Selectfluor[®] (2.66 g, 6 mmol), 9-fluorenone (36.0 mg, 0.2 mmol) and MeCN (50 mL). The tube was sealed with a screw cap and stirred for 24 h at room temperature and irradiated with two 18W CFL bulbs. Under a stream of nitrogen, 2,4-dimethoxytoluene **2a** (1.18 mL, 8 mmol) was added and the reaction was re-sealed and heated to 90 °C for 3 h. After cooling, the reaction mixture was filtered through a short plug of silica with acetone (3 x 150 mL). The product was purified by flash chromatography with Ag-

impregnated silica using an eluent of 1% to 3% EtOAc:hexanes to afford 4-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)-1,1'-biphenyl **3ac** (1.04 g, 75%) as a yellow solid.

Preparation of (1-fluoroethyl)benzene 4a

Selectfluor (2.14 g, 5.75 mmol) and a phenylpropanoic acid (0.704 mL, 5 mmol) were weighed into a crimp cap vial and dissolved in a 90:10 solution of acetone:H₂O (37.5 mL:4.2 mL). AgNO₃ (0.170 g, 1 mmol) was added and the reaction vessel quickly sealed, covered in foil and stirred in an oil bath for 5 minutes at 90 °C. After this time, the reaction vessel was rapidly cooled in an ice bath and quenched with 1 M HCl to precipitate out AgCl. The reaction mixture diluted in DCM and basified with saturated K₂CO₃ solution. The organic layer was separated and the aqueous layer extracted DCM (20 mL x 2). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The product was purified by column chromatography using an eluent of pentane to afford (1-fluoroethyl)benzene **4a** as a clear oil (0.520 g, 84%).

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.47–7.30 (m, 5H), 5.64 (dq, J = 47.7, 6.4 Hz, 1H), 1.66 (dd, J = 23.9, 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 141.6 (d, J = 19.5 Hz), 128.6, 128.3 (d, J = 2.0 Hz), 125.4 (d, J = 6.7 Hz), 91.1 (d, J = 166.9 Hz), 23.1 (d, J = 25.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ, ppm: –167.1.

Spectroscopic data was in agreement with literature values.²

Procedure for the mechanistic experiments

Selectfluor (1.77mg, 0.005 mmol) or HF (4.00 μ L, 0.005 mmol) and 2,4-dimethoxytoluene (35.4 μ L, 0.2 mmol) were weighed into an oven dried 10 mL crimp cap vial and purged with nitrogen. A solution of (1-fluoroethyl)benzene **41** (0.2 mmol) in dry MeCN was added, the overall concentration was adjusted to 0.08 M with additional dry MeCN. The vial sealed and heated to 90 °C for 30 min. After 30 min the reaction vessel was cooled in an ice bath then diluted with Et₂O (5 mL), the crude reaction mixture was filtered through a short plug of silica washing with acetone (3 x 5 mL) and concentrated *in vacuo*. The yield was determined by 1 H NMR using CH₂Br₂ as an internal standard.

1-(1-(3-(tert-butyl)phenyl)ethyl)-2,4-dimethoxy-5-methylbenzene

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then 2,4-dimethoxytoluene **2a** (118 μ L, 1.2 mmol) was added. The product was purified by column chromatography using an eluent of 4% to 6% Et₂O:hexanes to afford 1-(1-(3-(tert-butyl)phenyl)ethyl)-2,4-dimethoxy-5-methylbenzene **3aa** (89.0 mg, 71%) as a yellow solid.

m. p. = $42-44^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.37 (s, 1H), 7.25–7.19 (m, 2H), 7.10–7.04 (m, 1H), 6.93 (s, 1H), 6.45 (s, 1H), 4.51 (q, J = 7.3 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 2.16 (s, 3H), 1.60 (d, J = 7.3 Hz, 3H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 156.6, 155.8, 150.7, 146.4, 129.5, 127.8, 126.8, 125.1, 124.7, 122.6, 118.0, 95.7, 56.1, 55.7, 37.2, 34.8, 31.6, 21.3, 15.7.

HRMS m/z calculated for C₂₁H₂₈O₂Na, 335.1982, found: 335.1974.

IR (ATR), v, cm⁻¹: 1298, 1204, 1039, 707, 611, 592, 588, 576, 569.

2-(1-(3-(tert-butyl)phenyl)ethyl)-1,4-dimethoxybenzene

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 µL, 0.4 mmol) was irradiated for 24 h then 1,4-dimethoxybenzene **2b** (221 mg, 1.6 mmol) was added. The product was purified by flash chromatography using an eluent of 2% diisopropyl ether:hexanes to afford 2-(1-(3-(tert-butyl)phenyl)ethyl)-1,4-dimethoxybenzene **3ba** (47.8 mg, 40%) as a clear oil.

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.32 (d, J = 1.9 Hz, 1H), 7.19 (d, J = 5.4 Hz, 2H), 7.04 (td, J = 4.6, 1.8 Hz, 1H), 6.80–6.73 (m, 2H), 6.68 (dd, J = 8.8, 3.1 Hz, 1H), 4.54 (q, J = 7.3 Hz, 1H), 3.73 (s, 3H), 3.73 (s, 3H), 1.57 (d, J = 7.2 Hz, 3H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 153.7, 151.4, 150.9, 145.6, 136.8, 127.9, 125.2, 124.8, 122.8, 114.8, 111.8, 110.6, 56.3, 55.8, 38.0, 34.8, 31.6, 21.0.

HRMS m/z calculated for C₂₀H₂₇O₂, 299.2006, found: 299.2006.

IR (ATR), v, cm⁻¹: 1492, 1462, 1214, 1044, 1026, 795, 706.

2-(1-(3-(tert-butyl)phenyl)ethyl)-1-methoxy-4-methylbenzene

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (19.0 μ L, 0.1 mmol) was irradiated for 24 h then 1-methoxy-4-methylbenzene **2c** (50.0 μ L, 0.4 mmol) was added. The product was purified by preparative thin layer chromatography using an eluent of 100% hexanes to afford 2-(1-(3-(tert-butyl)phenyl)ethyl)-1-methoxy-4-methylbenzene **3ca** (13.5 mg, 48%) as a clear oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dt, J = 2.2, 1.1 Hz, 1H), 7.22–7.16 (m, 2H), 7.04 (td, J = 4.6, 1.8 Hz, 1H), 6.98–6.92 (m, 2H), 6.75–7.73 (m, 1H), 4.53 (q, J = 7.3 Hz, 1H), 3.75 (s, 3H), 2.25 (s, 3H), 1.57 (d, J = 7.2 Hz, 3H), 1.30 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 154.9, 150.8, 146.0, 135.1, 129.7, 128.5, 127.8, 127.3, 125.3, 124.8, 122.7, 110.8, 55.8, 37.7, 34.8, 31.6, 21.1, 20.9.

HRMS m/z calculated for C₂₀H₂₆O, 282.1978, found: 282.1980.

IR (ATR), v, cm⁻¹: 1492, 1462, 1277, 1214, 1177, 1044, 1026, 795, 705.

$\hbox{\bf 4-}(1-(3-(tert-butyl)phenyl)ethyl)-2-methylphenol$

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then 2-methylphenol **2d** (124 μ L, 1.2 mmol) was added. The product was purified by flash chromatography using an eluent of 0% to 5% EtOAc:hexanes to afford 4-(1-(3-(tert-butyl)phenyl)ethyl)-2-methylphenol **3da** (61.2 mg, 57%) as a red oil. (12% of other regioisomer **3da'** determined by NMR).

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.29 (s, 1H), 7.25–7.21 (m, 2H), 7.08–6.98 (m, 2H), 6.95 (dd, J = 8.2, 2.3 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 4.08 (q, J = 7.2 Hz, 1H), 2.23 (s, 3H), 1.62 (d, J = 7.2 Hz, 3H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 152.0, 151.1, 146.5, 139.0, 130.4, 128.1, 126.1, 124.8, 124.7, 123.5, 123.0, 114.8, 44.4, 34.8, 31.6, 22.5, 16.0.

HRMS m/z calculated for C₁₉H₂₃O, 367.1754, found: 367.1748.

IR (ATR), v, cm⁻¹: 1505, 1262, 1113, 818, 795, 706.

4-(1-(3-(tert-butyl)phenyl)ethyl)benzene-1,3-diol

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then resorcinol **2e** (88.0 mg, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 0% to 20% EtOAc:hexanes to afford 4-(1-(3-(tert-butyl)phenyl)ethyl)benzene-1,3-diol **3ea** (65.0 mg, 60%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (d, J = 2.1 Hz, 1H), 7.30–7.21 (m, 2H), 7.12 (d, J = 8.3 Hz, 1H), 7.04 (dt, J = 6.3, 2.1 Hz, 1H), 6.44 (dd, J = 8.3, 2.5 Hz, 1H), 6.31 (d, J = 2.6 Hz, 1H), 4.68 (s, 2H), 4.24 (q, J = 7.2 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1, 154.5, 151.7, 144.9, 128.6, 128.5, 124.5, 124.4, 123.6, 107.6, 103.6, 38.8, 34.7, 31.4, 21.4.

HRMS m/z calculated for $C_{18}H_{21}O_2$, 269.1547, found: 269.1540.

IR (ATR), v, cm⁻¹: 1602, 1451, 1201, 1159, 1108, 971, 836, 797, 706, 628.

6-(1-(3-(tert-Butyl)phenyl)ethyl)benzo[d][1,3]dioxol-5-ol

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then benzo[d][1,3]dioxol-5-ol **2f** (110.5 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 97:2:1 hexanes:EtOAc:acetic acid to afford 6-(1-(3-(*tert*-Butyl)phenyl)ethyl)benzo[d][1,3]dioxol-5-ol **3fa** (82.7 mg, 69%) as a brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ, ppm:7.36–7.33 (m, 1H), 7.30–7.21 (m, 2H), 7.05 (dt, J = 6.4, 1.9 Hz, 1H), 6.75 (s, 1H), 6.36 (s, 1H), 5.87 (s, 2H), 4.77 (s, 1H), 4.30 (q, J = 7.3 Hz, 1H), 1.60 (d, J = 7.2 Hz, 3H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ, ppm: 151.7, 147.8, 146.2, 145.0, 141.6, 128.5, 124.5, 124.5, 123.6, 107.4, 101.0, 98.9, 38.8, 34.8, 31.5, 21.4.

HRMS m/z calculated for C₁₉H₂₁O₃, 297.1496, found: 297.1494.

IR (ATR), v, cm⁻¹: 1482, 1261, 1224, 1167, 1037, 909, 797, 731, 705.

4-allyl-5-(1-(3-(tert-butyl)phenyl)ethyl)-2-methoxyphenol

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then 4-allyl-2-methoxyphenol **2g** (124.0 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 2% to 4% EtOAc:hexanes to afford 4-allyl-5-(1-(3-(tert-butyl)phenyl)ethyl)-2-methoxyphenol **3ga** (70.2 mg, 54%) as a light brown oil. (17% of minor isomer **3ga'** determined by ¹H NMR).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25–7.21 (m, 1H), 7.20–7.16 (m, 2H), 6.96 (ddd, J = 6.6, 3.6, 1.8 Hz, 1H), 6.85 (s, 1H), 6.64 (s, 1H), 5.88 (ddt, J = 16.6, 10.1, 6.2 Hz, 1H), 5.43 (s, 1H), 5.10–4.88 (m, 2H), 4.28 (q, J = 7.2 Hz, 1H), 3.86 (s, 3H), 3.36 (dt, J = 15.8, 1.6 Hz, 1H), 3.27 (dt, J = 16.1, 1.5 Hz, 1H), 1.55 (d, J = 7.1 Hz, 3H), 1.29 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 151.1, 146.1, 144.7, 144.0, 137.9, 137.6, 129.0, 128.1, 124.9, 124.7, 122.8, 115.5, 113.8, 112.4, 56.1, 40.1, 36.9, 34.8, 31.5, 22.6.

HRMS m/z calculated for $C_{22}H_{29}O_2$, 325.2162, found: 325.2162.

IR (ATR), v, cm⁻¹: 1508, 1271, 1204, 1093, 878, 795, 706.

3-(1-(3-(tert-butyl)phenyl)ethyl)-2-methylbenzo[b]thiophene

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then 2-methylbenzo[b]thiophene **2h** (119 mg, 0.8 mmol) was added. The product was purified by preparative TLC using an eluent of 100% hexanes to afford 3-(1-(3-(tert-butyl)phenyl)ethyl)-2-methylbenzo[b]thiophene **3ha** (80.0 mg, 65%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ, ppm: 7.62 (dt, J = 7.1, 1.8 Hz, 1H), 7.36 (dt, J = 7.2, 1.2 Hz, 1H), 7.14–7.03 (m, 5H), 6.97 (d, J = 6.8 Hz, 1H), 4.55 (q, J = 7.3 Hz, 1H), 2.32 (s, 3H), 1.66 (d, J = 7.4 Hz, 3H), 1.17 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ, ppm: 151.1, 143.6, 139.8, 138.5, 135.3, 134.7, 128.0, 124.7, 124.0, 123.6, 122.9, 122.5, 122.1, 121.8, 36.8, 34.8, 31.5, 18.8, 14.6.

HRMS m/z calculated for $C_{21}H_{25}S$, 309.1671, found: 309.1674.

IR (ATR), v, cm⁻¹: 1456, 1433, 761, 730, 706.

2-(1-(3-(tert-butyl)phenyl)ethyl)-3-methylbenzo[b]thiophene

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then 3-methylbenzo[b]thiophene **2i** (107 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 100% hexanes to afford 2-(1-(3-(tert-butyl)phenyl)ethyl)-3-methylbenzo[b]thiophene **3ia** (57.2 mg, 46%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.84 (dd, J = 8.0, 2.8 Hz, 1H), 7.70 (dd, J = 8.3, 2.6 Hz, 1H), 7.51–7.46 (m, 1H), 7.42 (tdd, J = 8.0, 2.7, 1.2 Hz, 1H), 7.34 (dddt, J = 7.2, 4.5, 3.1, 1.5

Hz, 3H), 7.23 (d, 1H), 4.68 (q, J = 7.2 Hz, 1H), 2.43 (s, 3H), 1.84 (d, J = 7.2 Hz, 3H), 1.41 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ, ppm: 151.4, 145.0, 144.7, 141.1, 138.3, 128.3, 126.3, 124.5, 124.4, 123.9, 123.6, 123.5, 122.4, 121.4, 39.5, 34.8, 31.5, 23.0, 12.0.

HRMS m/z calculated for $C_{21}H_{25}S$, 309.1671, found: 309.1675.

IR (ATR), v, cm⁻¹: 1459, 1435, 794, 752, 737, 706.

methyl 3-(1-(3-(tert-butyl)phenyl)ethyl)-1H-indole-6-carboxylate

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μ L, 0.4 mmol) was irradiated for 24 h then methyl 1H-indole-6-carboxylate **2j** (140 mg, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 40% to 60% DCM:hexanes to afford methyl 3-(1-(3-(tert-butyl)phenyl)ethyl)-1H-indole-6-carboxylate **3ja** (70.2 mg, 52%) as an off white solid.

m. p. = $126-128^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 8.35 (s, 1H), 8.12 (s, 1H), 7.72 (dd, J = 8.4, 1.5 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.37 (s, 1H), 7.23–7.20 (m, 2H), 7.15 (s, 1H), 7.07 (d, J = 6.6 Hz, 1H), 4.39 (q, J = 7.1 Hz, 1H), 3.93 (s, 3H), 1.73 (d, J = 7.1 Hz, 3H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 168.4, 151.2, 146.0, 136.0, 130.6, 128.1, 124.8, 124.7 124.4, 123.6, 123.1, 122.3, 120.3, 119.4, 113.6, 52.1, 37.2, 34.8, 31.5, 22.5.

HRMS m/z calculated for C₂₂H₂₅O₂NNa, 358.1778, found: 358.1770.

IR (ATR), v, cm⁻¹: 1689, 1319, 1272, 1210, 775, 707.

3-(1-(3-(tert-butyl)phenyl)ethyl)-1H-indole-6-carboxylic acid

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 μL, 0.4 mmol) was irradiated for 24 h then 1H-indole-6-carboxylic acid **2k** (193 mg, 1.2 mmol) was added. The product was purified by flash chromatography using an eluent of 89:10:1 Hexane:EtOAc: AcOH to afford methyl 3-(1-(3-(tert-butyl)phenyl)ethyl)-1H-indole-6-carboxylic acid **3ka** (70.7 mg, 55%) as an off white solid.

m. p. = 201-204 °C

¹**H NMR** (400 MHz, DMSO- d_6) δ, ppm: 12.43 (s, 1H), 11.22 (s, 1H), 7.97 (d, J = 1.4 Hz, 1H), 7.51–7.43 (m, 2H), 7.38 (d, J = 9.4 Hz, 2H), 7.17–7.13 (m, 2H), 7.09–7.02 (m, 1H), 4.34 (q, J = 7.1 Hz, 1H), 1.64 (d, J = 7.1 Hz, 3H), 1.24 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ, ppm: 168.4, 150.4, 146.5, 135.7, 129.6, 127.9, 125.4, 124.1, 124.2, 123.1, 122.5, 120.3, 119.1, 118.4, 113.5, 36.4, 34.3, 31.2, 22.3.

HRMS m/z calculated for $C_{21}H_{22}O_2N$, 320.1656, found: 320.1652.

IR (ATR), v, cm⁻¹: 1671, 1318, 1281, 1257, 1233, 772, 746, 723, 706.

3-(1-(3-(tert-butyl)phenyl)ethyl)-6-nitro-1H-indole

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 µL, 0.4 mmol) was irradiated for 24 h then 6-nitro-1H-indole **2l** (130 mg, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 0% to 11% EtOAc:hexanes to afford 3-(1-(3-(tert-butyl)phenyl)ethyl)-6-nitro-1H-indole **3la** (78.8 mg, 61%) as a yellow solid.

m. p. = 194-197°C

¹**H NMR** (400 MHz, DMSO- d_6) δ, ppm: 11.65 (s, 1H), 8.28 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 8.8, 2.1 Hz, 1H), 7.71 (s, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.39 (s, 1H), 7.20–7.12 (m, 2H), 7.09–7.02 (m, 1H), 4.38 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H), 1.24 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ, ppm: 150.5, 146.1, 141.7, 134.8, 131.0, 129.0, 128.0, 124.1, 124.0, 122.7, 121.2, 119.0, 113.3, 108.2, 36.1, 34.3, 31.2, 22.3.

HRMS m/z calculated for $C_{20}H_{21}O_2N_2$, 321.1609, found: 321.1605.

IR (ATR), v, cm⁻¹: 1502, 1324, 1298, 1067, 1058, 803, 735, 710, 686.

1,5-dimethoxy-2-methyl-4-(1-phenylethyl)benzene

Following the general procedure, ethyl benzene **1b** (49.0 μ L, 0.4 mmol) was irradiated for 48 h then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 0% to 8% EtOAc:hexanes to afford 1,5-dimethoxy-2-methyl-4-(1-phenylethyl)benzene **3ab** (69.7 mg, 68%) as a white solid.

m. p. =
$$101-104$$
 °C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.29–7.24 (m, 4H), 7.20–7.11 (m, 1H), 6.91 (s, 1H), 6.43 (s, 1H), 4.50 (q, J = 7.3 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.14 (s, 3H), 1.57 (d, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 156.7, 155.8, 147.1, 129.6, 128.2, 127.7, 126.5, 125.7, 118.1, 95.7, 56.1, 55.7, 36.9, 21.2, 15.7.

HRMS m/z calculated for C₁₇H₂₀O₂Na, 279.1356, found: 279.1347.

IR (ATR), v, cm⁻¹: 1509, 1297, 1204, 1117, 1036, 814, 698.

4-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)-1,1'-biphenyl

Following the general procedure, 4-ethyl-1,1'-biphenyl **1c** (73.0 mg, 0.4 mmol) was irradiated for 3 h then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 1% to 3% EtOAc:hexanes to afford 4-(1-(2,4-dimethoxy-5-methylphenyl)-1,1'-biphenyl **3ac** (103.1 mg, 78%) as a yellow solid.

m. p. =
$$54-56^{\circ}$$
C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.64–7.60 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.45 (t, J = 6.9 Hz, 2H), 7.40–7.30 (m, 3H), 7.00 (s, 1H), 6.48 (s, 1H), 4.59 (q, J = 7.3 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.20 (s, 3H), 1.65 (d, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 156.7, 155.8, 146.2, 141.3, 138.5, 129.5, 128.8, 128.1, 127.1, 127.0, 126.9, 126.3, 118.1, 95.6, 56.1, 55.6, 36.6, 21.2, 15.7.

HRMS m/z calculated for $C_{23}H_{24}O_2$, 332.1771, found: 332.1774.

IR (ATR), v, cm⁻¹: 1295, 1203, 1106, 1037, 846, 760, 742, 693.

1-(1-(4-fluorophenyl)ethyl)-2,4-dimethoxy-5-methylbenzene

Following the general procedure, 1-ethyl-4-fluorobenzene **1d** (51.0 μ L, 0.4 mmol) was irradiated for 24 h then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 1% to 8% EtOAc:hexanes to afford 1-(1-(4-fluorophenyl)ethyl)-2,4-dimethoxy-5-methylbenzene **3ad** (84.0 mg, 77%) as a yellow solid.

m. p. = $46-48^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.25–7.18 (m, 2H), 6.96 (t, J = 8.8 Hz, 2H), 6.91 (s, 1H), 6.45 (s, 1H), 4.48 (q, J = 7.3 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 2.16 (s, 3H), 1.57 (d, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ , ppm: 161.4 (d, J = 242.9 Hz), 157.1, 156.1, 142.7 (d, J = 3.0 Hz) 129.7, 129.3 (d, J = 7.6 Hz), 126.5, 118.4, 115.1 (d, J = 21.0 Hz), 95.9, 56.3, 55.9, 36.6, 21.6, 16.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –118.28 (tt, J = 8.9, 5.5 Hz).

HRMS m/z calculated for C₁₇H₁₉O₂F, 274.1364, found: 274.1367.-

IR (ATR), v, cm⁻¹: 1505, 1300, 1205, 1190, 1120, 1037, 834, 821, 812.

4-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)phenyl acetate

Following the general procedure, 4-ethylphenyl acetate **1e** (63.8 μ L, 0.4 mmol) was irradiated for 24 h using 15 mol % 9-fluorenone then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added and the reaction was heated to 90 °C for 3 hours. The product was purified by flash chromatography using an eluent of 3% to 5% EtOAc:hexanes to afford 4-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)phenyl acetate **3ae** (59.2 mg, 47%) as a yellow solid.

m. p. = $63-64^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.23 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 6.89 (s, 1H), 6.42 (s, 1H), 4.47 (q, J = 7.3 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.28 (s, 3H), 2.13 (s, 3H), 1.55 (d, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 169.8, 156.7, 155.8, 148.6, 144.6, 129.5, 128.6, 126.1, 121.1, 118.1, 95.6, 56.0, 55.7, 36.4, 21.3, 21.2, 15.6.

HRMS m/z calculated for $C_{19}H_{22}O_4Na$, 337.1410, found: 237.1397.

IR (ATR), v, cm⁻¹: 1754, 1505, 1293, 1216, 1196, 1162, 1115, 1034, 1018, 912, 845, 836, 831.

1-(1-(2-chlorophenyl)ethyl)-2,4-dimethoxy-5-methylbenzene

Following the general procedure, 1-chloro-2-ethylbenzene **1e** (56.2 mg, 0.4 mmol) was irradiated for 24 h then 2,4-dimethoxytoluene **2a** (283 μ L, 2.0 mmol) was added and the reaction was heated to 90 °C for 16 hours. The product was purified by flash chromatography using an eluent of 1% to 5% EtOAc:hexanes to afford 1-(1-(2-chlorophenyl)ethyl)-2,4-dimethoxy-5-methylbenzene as a mixture of isomers **3af** and **3af'** (59.2 mg, 51% (r.r = 6.3:1)) as an orange solid.

m. p. = $98-102^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.56 (dd, J = 7.9, 1.7 Hz, 1H Minor), 7.36–7.31 (m, 1H Major), 7.29 (dd, J = 7.9, 1.4 Hz, 1H Minor), 7.22 (dd, J = 7.7, 1.5 Hz, 1H Minor), 7.20–7.15 (m, 2H Major), 7.15 (d, J = 1.3 Hz, 1H Minor), 7.11 (ddd, J = 7.6, 6.0, 3.0 Hz, 1H Major), 7.02 (d, J = 8.4 Hz, 1H Minor), 6.87 (s, 1H Major), 6.62 (d, J = 8.4 Hz, 1H Minor), 6.43 (s, 1H Major), 4.99 (q, J = 7.2 Hz, 1H Minor), 4.84 (q, J = 7.2 Hz, 1H Major), 3.83 (s, 3H Major), 3.75 (s, 3H Major), 3.73 (s, 3H Minor), 3.33 (s, 3H Minor), 2.22 (s, 3H Minor), 2.15 (s, 3H Major), 1.67 (d, J = 7.2 Hz, 3H Minor), 1.52 (d, J = 7.2 Hz, 3H Major).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 157.6 (Minor), 157.2 (Minor), 156.8 (Major), 156.1 (Major), 144.5 (Major), 143.8 (Minor), 134.1 (Minor), 134.0 (Major), 129.8 (Minor), 129.5 (Major), 129.4 (Minor), 129.4 (Major), 129.3 (Minor), 128.5 (Major), 126.9 (Major), 126.8 (Minor), 126.7 (Major), 126.6 (Minor), 126.3 (Minor), 125.1 (Major), 123.5 (Minor), 117.8 (Major), 107.5 (Minor), 95.7 (Major), 60.1 (Minor), 56.1 (Major), 55.9 (Minor), 55.6 (Major), 34.4 (Major), 33.5 (Minor), 20.4 (Major), 19.4 (Minor), 16.3 (Minor), 15.7 (Major).

HRMS m/z calculated for $C_{17}H_{19}O_2Cl$, 290.1068, found: 290.1070.

IR (ATR), v, cm⁻¹: 1470, 1450, 1296, 1205, 1113, 1034, 824, 767.

1-(3-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)phenyl)ethan-1-one

Following the general procedure, 1-(3-ethylphenyl)ethan-1-one **1g** (59.3 mg, 0.4 mmol) was irradiated for 24 h then 2,4-dimethoxytoluene **2a** (283 μ L, 2.0 mmol) was added and the reaction was heated to 90 °C for 16 hours. The product was purified by flash chromatography using an eluent of 3% to 5% EtOAc:hexanes to afford 1-(3-(1-(2,4-dimethoxy-5-methylphenyl)ethyl)phenyl)ethan-1-one **3ag** (83.3 mg, 70%) as a yellow oil. (12% of minor isomer **3ag'** determined by ¹H NMR)

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.88 (t, J = 1.9 Hz, 1H), 7.74 (dt, J = 7.8, 1.5 Hz, 1H), 7.43 (dt, J = 7.7, 1.6 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 6.90 (s, 1H), 6.42 (s, 1H), 4.52 (q, J = 7.3 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.58 (s, 3H), 2.13 (s, 3H), 1.59 (d, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 198.5, 156.7, 155.7, 147.6, 137.0, 132.5, 129.3, 128.3, 127.3, 125.9, 125.5, 118.0, 95.4, 55.8, 55.5, 36.9, 26.7, 20.9, 15.5.

HRMS m/z calculated for C₁₉H₂₂O₃Na, 321.1461, found: 321.1447.

IR (ATR), v, cm⁻¹: 1681, 1510, 1436, 1271, 1204, 1191, 1115, 1035, 816, 695.

1,5-dimethoxy-2-methyl-4-(1-phenylpropyl)benzene

Following the general procedure, propylbenzene **1h** (56.0 μ L, 0.4 mmol) was irradiated for 48 h then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 1% to 3% EtOAc:hexanes to afford 1,5-dimethoxy-2-methyl-4-(1-phenylpropyl)benzene **3ah** (56.2 mg, 52%) as a white solid.

m. p. =
$$58-59^{\circ}$$
C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.29–7.21 (m, 4H), 7.13 (m, 1H), 6.96 (s, 1H), 6.41 (s, 1H), 4.19 (t, J = 7.8 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 2.14 (s, 3H), 2.0 –1.94 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 156.5, 156.2, 145.8, 129.5, 128.2, 128.2, 125.6, 125.3, 118.1, 95.7, 56.2, 55.6, 44.6, 28.2, 15.7, 13.0.

HRMS m/z calculated for C₁₈H₂₂O₂Na, 293.1512, found: 293.1501.

IR (ATR), v, cm⁻¹: 1519, 1461, 1296, 1205, 1119, 1035, 812, 764, 699.

((2,4-dimethoxy-5-methylphenyl)methylene)dibenzene

Following the general procedure, diphenylmethane **1i** (67.0 μ L, 0.4 mmol) was irradiated for 24 h then 2,4-dimethoxytoluene **2a** (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 8% to 10% DCM:hexanes to afford ((2,4-dimethoxy-5-methylphenyl)methylene)dibenzene **3ai** (87.4 mg, 69%) as a white solid.

m. p. = 133-134°C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.28–7.22 (m, 4H), 7.22–7.15 (m, 2H), 7.13–7.08 (m, 4H), 6.62 (s, 1H), 6.45 (s, 1H), 5.85 (s, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 2.06 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 157.0, 156.1, 144.5, 132.1, 129.5, 128.2, 126.0, 124.2, 117.9, 95.6, 56.2, 55.6, 49.1, 15.7.

HRMS m/z calculated for $C_{22}H_{22}O_2Na$, 341.1512, found: 341.1501.

IR (ATR), v, cm⁻¹: 1508, 1436, 1297, 1207, 1172, 1104, 1037, 817, 737, 699.

3-(2,4-dimethoxy-5-methylphenyl)-3-phenylpropyl acetate

Following the general procedure, 3-phenylpropyl acetate 1j (72.0 μ L, 0.4 mmol) was irradiated for 48 h then 2,4-dimethoxytoluene 2a (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 2% to 4% EtOAc:hexanes to afford 3-(2,4-dimethoxy-5-methylphenyl)-3-phenylpropyl acetate 3aj (80.4 mg, 61%) as an off white solid.

m. p. =
$$76-77^{\circ}$$
C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.36–7.23 (m, 4H), 7.17 (ddd, J = 8.7, 5.3, 3.3 Hz, 1H), 6.95 (s, 1H), 6.42 (s, 1H), 4.44 (t, J = 7.9 Hz, 1H), 4.04 (qt, J = 11.0, 6.9 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 2.36 (qd, J = 7.0, 3.3 Hz, 2H), 2.15 (s, 3H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 171.2, 156.9, 156.0, 144.7, 129.5, 128.3, 128.0, 126.0, 123.9, 118.2, 95.6, 63.5, 56.0, 55.6, 39.5, 33.8, 21.1, 15.7.

HRMS m/z calculated for $C_{20}H_{25}O_4$, 329.1747, found: 329.1738.

IR (ATR), v, cm⁻¹: 1744, 1733, 1298, 1246, 1206, 1034, 813, 700.

2-(3-(2,4-dimethoxy-5-methylphenyl)-3-phenylpropyl)isoindoline-1,3-dione

Following the general procedure, 2-(3-phenylpropyl)isoindoline-1,3-dione 1k (106 mg, 0.4 mmol) was irradiated for 48 h then 2,4-dimethoxytoluene 2a (118 μ L, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 8% to 12% EtOAc:hexanes to afford 2-(3-(2,4-dimethoxy-5-methylphenyl)-3-phenylpropyl)isoindoline-1,3-dione 3ak (107.0 mg, 64%) as a white solid.

m. p. = 156-159°C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.80–7.73 (m, 2H), 7.70–7.62 (m, 2H), 7.30 (d, J = 7.7 Hz, 2H), 7.22 (t, J = 7.5 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.96 (s, 1H), 6.32 (s, 1H), 4.40 (t, J = 7.8 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 4H), 3.70 (t, J = 7.0 Hz, 2H), 2.49–2.34 (m, 2H), 2.07 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 168.3, 156.7, 155.8, 144.6, 133.7, 132.3, 129.5, 128.0, 125.9, 123.8, 123.0, 118.1, 95.5, 55.9, 55.5, 41.1, 37.5, 33.1, 15.6.

HRMS m/z calculated for C₂₆H₂₅O₄NNa, 438.1676, found: 438.1662.

IR (ATR), v, cm⁻¹: 1703, 1395, 1354, 1300, 1206, 1119, 1035, 882, 814, 720, 701.

4-(2-(2,4-dimethoxy-5-methylphenyl)propan-2-yl)-1,1'-biphenyl

Following the general procedure, 4-isopropyl-1,1'-biphenyl **1l** (56.4 μ L, 0.4 mmol) was irradiated for 6 h then 2,4-dimethoxytoluene **2a** (283 μ L, 2.0 mmol) was added and the reaction

was heated to 90 °C for 16 hours. The product was purified by flash chromatography using an eluent of 1% to 6% EtOAc:hexanes to afford 1,5-dimethoxy-2-methyl-4-(1-phenylethyl)benzene **3al** (62.2 mg, 45%) as a yellow solid.

m. p. = 126-129°C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.59 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.33–7.28 (m, 1H), 7.26–7.24 (m, 2H), 7.22 (s, 1H), 6.39 (s, 1H), 3.81 (s, 3H), 3.32 (s, 3H), 2.23 (s, 3H), 1.68 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 156.9, 151.4, 141.3, 137.4, 130.4, 128.8, 128.7, 127.0, 126.9, 126.3, 126.3, 117.5, 97.8, 56.0, 55.6, 41.2, 30.0, 15.9.

HRMS m/z calculated for C₂₄H₂₆O₂Na, 369.1825, found: 369.1814.

IR (ATR), v, cm⁻¹: 623, 589, 579, 575, 565.

(8R,9S,13S,14S)-2-(1-(3-(tert-butyl)phenyl)ethyl)-3-hydroxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 µL, 0.4 mmol) was irradiated for 24 h then (8R,9S,13S,14S)-3-hydroxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one **2m** (216 mg, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 2% to 5% EtOAc:hexanes to afford (8R,9S,13S,14S)-2-(1-(3-(tert-butyl)phenyl)ethyl)-3-hydroxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one **3ma** (110.1 mg, 64%) as a white solid.

m. p. = 168-171 °C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.39–7.34 (m, 1H), 7.25–7.20 (m, 2H), 7.15 (s, 1H), 7.05–7.00 (m, 1H), 6.52 (d, J = 5.0 Hz, 1H), 4.70 (d, J = 5.1 Hz, 1H), 4.31 (q, J = 7.2 Hz, 1H),

2.93 - 2.77 (m, 2H), 2.51 (dd, J = 18.9, 8.6 Hz, 1H), 2.43 - 2.34 (m, 1H), 2.31 - 2.23 (m, 1H), 2.20 - 2.11 (m, 1H), 2.10 - 1.92 (m, 3H), 1.70 - 1.38 (m, 9H), 1.31 (s, 9H), 0.93 (d, J = 4.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ, ppm: 221.1 (d, J = 2.1 Hz), 151.5 (dd, J = 23.7, 6.5 Hz), 144.8 (d, J = 6.8 Hz), 135.7 (d, J = 2.7 Hz), 131.9 (d, J = 2.5 Hz), 129.5 (d, J = 14.2 Hz), 128.5 (d, J = 3.5 Hz), 125.0, 124.8, 124.6 (d, J = 3.5 Hz), 124.5 (d, J = 5.1 Hz), 123.5 (d, J = 3.7 Hz), 116.1, 50.4 (d, J = 1.9 Hz), 48.1, 44.1 (d, J = 8.3 Hz), 39.4 (d, J = 11.8 Hz), 38.4, 35.9, 34.7, 31.6 (d, J = 1.7 Hz), 31.4 (d, J = 1.0 Hz), 29.1 (d, J = 2.6 Hz), 26.6, 26.1 (d, J = 7.9 Hz), 21.6, 21.2 (d, J = 21.7 Hz), 13.9 (d, J = 2.3 Hz).

HRMS m/z calculated for C₃₀H₃₇O₂, 429.2799, found: 429.2797.

IR (ATR), v, cm⁻¹: 1718, 1420, 1256, 1204, 893, 705.

4-(1-([1,1'-biphenyl]-4-yl)ethyl)-6-hexylbenzene-1,3-diol

Following the general procedure, 4-ethyl-1,1'-biphenyl **1c** (73.0 mg, 0.4 mmol) was irradiated for 3 h then 4-hexylbenzene-1,3-diol **2n** (233 mg, 1.2 mmol.) was added and the reaction was heated to 90 °C for 3 hours. The product was purified by Ag impregnated silica gel chromatography using an eluent of 12% to 14% EtOAc:hexanes to afford 4-(1-([1,1'-biphenyl]-4-yl)ethyl)-6-hexylbenzene-1,3-diol **3na** (46.3 mg, 31%) as an orange solid.

m. p. = $53-55^{\circ}$ C

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.60–7.56 (m, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.38–7.29 (m, 3H), 7.00 (s, 1H), 6.26 (s, 1H), 4.65 (s, 1H), 4.56 (s, 1H), 4.30 (q, J = 7.2 Hz, 1H), 2.58–2.53 (m, 2H), 1.70–1.54 (m, 5H), 1.46–1.26 (m, 6H), 1.00–0.85 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ, ppm: 152.3, 151.9, 144.7, 140.7, 139.1, 129.0, 128.5, 127.6, 127.3, 126.9, 126.8, 123.7, 120.4, 103.5, 37.9, 31.6, 30.0, 29.3, 29.0, 22.5, 21.1, 13.9.

HRMS m/z calculated for $C_{26}H_{29}O_2$, 373.2160, found: 373.2160.

IR (ATR), v, cm⁻¹: 1191, 1110, 835, 690, 608, 595, 584.

2-(2-(1-(3-(tert-butyl)phenyl)ethyl)-4,5-dimethoxyphenyl)acetic acid

Following the general procedure, 1-*tert*-butyl-3-ethylbenzene **1a** (76.0 µL, 0.4 mmol) was irradiated for 24 h then 2-(3,4-dimethoxyphenyl)acetic acid **2o** (157 mg, 0.8 mmol) was added. The product was purified by flash chromatography using an eluent of 86.5:12.5:1 EtOAc:hexanes:AcOH to afford 2-(2-(1-(3-(tert-butyl)phenyl)ethyl)-4,5-dimethoxyphenyl)acetic acid **3oa** (40.1 mg, 28%) as a yellow solid.

m. p. = 114-119°C

¹**H NMR** (400 MHz, Acetone- d_6) δ, ppm: 7.38 (s, 1H), 7.23–7.13 (m, 2H), 7.04 (dt, J = 6.7, 1.9 Hz, 1H), 6.85 (s, 1H), 6.83 (s, 1H), 4.38 (q, J = 7.2 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.64 (d, J = 15.9 Hz, 1H), 3.53 (d, J = 15.9 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H), 1.27 (s, 9H).

¹³C NMR (126 MHz, Acetone- d_6) δ, ppm: 173.4, 151.6, 149.3, 148.2, 146.8, 138.3, 128.8, 126.0, 125.5, 125.4, 123.5, 115.8 (d, J = 2.4 Hz), 112.4 (d, J = 2.4 Hz), 56.2 (d, J = 4.1 Hz), 56.1 (d, J = 4.5 Hz), 41.1 (d, J = 2.4 Hz), 38.5, 35.1, 31.7 (d, J = 2.4 Hz), 22.5 (d, J = 2.3 Hz).

HRMS m/z calculated for $C_{22}H_{27}O_4$, 355.1915, found: 355.1921.

IR (ATR), v, cm⁻¹: 1718, 1517, 1268, 1218, 1172, 1200, 1108, 864, 805, 711.

(5-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-hydroxy-4-methoxyphenyl)(phenyl)methanone

Following the general procedure, 4-ethyl-1,1'-biphenyl **1c** (73.0 mg, 0.4 mmol) was irradiated for 3 h then (2-hydroxy-4-methoxyphenyl)(phenyl)methanone **2p** (183 mg, 0.8 mmol) was added. The product was purified by Ag impregnated silica gel chromatography using an eluent of 5.5% EtOAc:hexanes to afford (5-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-hydroxy-4-methoxyphenyl)(phenyl)methanone **3pa** (58.8 mg, 36%) as a yellow oil. (17% of other isomer **3pa'** determined by ¹H NMR).

¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 12.67 (s, 1H), 7.61–7.53 (m, 4H), 7.51–7.47 (m, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.42–7.32 (m, 4H), 7.24 (d, J = 8.1 Hz, 2H), 6.52 (s, 1H), 4.47 (q, J = 7.2 Hz, 1H), 3.88 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ, ppm: 200.2, 165.4, 164.1, 145.4, 141.4, 139.3, 138.6, 133.3, 131.9, 129.5, 129.2, 128.6, 128.4, 127.5, 127.4, 127.4, 127.0, 112.7, 99.8, 56.3, 37.2, 21.1.

HRMS m/z calculated for $C_{28}H_{23}O_3$, 407.1646, found: 407.1647.

IR (ATR), v, cm⁻¹: 1623, 1344, 1250, 1204, 837, 764, 730, 696, 595.

5-(4-(1-([1,1'-biphenyl]-4-yl)ethyl)-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid

Following the general procedure, 4-ethyl-1,1'-biphenyl **1c** (73.0 mg, 0.4 mmol) was irradiated for 3 h then (2-hydroxy-4-methoxyphenyl)(phenyl)methanone **2q** (183 mg, 0.8 mmol) was

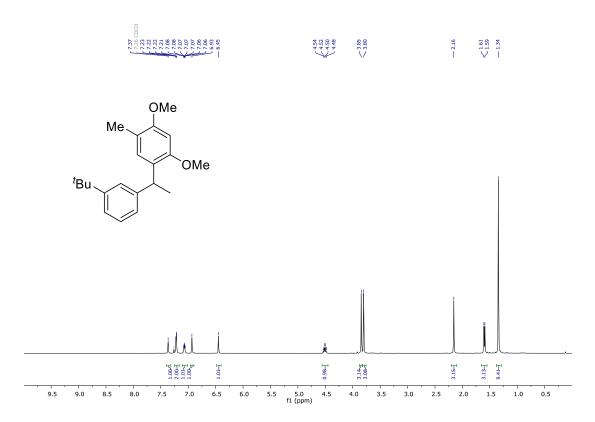
added. The product was purified by Ag impregnated silica gel chromatography using an eluent of 5:94:1 EtOAc:hexanes:AcOH to afford 5-(4-(1-([1,1'-biphenyl]-4-yl)ethyl)-2,5-dimethylphenoxy)-2,2-dimethylphenoxy)-2,2-dimethylphenoxy (115.4 mg, 67%) as an off white solid.

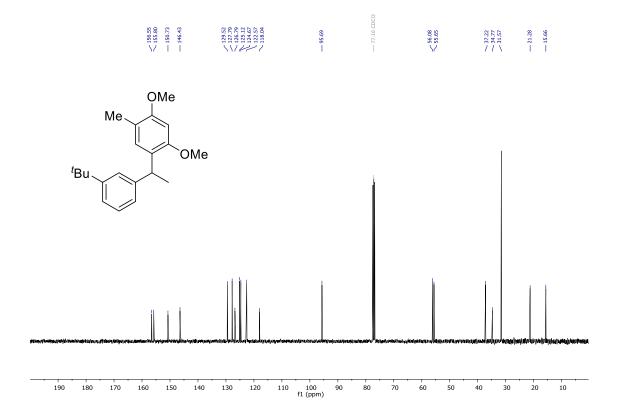
m. p. = 116-119°C

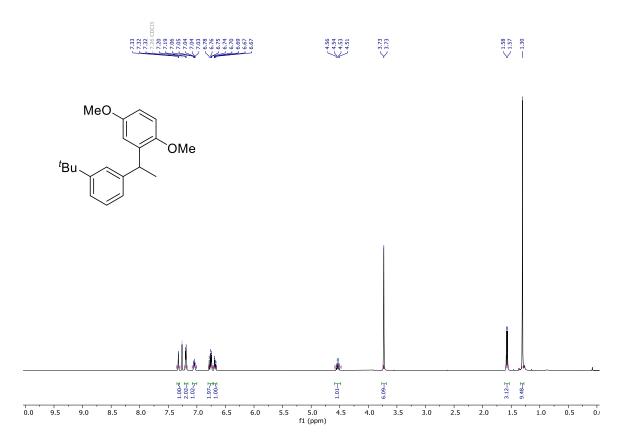
¹**H NMR** (400 MHz, CDCl₃) δ, ppm: 7.60–7.54 (m, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.35–7.29 (m, 1H), 7.22 (d, J = 8.3 Hz, 2H), 7.05 (s, 1H), 6.59 (s, 1H), 4.27 (q, J = 7.2 Hz, 1H), 3.93 (t, J = 5.8 Hz, 2H), 2.22 (s, 3H), 2.21 (s, 3H), 1.85–1.72 (m, 4H), 1.61 (d, J = 7.2 Hz, 3H), 1.26 (s, 6H).

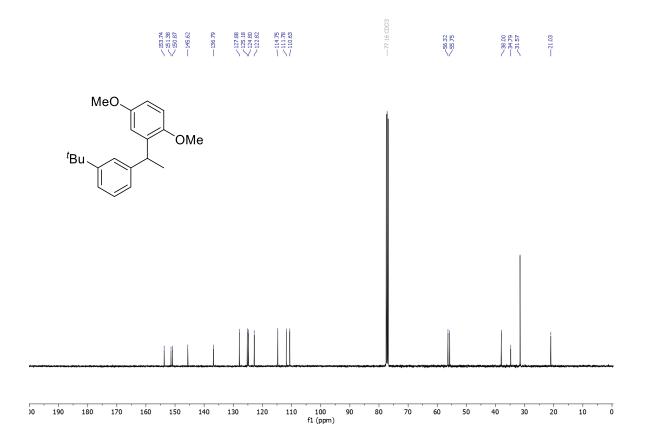
¹³C NMR (101 MHz, CDCl₃) δ, ppm: 184.1, 155.3, 146.1, 141.2, 138.7, 135.5, 134.3, 129.1, 128.8, 128.1, 127.1, 124.0, 113.4, 68.1, 42.1, 40.1, 37.0, 25.3, 25.1 (d, *J* = 1.9 Hz), 22.4, 19.9, 16.1.

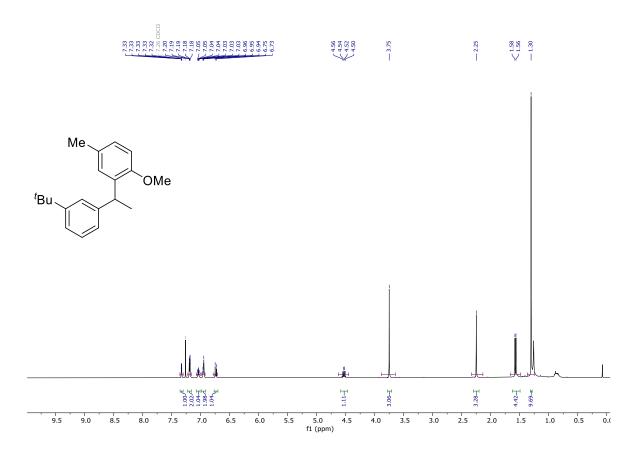
HRMS m/z calculated for C₂₉H₃₃O₃, 429.2427, found: 429.2431.

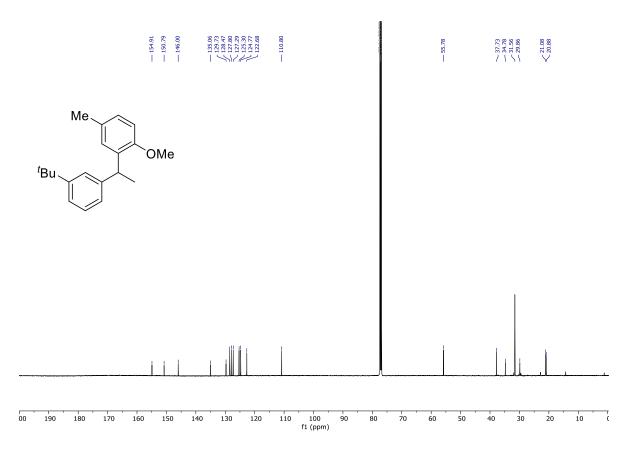

IR (ATR), v, cm⁻¹: 1694, 1102, 833, 764, 695, 583, 574.

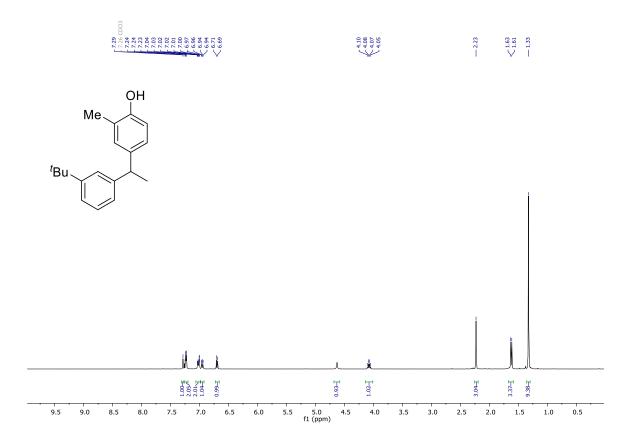

1.3 References

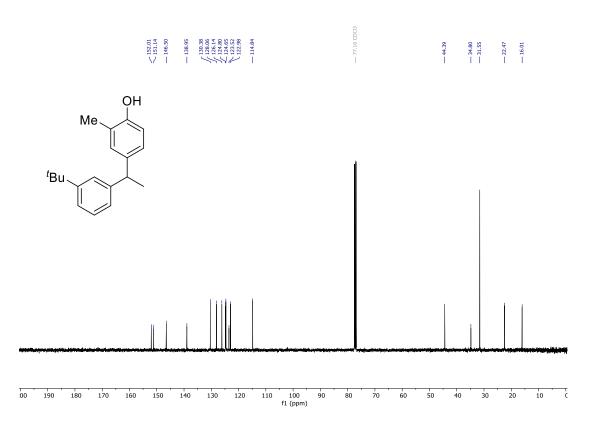

- 1. M. Xiang, Z.-K. Xin, B. Chen, C.-H. Tung and L.-Z. Wu, Org. Lett., 2017, 19, 3009-3012.
- **2.** S. Bresciani and D. O'Hagan, *Tetrahedron Lett.*, 2010, **51**, 5795-5797.

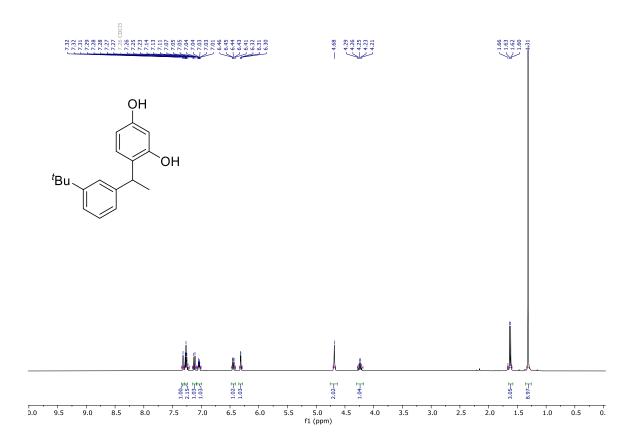

1.4 NMR spectral data

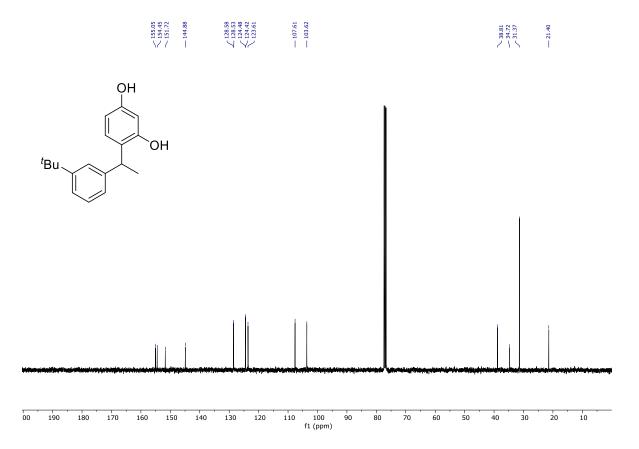

¹**H NMR** (400 MHz, CDCl₃)

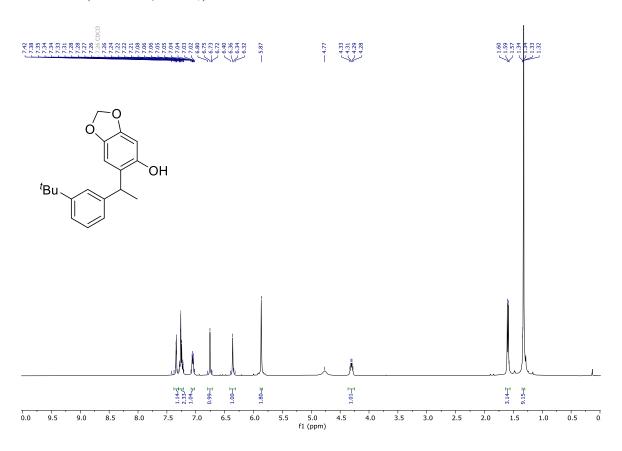


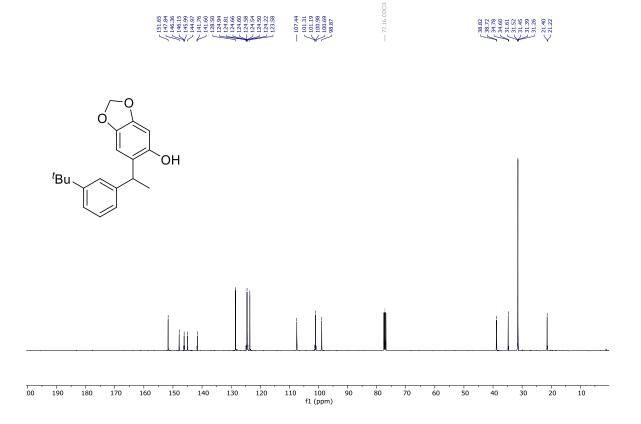


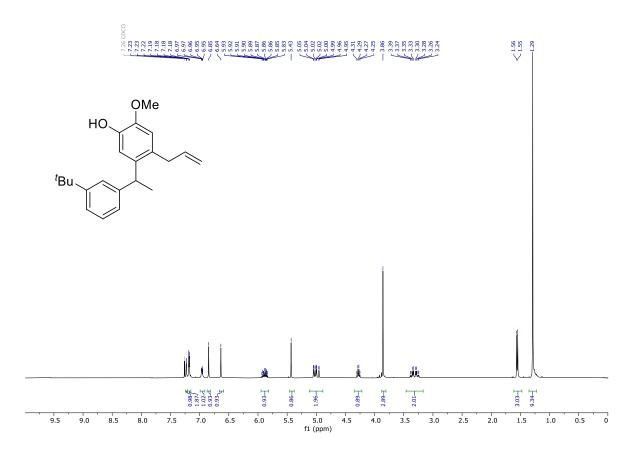


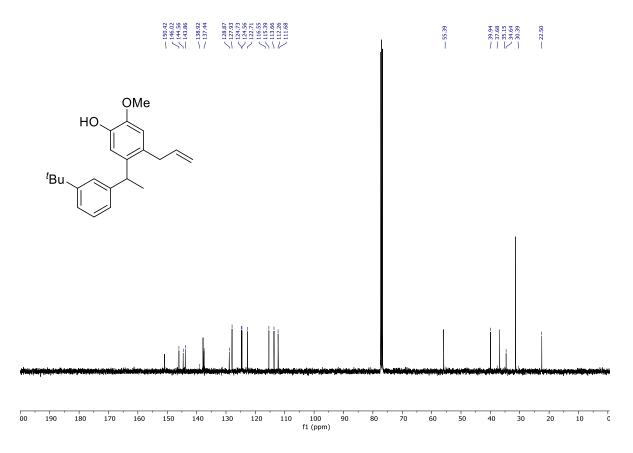


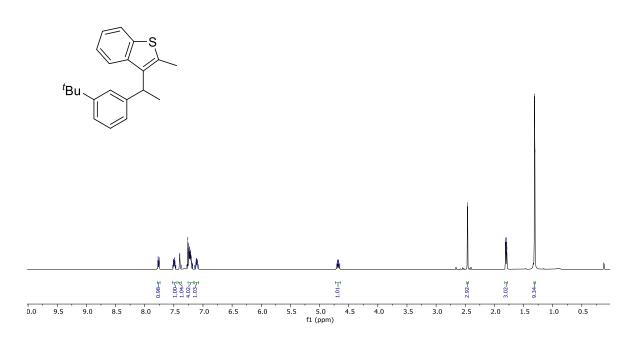


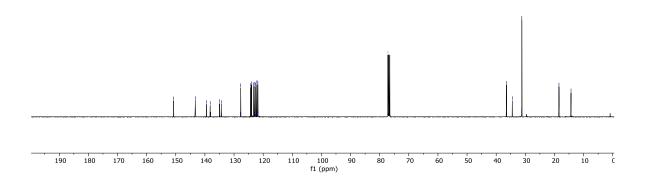


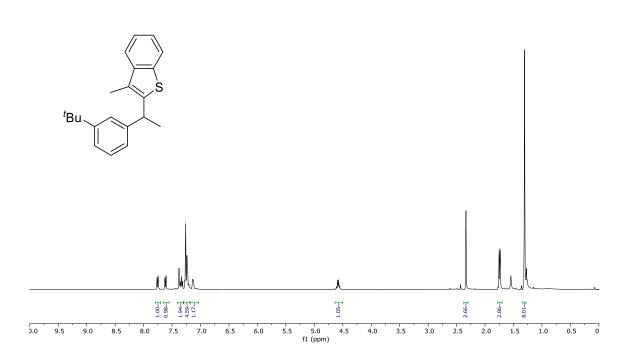




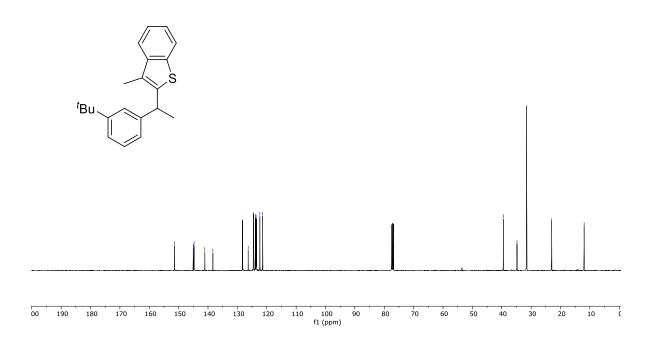


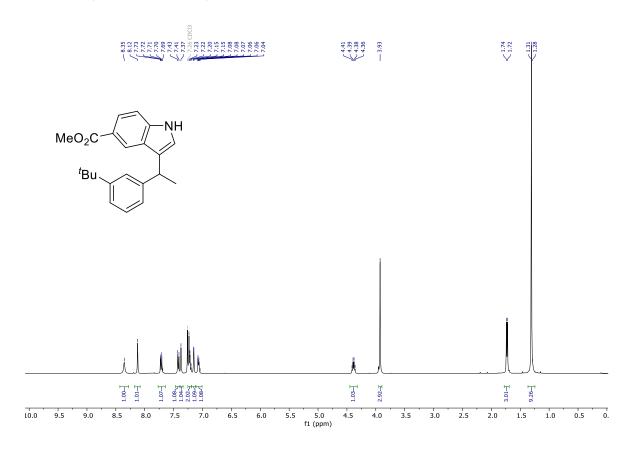


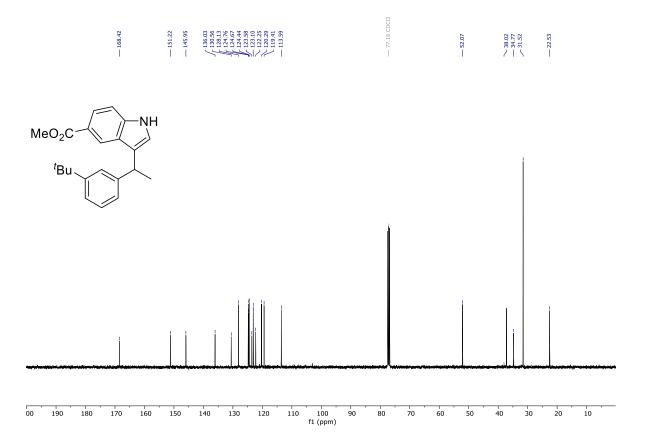


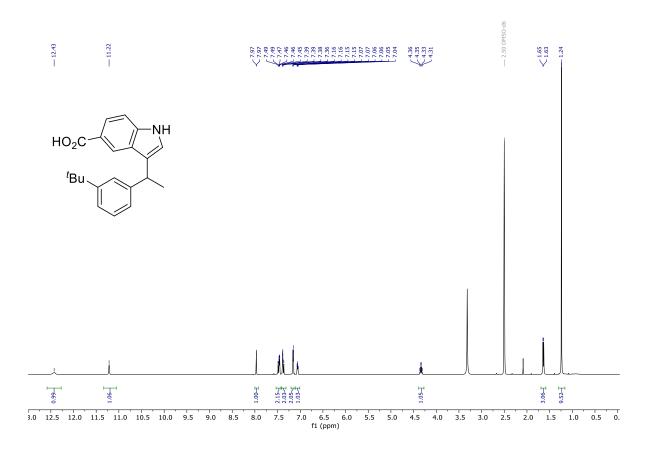


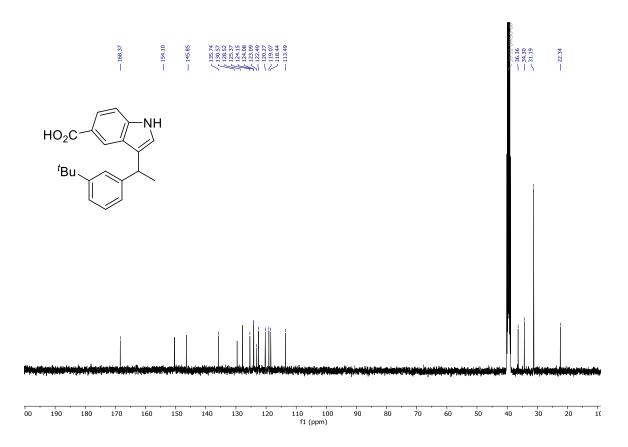
¹³C NMR (101 MHz, CDCl₃)

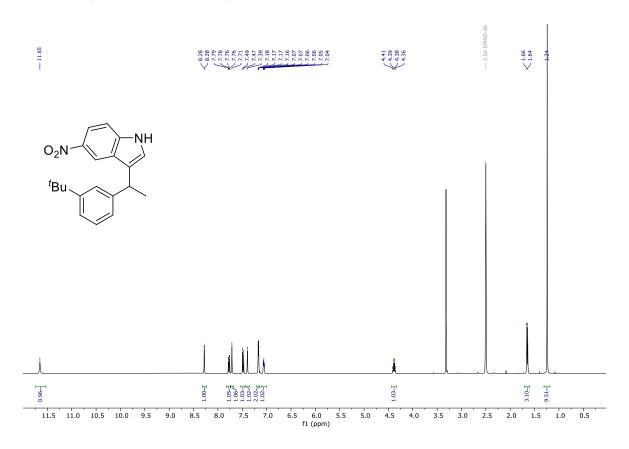

| 150.75 | 18.10 | 18.

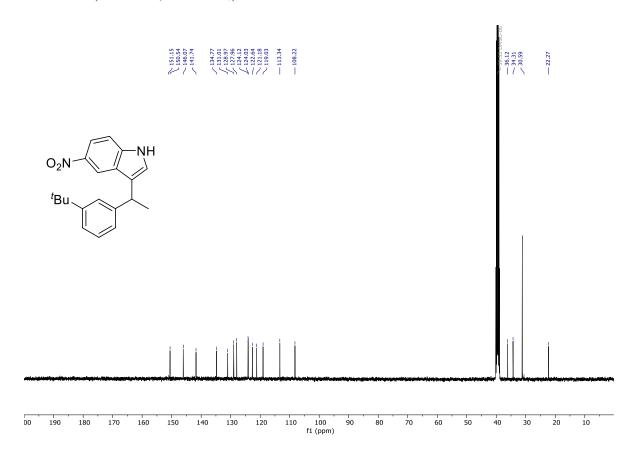


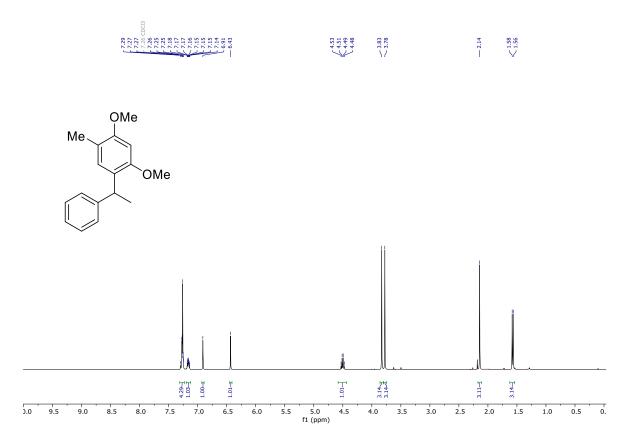


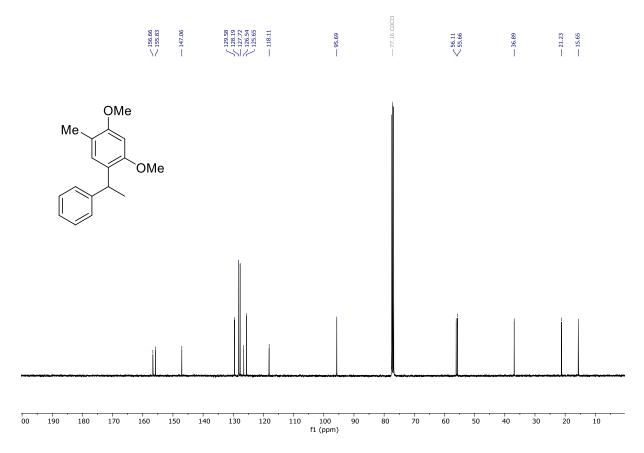


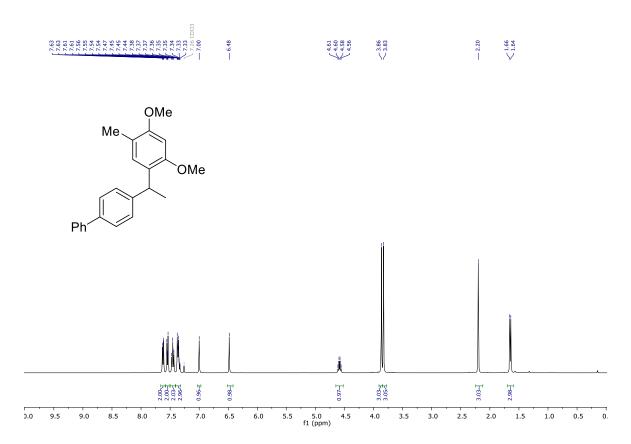



¹**H NMR** (400 MHz, DMSO-*d*₆)

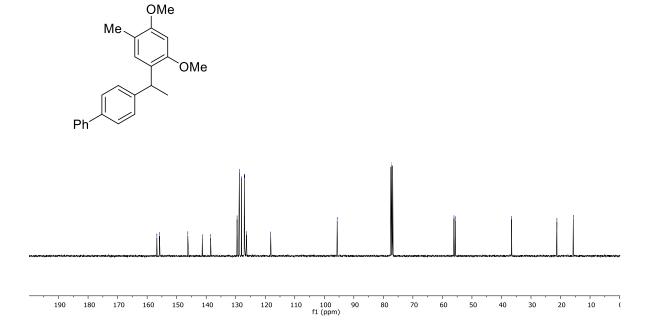

¹³C **NMR** (101 MHz, DMSO-*d*₆)

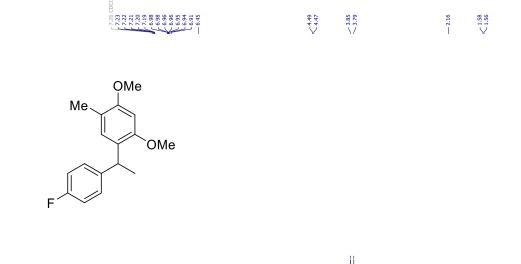


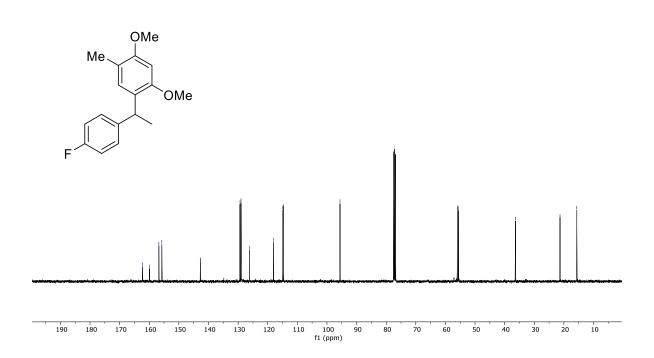

¹**H NMR** (400 MHz, DMSO-*d*₆)

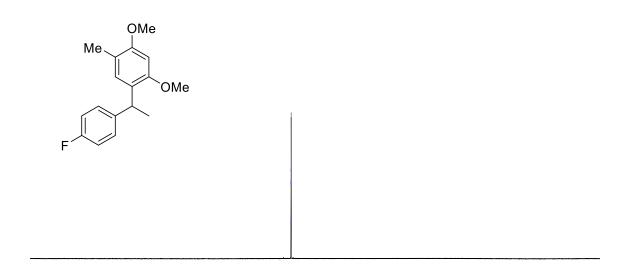


13 C NMR (101 MHz, DMSO- d_6)

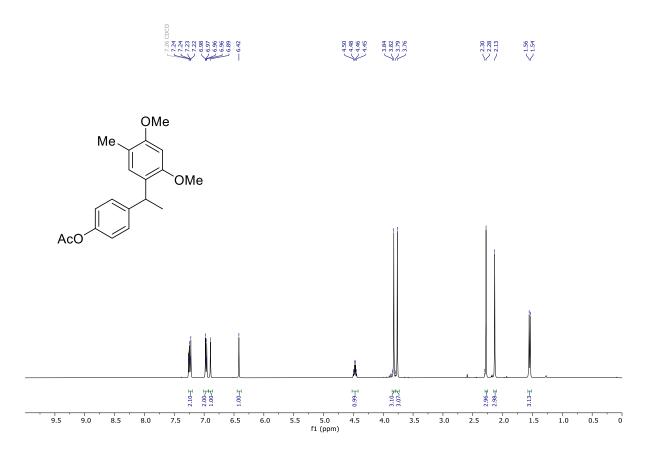


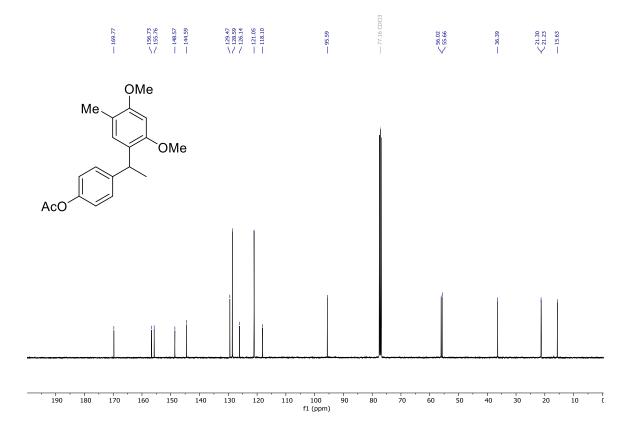




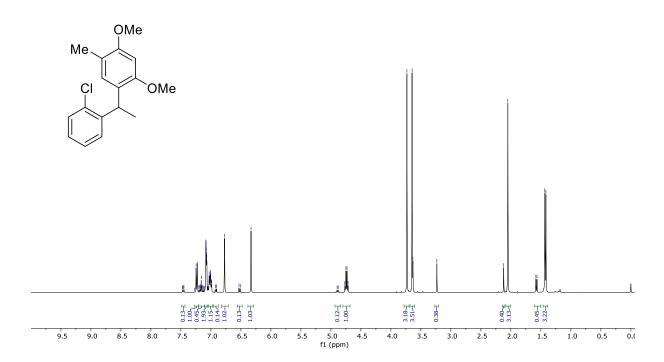


9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 of f1 (ppm)

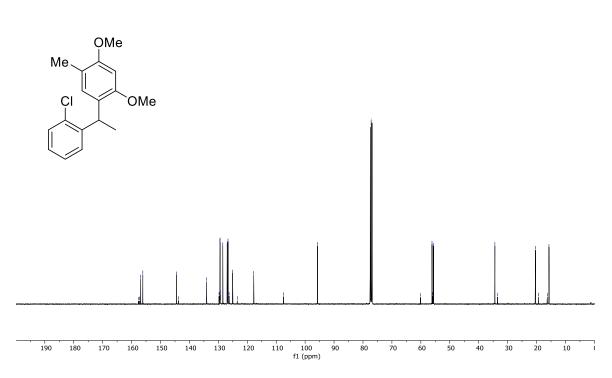


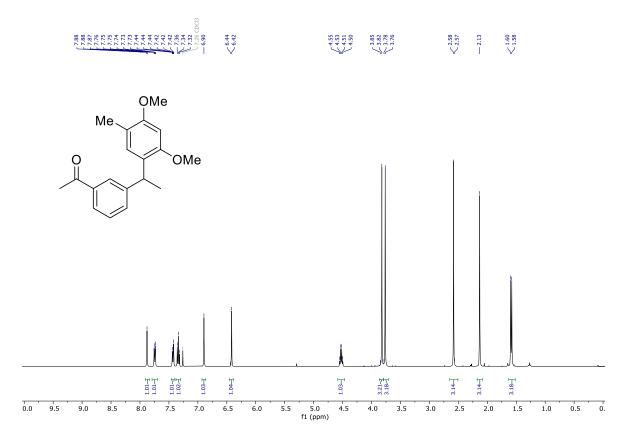


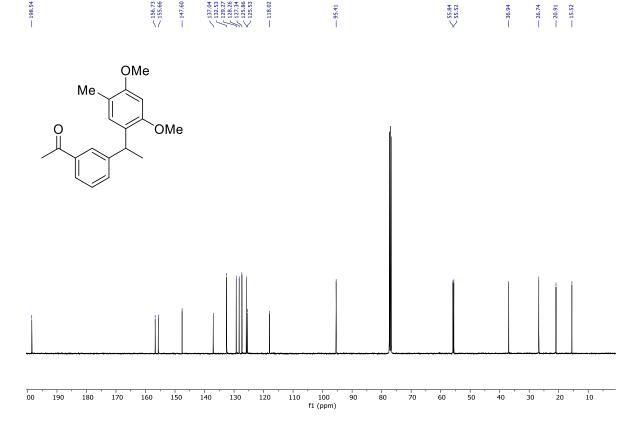


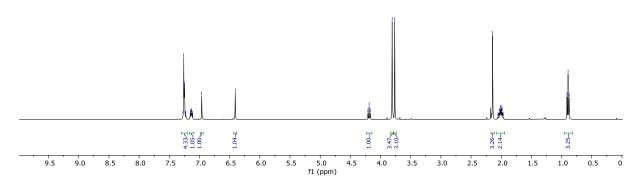


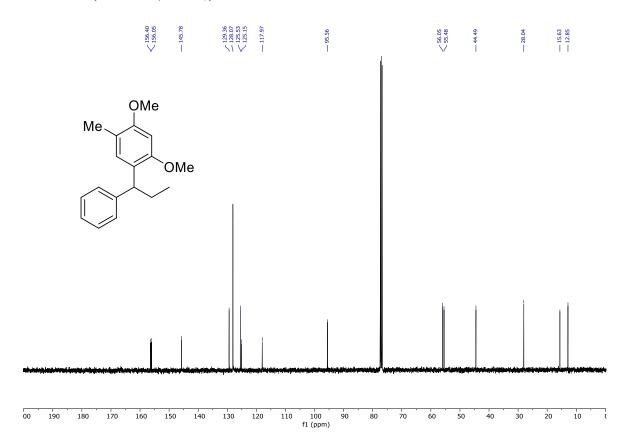
50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 ft (ppm)

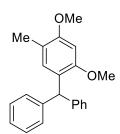


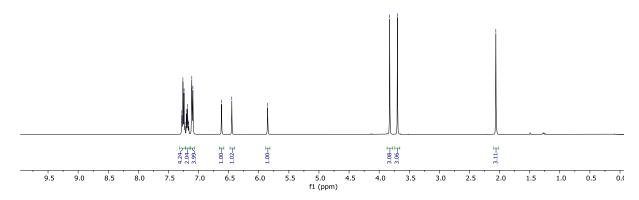


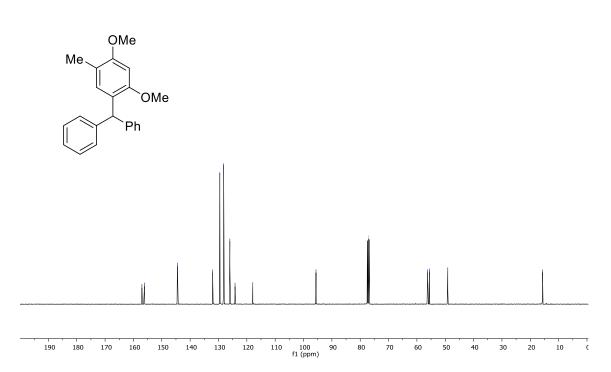


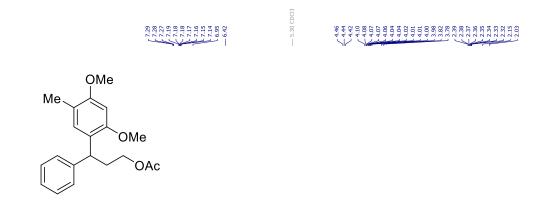


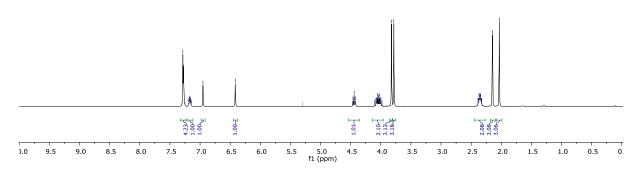


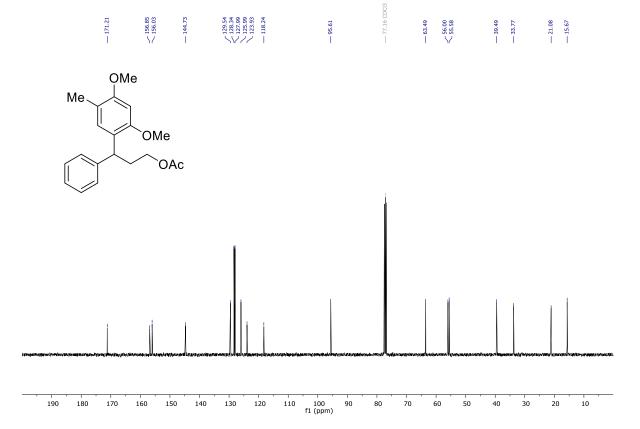


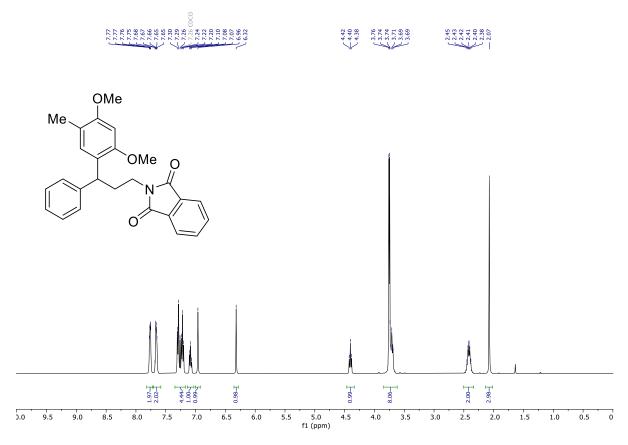


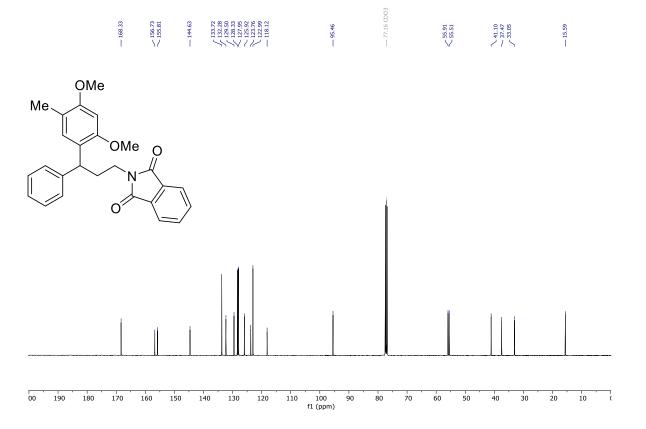


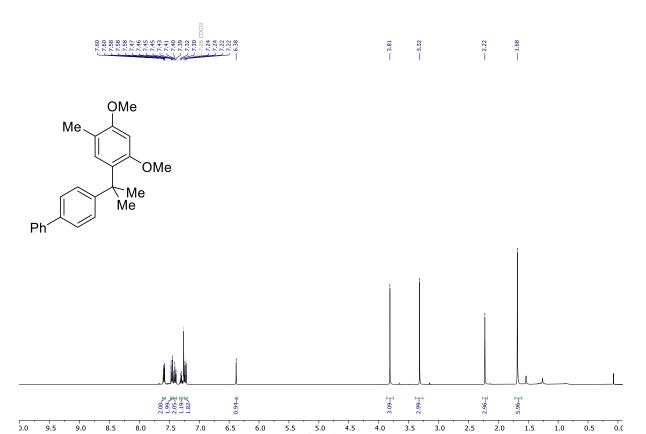


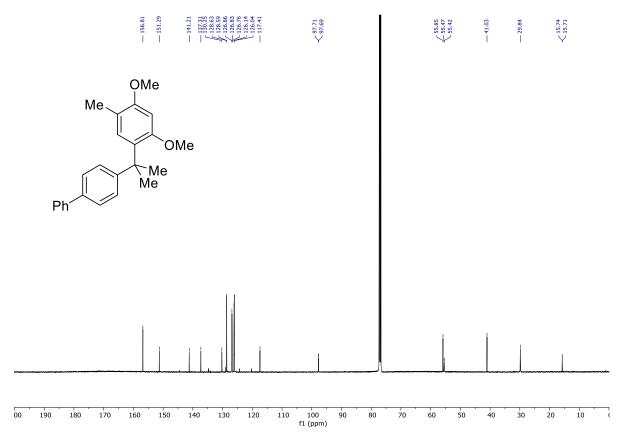


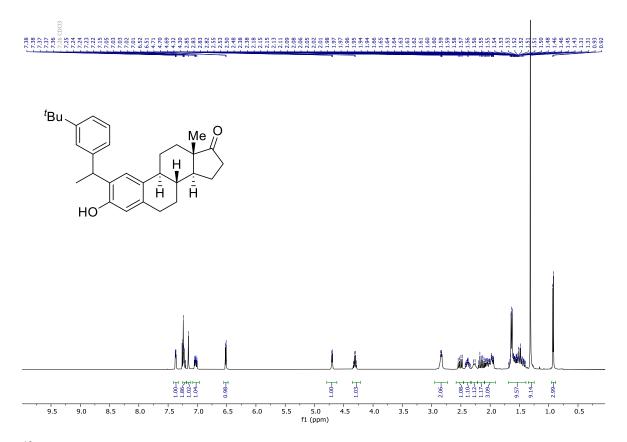


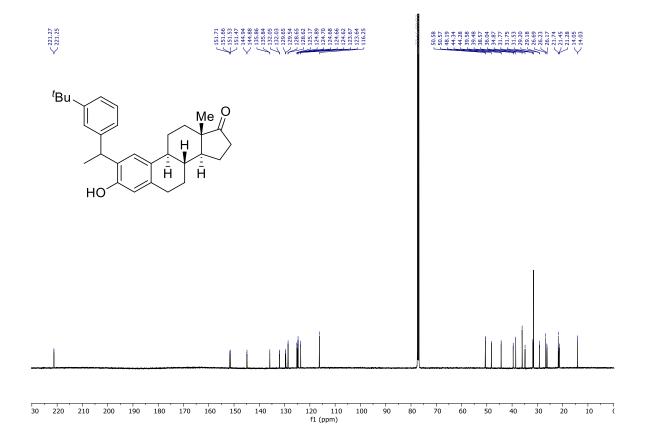


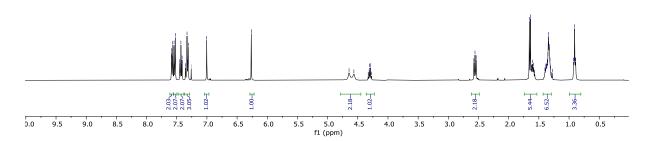


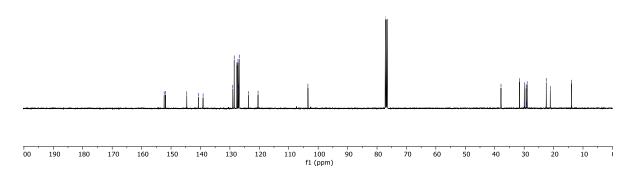


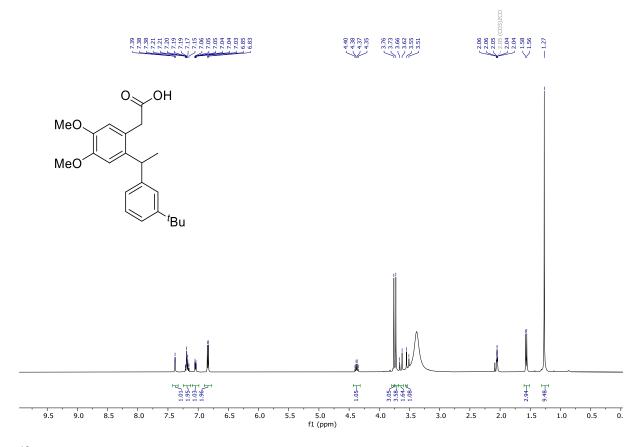


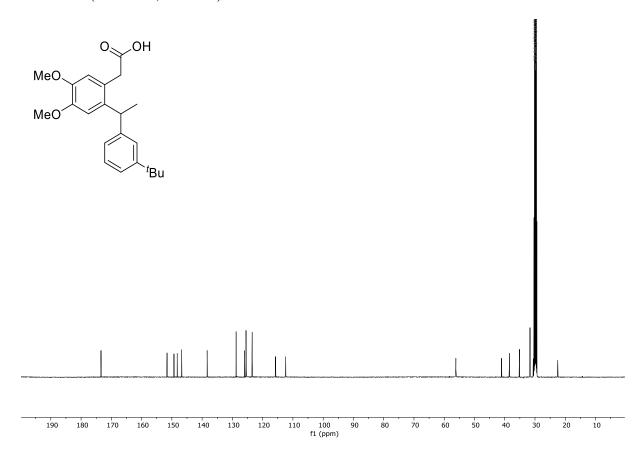


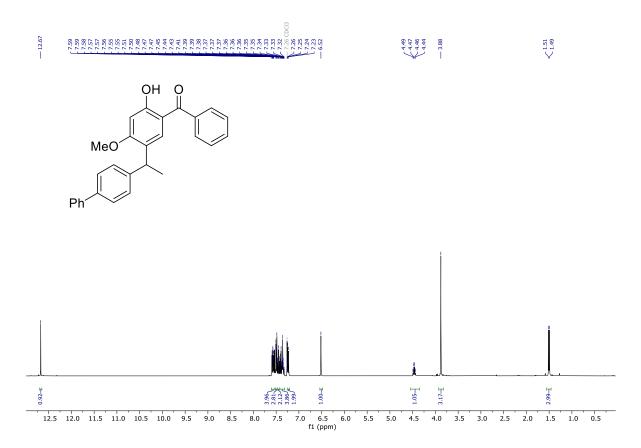


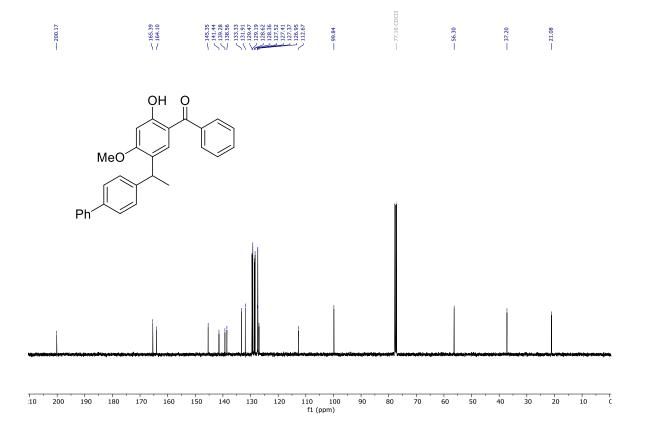


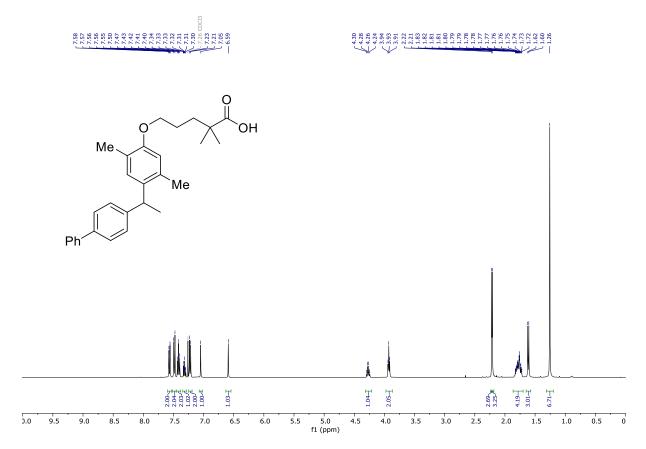


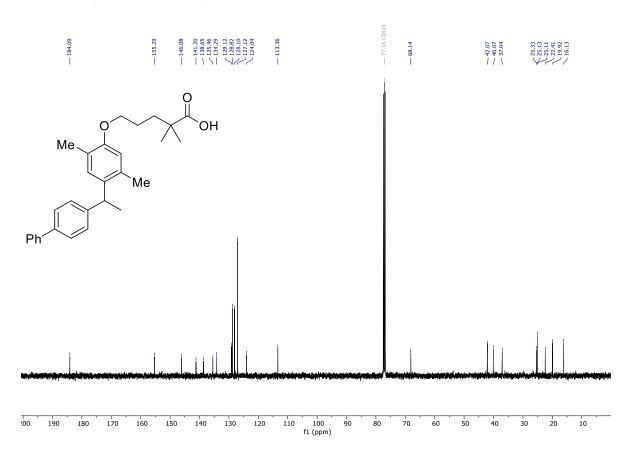







¹H NMR (400 MHz, Acetone)




¹³C NMR (400 MHz, Acetone)

