Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Silver-Catalyzed Stereoselective Domino Cycloisomerization-Vinylogous Aldol Reaction of *ortho*-Alkynylbenzaldehydes with 3-Alkylidene oxindoles: An Entry to Functionalized Isochromenes

Krishna Kumar, Bhuvnesh Singh and Ravi P. Singh*

Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110 016, India

E-mail: ravips@chemistry.iitd.ac.in

Table of Contents

Entry	Contents	Page no.
1.	General Information	S2
2.	Synthesis of starting materials	S2
3.	General procedure for the synthesis of substituted isochromenes product	S 3
	3 and 4	
4.	GC-MS characterization of the reaction intermediate IV	S18
5.	Crystallographic Description and ORTEP diagrams of $3q$ and $4i$	S19-S22
6.	References	S23
7.	Copies of ¹ H and ¹³ C NMR spectra	S24-S50

1. General Information: All solvents used to carry out reaction were dried using standard procedure and stored under nitrogen atmosphere. All the reactions were carried out under the Argon/Nitrogen atmosphere. Purification of the compounds was done by Column chromatographic on silica gel (100–200mesh). All products obtained were fully characterized by various spectroscopic techniques like ¹H &¹³C NMR, FT-IR, ESI-HRMS. ¹H and ¹³C NMR spectra were recorded on Bruker AV-300/400 instrument (300/400 and 75/100 MHz, respectively) in deuterated solvents. Internal reference assigned to residual protonated solvent signals or tetramethylsilane signal. ¹H NMR data reported as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. ¹³C NMR data reported as chemical shift (δ , ppm). Perkin Elmer FT-IR spectrometer was used to record infrared spectra, and data reported in terms of frequency (cm⁻¹) of absorption. ESI mass spectrometers were used to record high-resolution mass spectra. The GC-MS were recorded on Agilent 7890B instrument at 30 °C.

2. Synthesis of starting materials

Starting materials 2-Alkynyl Aryl¹ and 3-alkenyl-2-silyloxindoles² were prepared according to known literature procedures.

S-Figure 1. The structure of 2-Alkynyl Aryl 1

S-Figure 2. The structure of 3-alkenyl-2-silyloxindoles 2

3. General procedure for the synthesis of substituted isochromenes product

Silver tetrafluoroborate (20 mol%) was taken in pre-dried reaction vessel and nitrogen was purged using standard Schlenk techniques to maintain inert conditions. Completely dried DCM (1 mL) was added to the reaction vessel followed by addition of **1a-r** (0.2 mmol, 1 equiv.), **2a-j** (0.3 mmol, 1.5 equiv.) and benzoic acid (20 mol %). The content of reaction was stirred under inert atmosphere at room temperature. Progress of the reaction was monitored by thin layer chromatography (TLC) using EtOAc/Hexane (1:9) solvent system. After completion of the reaction (i.e. disappearance of **1a-r**), the reaction was quenched by adding water. The reaction mixture was extracted using DCM (5 ml × 3). The organic layer was combined and dried over Na₂SO4, filtered, and concentrated under reduced pressure. The resulting mixture was purified by column chromatography on silica gel (eluent: EtOAc/Hexane = 1/9-2/8, v/v).

tert-butyl (E)-2-oxo-3-(1-phenyl-2-(3-phenyl-1H-isochromen-1-yl)ethylidene)indoline-1-

carboxylate (3a): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3a**. Yellow solid (87 mg, yield = 80%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 8.1 Hz, 1H), 7.52–7.33 (m, 3H), 7.23 (s, 5H), 7.20–7.03 (m, 8H), 6.97 (d, *J* = 7.4 Hz, 1H), 6.63 (t, *J* = 7.7 Hz, 1H), 6.30 (s, 1H), 6.10 (d, *J* = 7.6 Hz, 1H), 5.69 (dd, *J_I* = 10.1, *J₂* = 3.4 Hz,

1H), 4.28 (dd, $J_1 = 13.1$, $J_2 = 10.2$ Hz, 1H), 3.25 (dd, $J_1 = 13.2$, $J_2 = 3.4$ Hz, 1H), 1.53 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 155.7, 151.2, 149.3, 141.1, 138.6, 134.8, 130., 130.7, 129.3, 128.7, 128.3, 128.1, 128.0, 127.5, 127.1, 126.6, 124.8, 124.7, 124.4, 123.9, 123.3, 123.1, 123.0, 114.4, 100.6, 84.0, 76.9, 40.3, 28.2; FTIR (KBr) cm⁻¹, 3054, 2974, 2926, 2853, 1776, 1732, 1630, 1601, 1494, 1460, 1348, 1304, 1253, 1153, 1096, 1056, 975, 919, 842, 761, 700, 594. HRMS ESI (m/z) [M+Na]⁺, calcd for C₃₆H₃₁NO₄Na 564.2151; found 564.2167.

tert-butyl (E)-2-oxo-3-(1-phenyl-2-(3-(p-tolyl)-1H-isochromen-1-yl)ethylidene)indoline-

1-carboxylate (3b): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3b.** Yellow solid (75 mg, yield = 68%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 7.2 Hz, 6H), 7.21–7.01 (m, 5H), 6.97 (d, J = 6.9 Hz, 1H), 6.91 (d, J = 7.6 Hz, 2H), 6.64 (t, J = 7.3 Hz, 1H), 6.28 (s, 1H), 6.09 (d, J

= 7.5 Hz, 1H), 5.66 (d, J = 7.5 Hz, 1H), 4.34 (dd, J_I = 12.4, J_2 = 10.8 Hz, 1H), 3.23 (d, J = 10.5 Hz, 1H), 2.22 (s, 3H), 1.53 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃) δ 165.4, 155.6, 151.3, 149.3, 141.1, 138.6, 138.1, 131.9, 131.0, 130.6, 129.3, 129.2, 128.7, 128.6, 128.0, 127.4, 127.2, 126.3, 124.7, 124.2, 123.8, 123.2, 123.1, 123.0, 114.3, 99.8, 83.8, 40.1, 28.1, 21.3; **FTIR** (KBr) cm⁻¹, 3058, 3027, 2977, 2925, 1774, 1727, 1513, 1459, 1347, 1298, 1251, 1151, 1094, 1058, 785, 745, 701, 595. **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₄Na 578.2307; found 578.2301.

tert-butyl (E)-3-(2-(3-(4-methoxyphenyl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3c): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3c**. Yellow solid (101 mg, yield = 87%). Rf = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 1H), 7.41 (d, J = 8.9 Hz, 5H), 7.24 –7.01 (m, 4H), 6.85–6.62 (m, 3H), 6.31 (s, 1H), 6.17 (d, J = 7.7 Hz, 1H), 5.73

(dd, $J_I = 10.1$, $J_2 = 3.4$ Hz, 1H), 4.47 (dd, $J_I = 13.2$, $J_2 = 10.2$ Hz, 1H), 3.77 (s, 3H), 3.24 (dd, $J_I = 13.2$, $J_2 = 3.5$ Hz, 1H), 1.61 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 159.8, 155.5, 151.1, 149.3, 141.1, 138.6, 131.2, 130.5, 129.5, 129.2, 128.7, 128.7, 128.1, 127.4, 127.2, 126.2, 126.2, 124.8, 124.2, 123.7, 123.3, 123.1, 123.0, 114.4, 113.4, 99.0, 83.9, 55.3, 40.1, 28.2; FTIR (KBr) cm⁻¹, 3061, 2977, 2929, 2846, 1775, 1729, 1603, 1510, 1463, 1350, 1302, 1252, 1155, 1095, 1059, 1031, 1003, 976, 853, 784, 748, 702, 594; HRMS ESI (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₅Na 594.23; found 594.2274.

tert-butyl (E)-3-(2-(3-(3,5-dimethylphenyl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

Boc

0=

3e

Ph

oxoindoline-1-carboxylate (3d): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 3d. Yellow solid (66 mg, yield = 58%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, J = 8.1 Hz, 1H), 7.44-7.20 (m, 6H), 7.19–6.99 (m, 7H), 6.98 (d, J =7.2 Hz, 1H), 6.77 (s, 1H), 6.64 (t, J = 7.3 Hz, 1H), 6.32 (s, 1H), 6.10 (d, J = 7.5 Hz, 1H), 5.65 (dd, $J_I = 10.3$, $J_2 = 3.6$ Hz, 1H), 4.46 (dd, J_I

= 13.1, J_2 = 10.4 Hz, 1H), 3.11 (dd, J_1 = 13.1, J_2 = 3.7 Hz, 1H), 2.06 (s, 6H), 1.50 (s, 9H); ¹³C **NMR** (75 MHz, CDCl₃) δ 165.5, 155.4, 151.6, 149.3, 141.1, 138.6, 137.4, 134.7, 131.20, 130.8, 130.2, 129.4, 129.2, 128.7, 128.6, 128.1, 127.3, 126.4, 124.9, 124.2, 124.0, 123.3, 123.2, 123.0, 122.8, 114.4, 100.4, 83.9, 76.5, 40.1, 28.2, 21.3; **FTIR** (KBr) cm⁻¹,3057, 2974, 2926, 2860, 1776, 1725, 1626, 1600, 1463, 1351, 1302, 1253, 1155, 1095, 1025, 1004, 977, 920, 846, 788, 747, 703, 596; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₈H₃₅NO₄Na 592.2464; found

592.2463.

(>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3e**. Yellow solid (73 mg, yield = 66%). R_f = 0.5 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 1H), 7.557.31 (m, 6H), 7.20 (ddd, J_I = 17.6, J_2 = 10.1, J_3 = 6.6 Hz, 4H), 7.06 (d, J = 6.9 Hz, 1H), 6.87 (t, J = 8.7 Hz, 2H), 6.73 (t, J = 7.7 Hz, 1H), 6.33 (s, 1H), 6.18 (d, J = 7.8 Hz, 1H), 5.76 (dd, J_I = 10.1, J_2 = 3.2 Hz, 1H), 4.39 (dd, J_I = 13.1, J_2 = 10.3 Hz, 1H), 3.28 (dd, J_I = 13.2, J_2 = 3.3 Hz, 1H), 1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 155.5, 150.2, 149.2, 141.1, 138.6, 131.0, 130.6, 130.5, 129.3, 128.8, 128.2, 127.2, 126.7, 126.6, 126.5, 124.8, 124.4, 124.0, 123.3, 123.1, 122.9, 115.1, 114.8, 114.5, 100.3, 84.1, 77.0, 40.4, 28.2, 25.7; FTIR (KBr) cm⁻¹, 3064, 2979, 2925, 2853, 1775, 1732, 1600, 1507, 1463, 1349, 1303, 1252, 1154, 1096, 1060, 1003, 976, 840, 785, 749, 703, 594; HRMS ESI (m/z) [M+Na]⁺, calcd for C₃₆H₃₀FNO₄Na 582.2057; found 582.2080.

tert-butyl (*E*)-3-(2-(3-(3-fluorophenyl)-1*H*-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3f): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3f.** Yellow solid (80 mg, yield = 72%). $R_f = 0.5$ (EtOAc/Hexane = 1/9); ¹H **NMR** (300 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.42 - 7.32 (m, 5H), 7.30-6.95 (m, 7H), 6.95–6.85 (m, 1H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.39 (s, 1H), 6.21 (d, *J* = 7.9 Hz, 1H), 5.79 (dd, *J_I* = 10.1, *J₂* = 3.2 Hz, 1H), 4.29 (dd, *J_I* = 13.1, *J₂* = 10.2 Hz, 1H), 3.35 (dd, *J_I* = 13.2, *J₂* = 3.2 Hz, 1H),

1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 164.3, 161.1, 155.5, 149.8, 149.81, 149.2, 141.0, 138.6, 137.1, 137.0, 130.8, 130.3, 129.4, 129.3, 129.3, 128.8, 128.8, 128.2, 127.6, 127.1, 124.7, 124.5, 124.2, 123.3, 123.1, 122.9, 120.2, 120.2, 115.1, 114.8, 114.4, 111.8, 111.4, 101.5, 84.0, 40.4, 28.2; FTIR (KBr) cm⁻¹, 2927, 2853, 1775, 1730, 1609, 1488, 1463, 1350, 1306, 1253, 1157, 1096,1055, 1001, 785, 749, 699; HRMS ESI (m/z) [M+Na]⁺, calcd for C₃₆H₃₀FNO₄Na 582.2057; found 582.2043.

tert-butyl

(E)-3-(2-(3-(4-nitrophenyl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3g): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3g.** Yellow solid (84 mg, yield = 72%). R_f = 0.4 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.26 (s, 4H), 7.23-7.14 (m, 4H), 7.1–6.98 (m, 2H), 6.64 (t, J = 7.7 Hz, 1H), 6.49 (s, 1H), 6.11 (d, J = 7.9 Hz, 1H), 5.72 (d, J = 10.1 Hz, 1H), 4.28 (t, 12.0 Hz, 1H), 3.18 (d, J = 13.2 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 155.0, 148.9, 148.6, 147.0, 140.9, 140.9, 138.4, 131.0, 129.6, 129.4, 129.0, 128.9, 128.4, 128.0, 127.5, 127.1, 125.0, 124.9, 124.8, 124.6, 123.4, 123.3, 123.1, 122.7, 114.4, 104.5, 84.2, 77.2, 40.4, 28.1, 1.1; FTIR (KBr) cm⁻¹, 3078, 2978, 2930, 2853, 1776, 1733, 1598, 1513, 1463, 1369, 1345, 1302, 1253, 1154, 1095, 1057, 976, 857, 839, 811, 787, 753, 703, 594; HRMS ESI (m/z) [M+Na]⁺ calcd for C₃₆H₃₀N₂O₆Na 609.2002; found 609.2024.

tert-butyl (E)-3-(2-(3-(naphthalen-2-yl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3h): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3h**. Yellow solid (83 mg, yield = 70%). R_f = 0.65 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 8.6 Hz, 1H), 7.86–7.67 (m, 3H), 7.57–7.47 (m, 1H), 7.47–7.37 (m, 1H), 7.35–7.28 (m, 3H), 7.25–7.20 (m, 2H), 7.21-7.06 (m, 3H),

7.06 – 6.87 (m, 4H), 6.63 (t, J = 7.7 Hz, 1H), 6.59–6.51 (m, 1H), 6.08 (s, 1H), 6.02 (dd, J = 7.7, 4.7 Hz, 2H), 3.88 (d, J = 2.3 Hz, 1H), 3.85 (s, 1H), 1.70 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.1, 157.5, 152., 149.4, 141.6, 138.5, 134.0, 133.7, 130.7, 130.5, 130.4, 129.3, 128.9, 128.7, 128.6, 128.5, 128.2, 128.1, 128.1, 127.6, 127.0, 126.3, 126.2, 125.9, 125.8, 125.7, 125.1, 124.8, 123.9, 123.7, 123.3, 123.2, 123.0, 114.4, 105.5, 84.3, 78.3, 77.3, 41.4, 28.3, 1.1; **FTIR** (KBr) cm⁻¹, 3054, 2967, 2925, 2856, 1771, 1732, 1613, 1461, 1369, 1348, 1306, 1251, 1149, 1097, 1028, 979, 923, 843, 788, 773, 750, 699, 595; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₄₀H₃₃N₂O₄Na 614.2307; found 614.2300.

(*E*)-3-(2-(3-(2,3-dioxo-1-tritylindolin-5-yl)-1*H*-isochromen-1-yl)-1phenylethylidene)-2-oxoindoline-1-carboxylate (3i): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3i**. Dark red solid (111 mg, yield = 65%). R_f = 0.5 (EtOAc/Hexane = 1/3); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 1.6 Hz, 2H), 7.45 (d, *J* = 6.9 Hz, 7H), 7.42–7.37 (m, 2H), 7.37–7.27 (m, 9H), 7.22–7.07 (m, 5H), 7.00 (dd, *J*₁=12.6, *J*₂ = 8.9 Hz, 2H), 6.90 (d, J = 6.3 Hz, 2H), 6.72 (t, J = 7.7 Hz, 1H), 6.26 (d, J = 7.9 Hz, 1H), 6.21 (d, J = 8.7 Hz, 1H), 6.18 (s, 1H), 5.84 (dd, J = 8.1, 4.4 Hz, 1H), 3.82- 3.60 (m, 2H), 1.67 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 182.4, 165.8, 159.3, 156.0, 151.1, 149.0, 148.5, 141.0, 140.9, 140.6, 138.3, 130.2, 129.9, 129.5, 129.0, 128.6, 128.5, 127.8, 127.2, 127.0, 124.0, 123.2, 122.7, 122.6, 118.5, 100.8, 84.1, 75.2, 40.5, 29.5, 28.0; **FTIR** (KBr) cm⁻¹, 3058, 2978, 2928, 2855, 1739, 1618, 1486, 1348, 1302, 1253,1153, 1097, 1061, 1001, 905, 841, 787, 745, 703, 631, 596, 467. **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₅₇H₄₄N₂O₆Na 875.3097; found 875.3088.

tert-butyl

(*E*)-2-oxo-3-(1-phenyl-2-(7-phenyl-5*H*-[1,3]dioxolo[4,5-g]isochromen-5yl)ethylidene)indoline-1-carboxylate (3j): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3j**. Brown solid (85 mg, yield = 74%). R_f = 0.4 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.67 (d, *J* = 8.2 Hz, 1H), 7.39–7.30 (m, 3H), 7.30-7.19 (m, 5H), 7.15– 7.02 (m, 4H), 6.71 (s, 1H), 6.64 (t, *J* = 6.0 1H), 6.49 (s, 1H), 6.20 (s,

1H), 6.12 (d, J = 7.6 Hz, 1H), 5.84 (s, 2H), 5.61 (dd, $J_I = 10.0$, $J_2 = 3.2$ Hz, 1H), 4.17 (dd, $J_I = 13.1$, $J_2 = 10.1$ Hz, 1H), 3.23 (dd, $J_I = 13.1$, $J_2 = 3.3$ Hz, 1H), 1.54 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 155.7, 149.6, 149.3, 147.3, 146.3, 141.1, 138.6, 134.7, 129.3, 128.7, 128.7, 128.0, 128.0, 127.6, 127.1, 125.2, 124.6, 124.5, 124.3, 123.3, 123.1, 123.0, 114.4, 105.6, 104.7, 100.9, 100.7, 84.0, 77.3, 40.4, 28.2; FTIR (KBr) cm⁻¹, 3061, 2977, 2927, 1775, 1732, 1599, 1482, 1370, 1350, 1302, 1250, 1155, 1096, 1043, 939, 846, 758, 696; HRMS ESI (m/z)[M+Na]⁺, calcd for C₃₇H₃₁NO₆Na 608.2049; found 608.2031.

tert-butyl (*E*)-3-(2-(7-fluoro-3-phenyl-1*H*-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3k): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 3k. Yellow solid (86 mg, yield = 77%). R_f = 0.4 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.43–7.32 (m, 3H), 7.26 (bs, 5H), 7.18–7.04 (m, 4H), 7.00–6.88 (m, 2H), 6.82 (td, J_I = 8.4, J_2 =2.5 Hz, 1H), 6.64 (t, J = 7.7

Hz, 1H), 6.28 (s, 1H), 6.13 (d, J = 7.9 Hz, 1H), 5.65 (dd, $J_1 = 10.1$, $J_2 = 3.1$ Hz, 1H), 4.22 (dd, $J_1 = 13.1$, $J_2 = 10.2$ Hz, 1H), 3.26 (dd, $J_1 = 13.2$, $J_2 = 3.2$ Hz, 1H), 1.54 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 160.1, 155.2, 150.5, 149.2, 140.9, 138.6, 134.5, 132.6, 132.5, 129.4,

129.3, 129.3, 128.8, 128.3, 128.0, 127.6, 127.1, 127.0, 125.4, 125.3, 124.8, 124.6, 123.3, 123.1, 122.9, 115.0, 114.7, 144.5, 111.9, 111.6, 99.8, 84.0, 40.1, 28.2, 1.1; **FTIR** (KBr) cm⁻¹, 3057, 2976, 2930, 1784, 1723, 1603, 1494, 1465, 1348, 1301, 1250, 1155, 1096, 1053, 977, 837, 744, 691, 592; **HRMS ESI** (m/z) [M+Na]⁺, calcd forC₃₆H₃₀FNO₄Na 582.2057; found 582.2058.

(E)-3-(2-(5-fluoro-3-phenyl-1H-isochromen-1-yl)-1-phenylethylidene)-2tert-butyl oxoindoline-1-carboxylate (31): The E/Z ratio (>19:1) was determined Boc by ¹H NMR analysis of the crude product. The crude mixture was 0purified by general procedure to give an inseparable mixture of diastereomers 31. Yellow solid (75 mg, yield = 67%). $R_f = 0.45$ Ph (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 8.2 Hz, 1H), 7.49 (dd, J_1 = 7.7, J_2 = 1.7 Hz, 2H), 7.33 (bs, 4H), 7.30-7.19 (m, 4H), 7.19–7.09 (m, 2H), 7.05 (t, J = 7.3 Hz, 1H), 7.01–6.89 (m, 31 1H), 6.73 (t, J = 7.7 Hz, 1H), 6.60 (s, 1H), 6.20 (d, J = 7.7 Hz, 1H), 5.79 (dd, $J_1 = 10.1$, $J_2 = 10.1$ 3.4 Hz, 1H), 4.33 (dd, $J_1 = 13.2$, $J_2 = 10.2$ Hz, 1H), 3.37 (dd, $J_1 = 13.2$, $J_2 = 3.5$ Hz, 1H), 1.62 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 158.6, 155.1, 151.8, 149.3, 141.0, 138.6, 134.5, 132.6, 132.6, 129.4, 128.8, 128.6, 128.1, 127.3, 127.2, 124.9, 124.9, 123.3, 123.1, 122.9, 120.1, 119.2, 119.0, 114.7, 114.5, 114.4, 93.1, 93.0, 84.0, 76.5, 40.1, 36.7, 28.2, 1.1; **FTIR** (KBr) cm⁻ 1, 3089, 3058, 2954, 2933, 2859, 1726, 1609, 1567, 1463, 1347, 1296, 1249, 1151, 1093, 1058,

841, 751, 700, 609; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₆H₃₀FNO₄Na 582.2057; found 582.2051.

tert-butyl

(*E*)-3-(2-(3-cyclopropyl-1*H*-isochromen-1-yl)-1-phenylethylidene)-2oxoindoline-1-carboxylate (3m) The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3m**. Yellow solid (81 mg, yield = 80%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.78 (d, J = 8.2 Hz, 1H), 7.46 (s, 5H), 7.11 (ddd, $J_1 = 24.5$, $J_2 = 15.2$, $J_3 = 7.9$ Hz, 5H), 6.86 (d, J = 7.3 Hz, 1H), 6.73 (t, J = 7.7 Hz, 1H), 6.18 (d, J = 7.9 Hz, 1H), 5.59 (s, 1H), 5.51 (dd, J

= 9.9, 3.4 Hz, 1H), 4.23 (dd, J_1 = 13.1, J_2 = 10.1 Hz, 1H), 3.35 (dd, J_1 = 13.2, J_2 = 3.4 Hz, 1H), 1.68 (s, 9H), 1.25–1.12 (m, 1H), 0.70–0.60 (m, 1H), 0.60 – 0.45 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 156.4, 156.3, 149.5, 141.4, 138.65, 131.3, 129.8, 129.3, 128.8, 128.7, 128.0, 127.5, 125.6, 124.5, 124.3, 123., 123.20, 123.1, 122.4, 114.5, 98.4, 84.2, 76.8, 40.1, 28.3, 13.6, 5.7, 4.8; **FTIR** (KBr) cm⁻¹, 3074, 2978, 2925, 2868, 1779, 1733, 1643, 1601, 1463, 1349, 1302, 1253, 1154, 1096, 784, 749, 704, 598; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₃H₃₁NO₄Na 528.2151; found 528.2157.

tert-butyl (E)-3-(2-(3-(cyclohex-1-en-1-yl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

Boc O Ph oxoindoline-1-carboxylate (3n): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 3n. Yellow solid (70 mg, yield = 64%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.49-7.33 (m, 3H), 7.33–7.21 (m, 2H), 7.07 (dt, $J_I = 11.2$, $J_2 = 5.8$ Hz, 2H), 7.00 (t, J = 6.1 Hz,

3n () 7.33–7.21 (m, 2H), 7.07 (dt, $J_I = 11.2$, $J_2 = 5.8$ Hz, 2H), 7.00 (t, J = 6.1 Hz, 2H), 6.92 (d, J = 7.4 Hz, 1H), 6.63 (t, J = 7.7 Hz, 1H), 6.05 (d, J = 7.8 Hz, 1H), 5.94 (s, 1H), 5.84 (s, 1H), 5.47 (dd, J = 10.4, 3.5 Hz, 1H), 4.53 (dd, $J_I = 13.0$, $J_2 = 10.6$ Hz, 1H), 2.84 (dd, $J_I = 13.1$, $J_2 = 3.5$ Hz, 1H), 2.11 (m, 2H), 1.84 (m, 2H), 1.59 (s, 9H), 1.55–1.48 (m, 2H), 1.44–1.36 (m, 2H), 0.89–0.72 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 165.3, 154.9, 151.6, 149.5, 141.0, 138.4, 131.4, 131.2, 130.8, 128.7, 128.6, 127.9, 127.3, 126.1, 126.0, 124.8, 124.1, 124.06, 123.3, 123.1, 114.3, 99.6, 84.0, 75.7, 39.7, 28.3, 25.5, 24.0, 22.6, 22.0; **FTIR** (KBr) cm⁻¹, 3054, 2926, 2860, 1770, 1727, 1599, 1458, 1346, 1301, 1250, 1150, 1094, 1033, 975, 917, 844, 784, 746, 700, 594; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₆H₃₅NO₄Na 568.2464; found 568.2465.

tert-butyl (E)-3-(2-(3-butyl-1H-isochromen-1-yl)-1-phenylethylidene)-2-oxoindoline-1-

carboxylate (3o): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3o.** Yellow solid (42 mg, yield = 40%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 1H), 7.41 (s, 4H), 7.20 (dd, J_I = 15.4, J_2 = 8.5 Hz, 2H), 7.15 - 6.97 (m, 4H), 6.78 (d, J = 7.2 Hz, 1H), 6.65 (t, J = 7.7 Hz,

1H), 6.14 (d, J = 7.9 Hz, 1H), 5.56 (dd, $J_1 = 10.0$, $J_2 = 2.5$ Hz, 1H), 5.41 (s,

1H), 3.83 (dd, $J_1 = 12.6$, $J_2 = 10.4$ Hz, 1H), 3.43 (dd, $J_1 = 12.9$, $J_2 = 2.4$ Hz, 1H), 1.60 (s, 9H), 1.32-1.04 (m, 5H), 0.87–0.65 (m, 4H); ¹³**C NMR** (75 MHz, CDCl₃) δ 165.9, 157.2, 155.9, 149.4, 142.0, 138.6, 130.8, 130.0, 129.2, 128.7, 128.7, 127.9, 125.9, 124.6, 123.4, 123.1, 122.6,

114.5, 99.5, 84.2, 77.4, 40.9, 32.9, 28.5, 28.3, 22.4, 13.9; **FTIR** (KBr) cm⁻¹, 3059, 2926, 2861, 1721, 1641, 1609, 1563, 1463, 1349, 1300, 1251, 1156, 1092, 1019, 849, 788, 744, 697, 591; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₄H₃₅NO₄Na 544.2464; found 544.2467.

tert-butyl (E)-3-(2-(3-benzyl-1H-isochromen-1-yl)-1-phenylethylidene)-2-oxoindoline-1-

carboxylate (3p): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3p.** Yellow solid (84 mg, yield = 76%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.51–7.30 (m, 4H), 7.18-7.00 (m, 10H), 6.74 (dd, $J_I = 5.6$, $J_2 = 2.9$ Hz, 1H), 6.65 (t, J = 7.7 Hz, 1H), 6.14 (d, J = 7.8 Hz, 1H), 5.54 (dd, $J_I = 10.3$, $J_2 = 2.3$ Hz, 1H), 5.29

(s, 1H), 3.92 (dd, $J_1 = 13.0$, $J_2 = 10.5$ Hz, 1H), 3.34 (dd, $J_1 = 13.1$, $J_2 = 2.5$ Hz, 1H), 2.82 (q, J = 15.8 Hz, 2H), 1.61 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃) 165.9, 156.8, 154.8, 149.4, 141.9, 138.6, 137.3, 130.5, 130.0, 129.4, 128.8, 128.7, 128.2, 127.9, 127.2, 126.4, 126.2, 124.4, 124.1, 123.4, 123.0, 122.9, 114.5, 101.2, 84.3, 77.4, 40.8, 39.5, 28.3; **FTIR** (KBr) cm⁻¹,3063, 2971, 2926, 2856, 1779, 1729, 1651, 1600, 1491, 1461, 1351, 1303, 1252, 1154, 1097, 1029, 1002, 846, 785, 752, 704, 593; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₄Na 578.2307; found 578.2320.

tert-butyl (E)-3-(2-(3-((benzyloxy)methyl)-1H-isochromen-1-yl)-1-phenylethylidene)-2-

oxoindoline-1-carboxylate (3q): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **3q.** Yellow solid (55 mg, yield = 47%). R_f = 0.5 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 1H), 7.41 (s, 4H), 7.37–7.10 (m, 10H), 7.03–6.85 (m, 1H), 6.72 (t, J = 7.7 Hz, 1H), 6.21 (d, J = 7.9 Hz, 1H), 5.84 (s, 1H),

5.69 (dd, $J_1 = 10.2$, $J_2 = 2.1$ Hz, 1H), 4.43 (s, 2H), 3.91 (dd, $J_1 = 12.8$, $J_2 = 10.5$ Hz, 1H), 3.53 (d, J = 13.4 Hz, 2H), 3.35 (d, J = 13.7 Hz, 1H), 1.68 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 156.7, 151.3, 149.1, 141.9, 138.6, 138.1, 130.5, 129.8, 129.4, 129.2, 128.8, 128., 128.09, 127.9, 127.7, 127.7, 127.1, 126.8, 124.7, 124.2, 123.4, 123.1, 123.0, 114.5, 101.5, 84.3, 77.7, 72.4, 68.6, 40.9, 28.3; FTIR (KBr) cm⁻¹, 3064, 3027, 2979, 2931, 2861, 1729, 1655, 1603,

1459, 1347, 1297, 1250, 1149, 1093, 1009, 743, 694, 592. **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₈H₃₅NO₅Na 608.2413; found 608.2411.

tert-butyl

(*E*)-3-(2-(1*H*-isochromen-1-yl)-1-phenylethylidene)-2-oxoindoline-1carboxylate (3r): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 3r. Yellow solid (65 mg, yield = 70%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.2 Hz, 1H), 7.49 (bs, 4H), 7.38-7.31 (m, 1H), 7.24-7.16 (m, 3H), 6.94 (dd, *J* = 5.9, 2.7 Hz, 1H), 6.77 (t, *J* = 7.7 Hz, 1H), 6.24 (d, *J* = 7.8 Hz, 1H), 6.06 (d, *J* = 5.7 Hz, 1H), 5.73 (dd, *J* = 10.4, 3.0 Hz,

1H), 5.68 (d, J = 5.7 Hz, 1H), 3.80 (dd, $J_I = 12.8$, $J_2 = 10.5$ Hz, 1H), 3.60 (dd, $J_I = 12.8$, $J_2 = 3.0$ Hz, 1H), 1.72 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃) δ 166.1, 156.8, 149.3, 143.0, 141.8, 138.6, 131.1, 129.5, 129.4, 129.0, 129.0, 128.7, 128.5, 128.0, 127.7, 126.8, 126.8, 124.9, 124.0, 123.4, 123.2, 123.1, 123.0, 114.5, 104.5, 84.3, 40.8, 28.3; **FTIR** (KBr) cm⁻¹,3057, 3023, 2982, 2931, 2858, 1726, 1625, 1599, 1462, 1351, 1302, 11, 1225, 1201, 1152, 1095, 1067, 1044, 1000, 979, 844, 769, 746, 704, 596; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₀H₂₇NO₄Na 488.1838; found 488.1838.

tert-butyl

(*E*)-5-methyl-2-oxo-3-(1-phenyl-2-(3-phenyl-1*H*-isochromen-1yl)ethylidene)indoline-1-carboxylate (4a): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 4a. Yellow solid (86 mg, yield = 75%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDC13) δ 7.62 (d, *J* = 8.3 Hz, 1H), 7.50–7.43 (m, 2H), 7.40–7.29 (m, 5H), 7.27–7.11 (m, 7H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.39 (s, 1H), 5.92 (s,

1H), 5.78 (dd, $J_1 = 10.1$, $J_2 = 3.4$ Hz, 1H), 4.36 (dd, $J_1 = 13.2$, $J_2 = 10.2$ Hz, 1H), 3.33 (dd, $J_1 = 13.2$, $J_2 = 3.4$ Hz, 1H), 1.98 (s, 3H), 1.61 (s, 9H); ¹³C NMR (75 MHz, CDCl3) δ 165.8, 155.2, 151.2, 149.3, 141.2, 136.4, 134.8, 132.5, 130.8, 130.7, 129.2, 128.6, 128.3, 128.1, 128.0, 127.5, 127.1, 126.6, 124.9, 124.8, 124.4, 123.9, 123.8, 123.0, 114.2, 100.5, 83.8, 76.9, 40.2, 29.7, 28.2, 21.1; FTIR (KBr) cm⁻¹, 3060, 2988, 2924, 2854, 1729, 1609, 1482, 1452, 1371, 1338,

1302, 1283, 1253, 1161, 1115, 1053, 981, 943, 911, 846, 815, 761, 737, 687, 531; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₄Na 578.2307; found 578.2322.

tert-butyl

(*E*)-5-methoxy-2-oxo-3-(1-phenyl-2-(3-phenyl-1*H*-isochromen-1yl)ethylidene)indoline-1-carboxylate (4b): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 4b. Yellow solid (86 mg, yield = 72%). Rf = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl3) δ 7.65 (d, J = 8.9 Hz, 1H), 7.51–7.43 (m, 2H), 7.42-7.28 (m, 4H), 7.24–7.12 (m, 4H),

7.06 (d, J = 7.3 Hz, 1H), 6.71 (dd, $J_I = 8.9$, $J_2 = 2.6$ Hz, 1H), 6.39 (s, 1H), 5.80 (dd, $J_I = 10.1$, $J_2 = 3.2$ Hz, 1H), 5.71 (d, J = 2.5 Hz, 1H), 4.36 (dd, $J_I = 13.1$, $J_2 = 10.3$ Hz, 1H), 3.37 (s, 3H), 3.31 (d, J = 3.3 Hz, 1H), 1.61 (s, 9H); ¹³**C NMR** (75 MHz, CDCl3) δ 165.8, 155.8, 155.5, 151.1, 149.3, 141.0, 134.80, 132.4, 130.8, 130.6, 129.4, 129.2, 128.7, 128.3, 128.1, 128.0, 127.6, 127.1, 126.7, 124.7, 124.4, 124.0, 123.8, 115.4, 115.1, 108.0, 100.6, 83.8, 76.9, 55.0, 40.3, 28.2; **FTIR** (KBr) cm⁻¹, 3060, 2988, 2930, 2828, 1726, 1608, 1484, 1452, 1338, 1300, 1282, 1253, 1158, 1100, 1052, 1007, 943, 813, 762, 697, 608, 531; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₅Na 594.23; found 594.2273.

tert-butyl (*E*)-5-chloro-2-oxo-3-(1-phenyl-2-(3-phenyl-1*H*-isochromen-1yl)ethylidene)indoline-1-carboxylate (4c): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR

analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **4c**. Yellow solid (79 mg, yield = 66%). Rf = 0.6 (EtOAc/Hexane = 1/9); ¹**H NMR** (300 MHz, CDCl₃) δ 7.70 (d, *J* = 8.7 Hz, 1H), 7.51–7.34 (m, 5H), 7.34–7.12 (m, 9H), 7.12–7.04 (m, 1H), 6.41 (s, 1H), 6.05 (s, 1H), 5.77 (dd, *J*₁ = 10.1, *J*₁ = 2.7 Hz, 1H), 4.59–4.31 (m, 1H), 3.26 (dd, *J*₁ = 13.2, *J*₂ = 3.0 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 157.6, 151.0, 149.1, 140.4, 137.0, 134.7,

130.8, 130.5, 129.6, 129.4, 129.1, 128.8, 128.4, 128.4, 128.2, 128.1, 127.2, 126.9, 126.7, 124.7, 124.4, 124.3, 124.1, 124.0, 123.2, 115.6, 100.6, 84.3, 40.3, 28.2; **FTIR** (KBr) cm⁻¹, 3102, 3070, 2988, 2927, 2849, 1733, 1610, 1492, 1454, 1372, 1333, 1294, 1275, 1156, 1102, 1055, 983, 934, 812, 764, 693, 606; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₆H₃₀NO₄ClNa 598.1761; found 598.1774.

tert-butyl

(E)-5-fluoro-2-oxo-3-(1-phenyl-2-(3-phenyl-1H-isochromen-1yl)ethylidene)indoline-1-carboxylate (4d): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 4d. Yellow solid (88 mg, yield = 75%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl3) δ 7.72 (dd, $J_1 = 9.0, J_2 = 4.9$ Hz, 1H), 7.46 (dd, $J_1 = 4.5, J_2 = 2.6$ Hz, 2H), 7.37 $(dd, J_1 = 27.8, J_2 = 11.5 Hz, 5H), 7.2-7.12 (m, 6H), 7.10 (dd, J_1 = 20.4)$

 $J_2 = 5.7$ Hz, 1H), 6.95–6.78 (m, 1H), 6.40 (s, 1H), 5.96–5.69 (m, 2H), 4.41 (dd, $J_1 = 13.1, J_2 =$ 10.3 Hz, 1H), 3.29 (dd, J_1 = 13.1, J_2 = 3.4 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (75 MHz, CDCl3) δ 165., 160.5, 157.5, 157.3, 151.1, 149.2, 140.5, 134.7, 134.6, 130.8, 130.5, 129.6, 129.1, 128.4, 128.2, 128.0, 126.9, 126.7, 124.7, 124.3, 124.0, 115.6, 115.5, 115.3, 115.0, 110.4, 110.0, 100.6, 84.1, 76.8, 40.4, 29.8, 28.2; FTIR (KBr) cm⁻¹, 3050, 2991, 2925, 2853, 1730, 1600, 1452, 1476, 1370, 1347, 1303, 1275, 1150, 1096, 1054, 948, 912, 870, 817, 763, 698, 614, 593, 533; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₆H₃₀FNO₄Na 582.2057; found 582.2076.

4e

(E)-6-chloro-2-oxo-3-(1-phenyl-2-(3-phenyl-1H*tert*-butyl CI isochromen-1-yl)ethylidene)indoline-1-carboxylate (4e): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 4e. Yellow solid (75 mg, yield = 65%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 1.8 Hz, 1H), 7.53–7.43 (m, 3H), 7.43-7.29 (m, 5H), 7.25–7.11 (m, 6H), 7.08 (d, J = 7.2 Hz, 1H), 6.71 (dd, $J_1 = 8.4, J_2 = 1.8$ Hz, 1H), 6.41 (s, 1H), 6.06 (d, J = 8.5 Hz, 1H), 5.75 (dd, $J_1 = 10.2, J_2 = 3.3$ Hz, 1H), 4.42 (dd, $J_1 = 13.1$, $J_2 = 10.3$ Hz, 1H), 3.25 (dd, $J_1 = 13.2$, $J_2 = 3.4$ Hz, 1H), 1.61 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 156.2, 151.1, 149.0, 140.8, 139.3, 134.7, 134.3, 130.8, 130.5, 129., 128.94, 128.3, 128.2, 128.0, 127.3, 127.0, 126.6, 124.7, 124.3, 124.0, 123.8, 123.4, 121.4, 115.0, 100.6, 84.4, 40.3, 28.1; **FTIR** (KBr) cm⁻¹, 3062, 2978, 2935, 2870, 1779, 1734, 1599, 1457, 1425, 1369, 1347, 1305, 1281, 1248, 1152, 1109, 1078, 1061, 1023, 975, 921, 845, 814, 763, 693, 610, 548; HRMS ESI (m/z) [M+Na]⁺, calcd for

C₃₆H₃₀NO₄ClNa598.1761; found 598.1759.

tert-butyl (E)-6-bromo-2-oxo-3-(1-phenyl-2-(3-phenyl-1Hisochromen-1-yl)ethylidene)indoline-1-carboxylate (4f): The E/Z ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **4f**. Yellow solid (82 mg, yield = 66%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 1.7 Hz, 1H), 7.46 (dd, J_I = 7.6, J_2 = 1.8 Hz, 3H), 7.42-7.29 (m, 5H), 7.25–7.11 (m, 6H), 7.07 (d, J = 7.2 Hz, 1H), 6.87 (dd, J_I = 8.4, J_2 = 1.8 Hz, 1H), 6.41 (s, 1H), 6.00 (d, J = 8.4 Hz, 1H), 5.74 (dd, J_I = 10.2, J_2 = 3.3 Hz, 1H), 4.42 (dd, J_I = 13.1, J_2 = 10.3 Hz, 1H), 3.24 (dd, J_I = 13.2, J_2 = 3.4 Hz, 1H), 1.61 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 156.5, 151.1, 149.0, 140.8, 139.4, 134.7, 130.8, 130.5, 129.3, 128.9, 128.4, 128.2, 128.0, 127.3, 127.0, 126.7, 126.41, 124.7, 124.3, 124.1, 124.1, 122.4, 121.9, 117.8, 100.6, 84.5, 40.3, 28.2; FTIR (KBr) cm⁻¹,3121, 3052, 2980, 2929, 2853, 1779, 1730, 1594, 1491, 1472, 1454, 1369, 1347, 1309, 1281, 1155, 1107, 1057, 1024, 973, 847, 808, 762, 690, 604, 538; HRMS ESI (m/z) [M+Na]⁺, calcd for C₃₆H₃₀NO₄BrNa 642.13; found 642.1280.

tert-butyl (E)-2-oxo-3-(2-(3-phenyl-1H-isochromen-1-yl)-1-(p-tolyl)ethylidene)indoline-

1-carboxylate (4g): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **4g**. Yellow solid (82 mg, yield = 73%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl3) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.42 (d, *J* = 6.0 Hz, 2H), 7.37–7.00 (m, 12H), 6.75 (t, *J* = 7.7 Hz, 1H), 6.38 (s, 1H), 5.79 (dd, $J_I = 10.0, J_2 = 3.1$ Hz, 1H), 4.23 (dd, $J_I = 13.0, J_2 = 10.3$ Hz,

1H), 3.39 (dd, $J_1 = 13.1$, $J_2 = 3.2$ Hz, 1H), 2.35 (s, 3H), 1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl3) δ 165.7, 156.4, 151.2, 149.3, 138.8, 138.5, 138.1, 134.7, 130.7, 129.9, 128.5, 128.2, 128.1, 127.9, 127.7, 127.1, 126.6, 124.8, 124.5, 124.3, 123.9, 123.2, 123.0, 114.4, 100.5, 84.0, 40.5, 28.2, 21.5; **FTIR** (KBr) cm⁻¹, 3068, 2965, 2925, 2853, 1741, 1722, 1601, 1462, 1350, 1303, 1259, 1153, 1092, 1057, 1030, 911, 810, 765, 748, 691, 584; **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₇H₃₃NO₄Na 578.2307; found 578.2311.

tert-butyl (*E*)-2-oxo-3-(2-(3-phenyl-1*H*-isochromen-1-yl)-1-(thiophen-2-yl)ethylidene)indoline-1-carboxylate (4h): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers 4h. Yellow solid (85 mg, yield = 78%). R_f = 0.6 (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 1H), 7.51–7.37 (m, 2H), 7.29 (d, *J* = 5.0 Hz, 1H), 7.18 (s, 2H), 7.17.09 (m, 5H), 7.09–7.04 (m, 1H), 7.01 (d, J = 7.3 Hz, 1H), 6.93–6.86 (m, 1H), 6.82–6.68 (m, 2H), 6.36 (s, 1H), 5.77 (dd, $J_1 = 9.7$, $J_2 = 4.0$ Hz, 1H), 4.12 (dd, $J_1 = 13.1$, $J_2 = 9.8$ Hz, 1H), 3.41 (dd, $J_1 = 13.1$, $J_2 = 4.1$ Hz, 1H), 1.56 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ 151.2, 149.2, 147.9, 142.5, 138.7, 134.6, 130.9, 130.6, 129.1, 128.4, 128.2, 128.0, 127.9, 127.8, 126.7, 125.9, 124.8, 124.5, 124.0, 123.4, 122.0, 122.7, 114.6, 100.5, 84.1, 41.4, 28.2; **FTIR** (KBr) cm⁻¹, 2960, 2924, 2856, 1776, 1733, 1630, 1592, 1491, 1459, 1370, 1341, 1295, 1251, 1152, 1097, 1054, 968, 843, 789, 763, 709, 691. **HRMS ESI** (m/z) [M+Na]⁺, calcd for C₃₄H₂₉NO₄SNa570.1715; found 570.1728.

tert-butyl (E)-2-oxo-3-(1-phenyl-2-(3-phenyl-1H-isochromen-1-yl)propylidene)indoline-

1-carboxylate (4i): The *E*/*Z* ratio (>19:1) was determined by ¹H NMR analysis of the crude product. The crude mixture was purified by general procedure to give an inseparable mixture of diastereomers **4i**. Off white solid (80 mg, yield = 72%). $R_f = 0.6$ (EtOAc/Hexane = 1/9); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 1H), 7.67 (dd, *J*₁ = 10.3, *J*₂ = 5.7 Hz, 1H), 7.64–7.49 (m, 4H), 7.27 (t, *J* = 7.3 Hz, 2H), 7.21–7.01 (m, 5H), 7.01–6.86 (m, 3H), 6.68 (d, *J* = 7.7 Hz, 1H), 6.65 (s, 1H), 5.81–5.66 (m, 1H), 5.61 (d, *J* = 7.8 Hz, 1H), 5.26 (d, *J* = 10.4

Hz, 1H), 1.58 (s, 3H), 1.54 (s, 6H), 0.88 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 164.98, 159.75, 150.98, 149.05, 138.30, 137.13, 134.40, 131.36, 129.73, 129.35, 128.90, 128.78, 128.51, 128.42, 128.24, 127.84, 127.06, 126.22, 125.74, 124.70, 124.60, 123.21, 123.12, 114.04, 101.43, 83.40, 79.40, 34.73, 28.22, 14.74. FTIR (KBr) cm⁻¹, 3064, 2956, 2925, 2854, 1779, 1735, 1631, 1600, 1460, 1372, 1347, 1293, 13, 1153, 1094, 1056, 1028, 797, 762, 691. HRMS ESI (m/z) [M+H]⁺, calculated for C₃₇H₃₄NO₄ 556.2488; found 556.2516.

4. GC-MS characterization of intermediate IV:

Silver tetrafluroborate (20 mol%) was taken in the pre-dried reaction vessel and nitrogen was purged three times using standard Schlenk techniques to maintain inert conditions. Subsequently, dried DCM (1 mL) was added to the reaction vessel followed by addition of **1a** (0.2 mmol, 1 eq), **2a** (0.3 mmol, 1.5 eq) and benzoic acid (20 mol%). The resulting reaction mixture was stirred at room temperature under inert atmosphere. After one hour stirring, the aliquot was taken from the reaction mixture and diluted in acetonitrile solvent. Then after the mixture was filtered and injected in GC-MS for mass analysis. A mass peak of 655.13, similar to the silyl isochromene intermediate **IV** (655.31) was detected. This observation strongly supports the proposed mechanism.

- 5. Crystallographic Data:(I) Crystal structure of compound 3q:

Figure S3. Structure determination of 3q by X-ray analysis

X-Ray data collection, solution, and refinement for Compound 3q

Bond precis	ion: C-C	= 0.0041 A	Wavelength=0.71073	
Cell:	a=10.5434(7)	b=12.2090(8)	c=12.9764(9)	
	alpha=89.428(2)	beta=77.020(2)	gamma=75.639(2)	
Temperature: 302 K				
	Calcula	ated	Reported	
Volume 157		9(18)	1574.99(18)	
Space group	P -1		P -1	
Hall group	-P 1		-P 1	

Moiety formula	$C_{38}H_{35}NO_5$		C ₃₈ H ₃₅ NO ₅
Sum formula	C ₃₈ H ₃₅ NO ₅		C ₃₈ H ₃₅ NO ₅
Mr	585.67		585.67
Dx,g cm-3	1.235		1.235
Z	2		2
Mu (mm-1)	0.081		0.081
F000	620.0		620.0
F000'	620.29		
h,k,lmax	14,16,17		14,16,17
Nref	7910		7910
Tmin,Tmax	0.983,0.987		0.983,0.987
Tmin'	0.980		
Correction method= # AbsCorr = NONE	Reported T L	imits: Tmin = 0.983 Tr	max = 0.987
Data completeness= 1.	.000	Theta(max)= 28.387	
R(reflections)= 0.0626	6(4522)	wR2(reflections)=	0.2020(7882)
S = 0.924	Npar= 400)	

(II) Crystal structure of compound 4i:

Figure S4. Structure determination of 4i by X-ray analysis

X-Ray data collection, solution, and refinement for Compound 4i

Bond precision:		C-C = 0.0034 A		V	Wavelength=0.71073
Cell:	a=15.1432	(6)	b=12.4911(5)	c=16.217	8(6)
	alpha=90		beta=104.238(1)	gamma=9	90
Temperature	: 302 K				
	C	Calculate	ed		Reported
Volume	2	973.5(2	2)		2973.4(2)
Space group	Р	21/n			P 21/n
Hall group	-]	P 2yn			-P 2yn

Moiety formula	C ₃₇ H ₃₃ NO ₄		$C_{37}H_{33}NO_4$
Sum formula	C ₃₇ H ₃₃ NO ₄		C ₃₇ H ₃₃ NO ₄
Mr	555.64		555.64
Dx,g cm-3	1.241		1.241
Z	4		4
Mu (mm-1)	0.080		0.080
F000	1176.0		1176.0
F000'	1176.53		
h,k,lmax	20,16,21		20,16,21
Nref	7443		7443
Tmin,Tmax	0.983,0.987		0.983,0.987
Tmin'	0.980		
Correction method= # AbsCorr = NONE	Reported T Lir	nits: Tmin=0.983 Tmax	x=0.987
Data completeness= 1	.000	Theta(max)= 28.357	
R(reflections)= 0.0570)(3499)	wR2(reflections)=	0.1820(7294)
S = 0.939	Npar= 383	3	

6. References

(1) Tomás-Mendivil, E.; Starck, J.; Ortuno, J.-C.; Michelet, V. Org. Lett. 2015, 17, 6126.

(2) Rassu, G.; Zambrano, V.; Tanca, R.; Sartori, A.; Battistini, L.; Zanardi, F.; Curti, C.; Casiraghi, G. *Eur. J. Org. Chem.* **2012**, 3, 466.

-182.46 -155.86 -155.86 -155.86 -155.85 -155.01 -155.85 -140.06 -140.06 -127.29 -140.66 -127.29 -12

S38

-165.26 -165.25 -160.52 -160.52 -160.52 -160.52 -161.52 -100.52 -10

90 80 f1 (ppm)