Supporting Information

A theoretical study on the strain energy of helicene-containing carbon nanobelts

Kosuke Watanabe, a,b Yasutomo Segawa, a,b,c,d,* Kenichiro Itamia,c,e,*

 ^aGraduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
 ^bInstitute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan.
 ^cJST, ERATO, Itami Molecular Nanocarbon Project, Chikusa, Nagoya 464-8602, Japan.
 ^dDepartment of Structural Molecular Science, SOKENDAI
 (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan.
 ^eInstitute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan.

E-mail: ysegawa@nagoya-u.jp (YS), itami@chem.nagoya-u.ac.jp (KI)

Table of Contents

1. Methods of DFT study	S2
2. Hypothetical reactions	S2–S3
3. Strain energy of CNBs	S4–S9
4. Energy values of optimized structures	S10-S12
5. References	S13

1. Methods of DFT study

The Gaussian 16 program^{S1} running on a NEC LX 110Rh system was used for optimization. B3LYP/6-31G(d))^{S2,S3} level of theory was used unless otherwise noted. Structures were optimized without any symmetry assumptions. Plots and regression lines were drawn by Microsoft[®] Excel for Mac version 16.16.27. SEs per carbon atom were SE values divided by total number of carbon atoms.

2. Hypothetical reactions

Scheme S1. A hypothetical homodesmotic reaction for B₆.

Scheme S2. Hypothetical homodesmotic reactions for [4]- and [5]helicenes.^a

^{*a*} According to these results and previous works,^{24,25} SEs are dependent on the choice of reference molecules, and are underestimated when benzene/naphthalene is used. Also, using large π -conjugated molecules such as chrysene may cause underestimation. To avoid such problem, we chose phenanthrene and naphthalene as reference molecules in this work.

Scheme S3. Hypothetical homodesmotic reactions for J₆ and K₆.

Scheme S4. SEs of [4]- and [5]helicenes calculated by B3LYP/6-31G(d), B3LYP-D3/6-31G(d),^{S4} and M06-2X/6-31G(d),^{S5} level of theory.^{*a*}

^{*a*} According to these results and previous works,²⁵ SEs of [4]- and [5]helicenes are slightly underestimated when B3LYP-D3 or M06-2X level of theory is used.

3. Strain energies of CNBs

Fig. S1 Plot of the total energy per *n* of C_n versus n^{-2} .

Fig. S2 Plot of the total energy per *n* of \mathbf{D}_n versus n^{-2} .

Fig. S3 Plot of the total energy per *n* of E_n versus n^{-2} .

Fig. S4 Plot of the total energy per *n* of \mathbf{F}_n versus n^{-2} with the linear regression line.

Supporting Information (Watanabe, Segawa, Itami) A theoretical study on the strain energy of helicene-containing carbon nanobelts

Fig. S5 Plot of the total energy per *n* of G_n versus n^{-2} with the linear regression line.

Fig. S6 Plot of the total energy per *n* of \mathbf{H}_n versus n^{-2} with the linear regression line.

Fig. S7 Plot of the total energy per *n* of I_n versus n^{-2} with the linear regression line.

п	SE (kcal·mol ⁻¹)	diameter (Å)	SE per carbon atom (kcal·mol ⁻¹)
4	86.93	11.07	1.358
5	69.54	13.82	0.869
6	57.95	16.57	0.604
8	43.46	22.07	0.340
10	34.77	27.58	0.217
12	28.98	33.09	0.151
16	21.73	44.12	0.085

Table S1SE and diameter of A_n.

Table S2SE and diameter of **B**_n.

п	SE (kcal·mol ⁻¹)	diameter (Å)	SE per carbon atom (kcal·mol ⁻¹)
4	85.91	13.87	0.767
5	90.15	17.32	0.644
6	99.10	20.77	0.590
7	110.73	24.22	0.565
8	123.98	27.67	0.553
9	138.30	31.12	0.549
10	153.31	34.58	0.548
12	184.89	41.48	0.550
14	217.55	48.38	0.555

Table S3SE and diameter of C_n .

п	SE (kcal·mol ⁻¹)	diameter (Å)	SE per carbon atom (kcal·mol ⁻¹)
3	146.24	8.35	1.523
4	158.84	11.04	1.241
5	185.14	13.73	1.157
6	218.60	16.44	1.139
7	256.22	19.15	1.144
8	296.53	21.86	1.158
15	607.49	40.87	1.266

Supporting Information (Watanabe, Segawa, Itami) A theoretical study on the strain energy of helicene-containing carbon nanobelts

п	SE (kcal·mol ⁻¹)	diameter (Å)	SE per carbon atom (kcal·mol ⁻¹)
3	178.23	9.11	2.475
4	198.11	12.00	2.064
5	218.05	14.88	1.817
6	239.90	17.77	1.666
7	263.71	20.68	1.570
8	288.95	23.59	1.505
10	342.58	29.37	1.427
12	398.78	35.22	1.385
14	456.48	41.08	1.359
16	515.28	46.93	1.342

Table S4SE and diameter of D_n .

Table S5SE and diameter of E_n.

п	SE (kcal·mol ⁻¹)	diameter (Å)	SE per carbon atom (kcal·mol ⁻¹)
4	156.03	9.70	2.438
6	165.05	14.36	1.719
8	183.80	19.10	1.436
10	208.03	23.86	1.300
12	235.31	28.63	1.226
14	264.39	33.39	1.180
16	294.65	38.16	1.151

4. Energy values of optimized structures

	E	E + ZPE	Н	G
A ₄	2458.16344407	-2457.41707	-2457.37559	-2457.48243
\mathbf{A}_{5}	-3072.76872158	-3071.83458	-3071.78218	-3071.91234
\mathbf{A}_{6}	-3687.36459936	-3686.24284	-3686.17949	-3686.33321
A_8	-4916.54208781	-4915.04546	-4914.96015	-4915.16193
A_{10}	-6145.71018037	-6143.83872	-6143.73151	-6143.98126
A_{12}	-7374.87336311	-7372.62735	-7372.49816	-7372.79782
A_{16}	-9833.19263837	-9830.19755	-9830.02447	-9830.42133
\mathbf{B}_4	-4301.90284889	-4300.59021	-4300.51607	-4300.69328
\mathbf{B}_5	-5377.40768833	-5375.76600	-5375.67280	-5375.89104
\mathbf{B}_{6}	-6452.90479112	-6450.93432	-6450.82202	-6451.08185
\mathbf{B}_7	-7528.39759911	-7526.09836	-7525.96698	-7526.26853
\mathbf{B}_{8}	-8603.88773146	-8601.25982	-8601.10934	-8601.45283
B 9	-9679.37614114	-9676.41958	-9676.25000	-9676.63565
B ₁₀	-10754.8633519	-10751.57825	-10751.38956	-10751.81460
B ₁₂	-12905.8354408	-12901.89309	-12901.66620	-12902.17643
B ₁₄	-15056.8055839	-15052.20627	-15051.94112	-15052.53656
С3	-3687.24115994	-3686.11878	-3686.05541	-3686.20892
C_4	-4916.38170334	-4914.88330	-4914.79847	-4914.99661
C ₅	-6145.49983807	-6143.62601	-6143.51968	-6143.76299
C6	-7374.60637126	-7372.35730	-7372.22950	-7372.51576
C_7	-8603.70605681	-8601.08200	-8600.93268	-8601.26454
C_8	-9832.80154418	-9829.80240	-9829.63159	-9830.00908
C ₁₅	-18436.4220478	-18430.79945	-18430.47798	-18431.17933
D_3	-2765.31562521	-2764.47695	-2764.42991	-2764.55049
\mathbf{D}_4	-3687.15261318	-3686.03306	-3685.96986	-3686.12538
D 5	-4608.98963340	-4607.58878	-4607.50971	-4607.69680
D ₆	-5530.82347353	-5529.14145	-5529.04650	-5529.26854
\mathbf{D}_7	-6452.65414403	-6450.69105	-6450.58019	-6450.83421
D_8	-7374.48240468	-7372.23843	-7372.11159	-7372.40161
D ₁₀	-9218.13394438	-9215.32818	-9215.16939	-9215.52747
\mathbf{D}_{12}	-11061.7813084	-11058.41387	-11058.22308	-11058.64845

 Table S6
 Uncorrected and thermal-corrected (298 K) energies of stationary points (Hartree).^a

Supporting Information (Watanabe, Segawa, Itami) A theoretical study on the strain energy of helicene-containing carbon nanobelts

D ₁₄	-12905.4261809	-12901.49720	-12901.27439	-12901.77080
D ₁₆	-14749.0694553	-14744.57877	-14744.32393	-14744.88778
E ₄	-2458.07505018	-2457.32758	-2457.28600	-2457.39560
E ₆	-3687.22671318	-3686.10189	-3686.03943	-3686.19259
$\mathbf{E_8}$	-4916.36229160	-4914.86098	-4914.77736	-4914.97571
$\mathbf{E_{10}}$	-6145.48895017	-6143.61139	-6143.50655	-6143.75054
\mathbf{E}_{12}	-7374.61062988	-7372.35699	-7372.23088	-7372.52106
\mathbf{E}_{14}	-8603.72938382	-8601.09972	-8600.95233	-8601.28883
E ₁₆	-9832.84622777	-9829.84061	-9829.67192	-9830.05505
\mathbf{F}_{3}	-2304.50939012	-2303.80942	-2303.77062	-2303.87261
F4	-3072.76452803	-3071.82966	-3071.77709	-3071.90852
\mathbf{F}_{5}	-3841.00518688	-3839.83579	-3839.76936	-3839.93101
\mathbf{F}_{6}	-4609.23849230	-4607.83464	-4607.75434	-4607.94638
\mathbf{F}_{7}	-5377.46754074	-5375.82941	-5375.73522	-5375.95805
$\mathbf{F_8}$	-6145.69397097	-6143.82155	-6143.71346	-6143.96728
G ₃	-1843.54505190	-1842.98644	-1842.95571	-1843.04168
G4	-2458.16723784	-2457.42024	-2457.37852	-2457.48799
G_5	-3072.77082219	-3071.83587	-3071.78303	-3071.91389
G_6	-3687.36516815	-3686.24239	-3686.17841	-3686.33658
G ₈	-4916.53999678	-4915.04197	-4914.95561	-4915.16160
G ₁₀	-6145.70561216	-6143.83260	-6143.72382	-6143.97881
H ₃	-2758.23020855	-2757.52056	-2757.48079	-2757.58157
H_4	-3677.82772811	-3676.87917	-3676.82530	-3676.95406
H5	-4597.39224497	-4596.20526	-4596.13720	-4596.29454
H_6	-5516.94024832	-5515.51504	-5515.43275	-5515.61915
\mathbf{H}_{7}	-6436.47890919	-6434.81556	-6434.71903	-6434.93478
H_8	-7356.01185300	-7354.11032	-7353.99958	-7354.24197
I ₃	-2758.21642259	-2757.50484	-2757.46529	-2757.56539
I4	-3677.82955897	-3676.87808	-3676.82455	-3676.95184
I 5	-4597.40365656	-4596.21289	-4596.14524	-4596.30043
I ₆	-5516.95788503	-5515.52806	-5515.44623	-5515.62974
I ₇	-6436.50052734	-6434.83174	-6434.73569	-6434.94790
\mathbf{J}_6	-6467.09536833	-6464.87595	-6464.74661	-6465.06300
1mer	-1463.75343199	-1463.23547	-1463.20599	-1463.29727

Supporting Information (Watanabe, Segawa, Itami) A theoretical study on the strain energy of helicene-containing carbon nanobelts

2mer	-2541.61426228	-2540.72625	-2540.67488	-2540.81835
benzene	-232.253750536	-232.15303	-232.14770	-232.18049
naphthalene	-385.892706628	-385.74491	-385.73717	-385.77611
phenanthrene	-539.538630394	-539.34380	-539.33342	-539.37865
chrysene	-693.181978362	-692.94025	-692.92714	-692.97877
[4]helicene	-693.172469823	-692.93042	-692.91751	-692.96836
[5]helicene	-846.806915776	-846.51845	-846.50286	-846.55951
bp	-845.654380392	-845.38700	-845.37259	-845.42641
K ₆	-6454.08520730	-6452.09360	-6451.98000	-6452.24406
2-phenylnaphthalene	-616.950161806	-616.72132	-616.70890	-616.75941
S1	-1154.11224810	-1153.73017	-1153.70844	-1153.78145
S2	-1922.33093428	-1921.71463	-1921.67911	-1921.78357
S 3	-5381.08491677	-5379.38323	-5379.28382	-5379.53559
B3LYP-D3/6-31G(d)				
[4]helicene	-693.198150102	-692.95598	-692.94308	-692.99393
[5]helicene	-846.841948084	-846.55322	-846.53765	-846.59426
naphthalene	-385.903979145	-385.75611	-385.74837	-385.78730
phenanthrene	-539.556629780	-539.36169	-539.35131	-539.39655
M06-2X/6-31G(d)				
[4]helicene	-692.879090504	-692.63455	-692.62171	-692.67241
[5]helicene	-846.455678177	-846.16417	-846.14868	-846.20512
naphthalene	-385.718805919	-385.56950	-385.56179	-385.60069
phenanthrene	-539.304797723	-539.10802	-539.09768	-539.14287

a) *E*: electronic energy; *ZPE*: zero-point energy; $H (= E + ZPE + E_{vib} + E_{rot} + E_{trans} + RT)$: sum of electronic and thermal enthalpies; G (= H - TS): sum of electronic and thermal free energies.

5. References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.
- S2 A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- S3 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785-789.
- S4 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- S5 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.