Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information

Catalytic asymmetric formal [3+2] cycloaddition of isatogens with azlactones to construct indolin-3-one derivatives

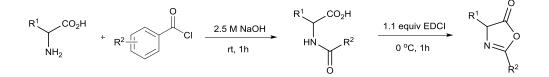
Lihua Xie, Yi Li, Shunxi Dong, Xiaoming Feng, Xiaohua Liu*a

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: liuxh@scu.edu.cn

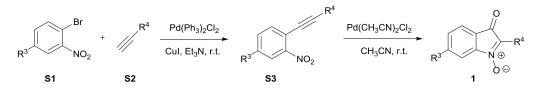
Table of Contents

1.	General information	S2
2.	Substrates synthesis	S2
3.	Optimization of the reaction conditions	
4.	Substrate scope	
5.	Typical procedure for the cascade reaction	
6.	The analytical and spectral characterization data of the products	S13
7.	Crystallographic date and analysis results of 2D NMR spectra for 3ca	S41
8.	NMR spectra	S44
9.	References	

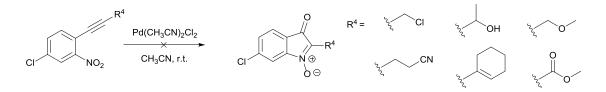

1. General information

¹H NMR spectra were recorded on Bruker ASCENDTM operating at 400 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard [CDCl₃, δ = 7.26), MeOD, $\delta = 2.64$, (CD₃)₂CO, $\delta = 2.05$, (CD₃)₂SO, $\delta = 2.50$]. Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz), integration and assignment. NMR characterization data were collected on bruker ASCENDTM operating at 400 MHz for 101 MHz for ¹³C{1H} NMR (with complete proton decoupling), and 376 MHz for ¹⁹F{¹H} NMR (with complete proton decoupling). Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomeric excesses (ee) were determined by Ultra Performance Convergence Chromatography (UPCC) on systems of an Agilent 1100 or 1200 series with chiral stationary phases (Chiralpak OX, Chiralpak OJ, Chiralpak ODH, Chiralpak AD) from Chiral Technologies Inc in the experimental procedures at 35 °C. Optical rotations were reported as follows: $[\alpha]_D^T(c; g/100 \text{ mL}, \text{ in solvent})$. The unit is deg•cm³•g⁻¹•dm⁻¹. IR spectra were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory, and the wave numbers of the absorption peaks are given in cm⁻¹. High resolution mass spectra (HRMS) analyses were recorded on a Thermo Scientific LTQ Orbitrap XL with positive ion mode. HRMS was recorded on a commercial apparatus (FTMS+c ESI).

All catalytic reactions were run in dried glassware. THF, toluene and diethyl ether (Et₂O) were distilled from sodium benzophenone ketyl before use. Ethyl acetate, DCM was distilled over CaH₂ before use. The experiments requiring substrates azlactones¹, isatogens²⁻⁵, chiral guanidines⁶ were synthesized according to known procedures. The starting materials were purchased from Accela, 3A chemicals, Aladdin, Adamas, Acros, Aldrich or Ark, and used without further purification. Reactions were monitored using thin-layer chromatography (TLC) on GF254 silica gel. Visualization of the developed plates was performed under UV light (254 nm) or using iodine, cobalt thiocyanate or KMnO₄. The products were purified by flash column chromatography with Silicycle 300-400 mesh silica gel or with Aluminum oxide (neutral) 100-200 mesh.

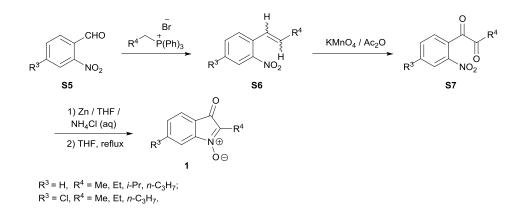

2. Substrates synthesis

2.1 General procedure for the synthesis of azlactones according to the literature procedure.¹


2.2 General procedure for the synthesis of isatogens

a) Method A: Isatogens were prepared according to the literature procedure.²

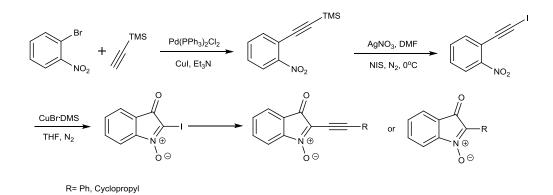
 $R^3 = H$, F, Cl, Br, Me, $R^4 =$ cyclopropyl, *i*-Pr, cyclohexyl, *t*-Bu, *n*-C₄H₉, Ph;


 $R^{3} = CI, R^{4} = i-Pr, cyclopentyl, cyclohexyl, i-Bu, t-Bu, n-C_{4}H_{9}, n-C_{6}H_{13}, n-C_{10}H_{21}, Ph, Pyridyl, 2-thienyl, (CH_{2})_{2}CH_{2}CI, (CH_{2})_{2}CH_{2}Ph, (CH_{2})_{3}CH_{2}OH, (CH_{2})_{4}CCH, (CH_{2})_{3}CO_{2}Me.$

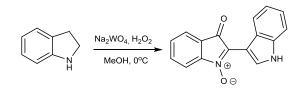
General Procedure for the Sonogashira Coupling: $Pd(PPh_3)_2Cl_2$ (0.25 mmol) was added to a solution of aryl bromide S1 (5.0 mmol) in Et₃N (6 mL), after stirring for 15 min at room temperature, S2 (5.5 mmol) and CuI were added, and the mixture was stirred at room temperture for 6 h. Then, washed with saturated NH₄Cl solution, the aqueous layer was extracted with ethyl acetate, and the combined organic mixtures were washed with brine, dried over anhydrous Na₂SO₄, filtered (solvent: DCM), and concentrated under reduced pressure. And then the mixture was purified by column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) to afford the compound S3 (yellow oil, 80-95% yield).

General Procedure for the Cycloisomerization: $Pd(CH_3CN)_2Cl_2$ (0.025 mmol, 5 mol-%) was added to a solution of alkyne **S3** (0.5 mmol) in CH₃CN (15 mL), and the mixture was stirred under argon at room temperature for 4 h. The reaction mixture was concentrated, and then the mixture was purified by column chromatography (petroleum ether/ethyl acetate = 20/1, v/v or petroleum ether/diethyl ether = 20/1, v/v) to afford the compound **1** (orange or yellow solid, 20-80% yield).

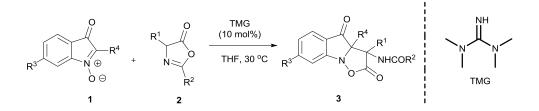
b) Method B: Isatogens were prepared according to the literature procedure.³



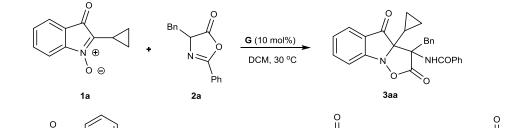
General Synthetic Procedure for Alkene Compound S6: To a solution of ortho-nitro benzaldehyde S5 (10.7 mmol) in dichloromethane (140 mL), was added the appropriate phosphonium salt (14.6 mmol), aq. NaOH solution (50%, 12.8 mmol) and tetrabutylammonium chloride (0.54 mol). The mixture was stirred at room temperature until complete disappearance of the starting product. It was then extracted by dichloromethane; the organic phase was washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The mixture was purified by column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) to afford a mixture of *E*/*Z*-diastereoisomers S6 (yellow oil, 70-90% yield)

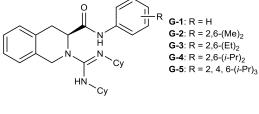

General Synthetic Procedure for Diketone Compound S7: To a solution of alkene **S6** (4.8 mmol) in acetic anhydride (32 ml), was added (at $0-5^{\circ}$ C with stirring) KMnO₄ (19.2 mmol) in five portions over a period of 20 min. After completion of the addition the mixture was stirred in a cooling bath for 2 h. Then the reaction was stopped by addition of ethyl acetate/cyclohexane (1:1) (32 mL) and an ice cold solution of sodium dithionite 10%. After stirring in the cooling bath for several minutes the mixture was extracted by dichloromethane, and the organic phase was washed by an aqueous NaOH solution, water and dried over anhydrous MgSO₄. After evaporation of the solvent, the mixture was purified by column chromatography (petroleum ether/ethyl acetate = 3/1, v/v) to afford the compound **S7** (yellow oil, 40-60% yield).

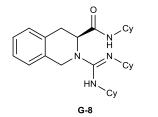
General Synthetic Procedure for Indolone-1-oxide Analogue 1: To a solution of **S7** (0.59 mmol) in THF (10 ml) was added a 10% aqueous solution of NH₄Cl (11 ml) and Zn (2.50 mmol). After 20 min of stirring at r.t., the mixture was filtered and the two liquid phases separated. The organic phase was dried over Na₂SO₄ and concentrated under vacuum. The residue was dissolved in THF or dichloromethane (10 ml) and heated under reflux until complete disappearance of the hydroxylamine intermediate. After evaporation of the solvent, the mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1, v/v) to afford the compound **1** (yellow oil, 20-30% yield).


c) Method C: Isatogens were prepared according to the literature procedure.⁴

d) Method D: Isatogen was prepared according to the literature procedure.⁵


2.3 General procedure for the synthesis of racemic products 3




In a dry tube was charged with the TMG (10 mol%), **1** (0.10 mmol), and **2** (0.10 mmol) in THF (1.0 mL) and was stirred at 30 °C for 24 h. The solvent was removed under reduced pressure, and then the mixture purified by column chromatography (petroleum ether/ethyl acetate = 5/1, v/v) to afford the product **3**.

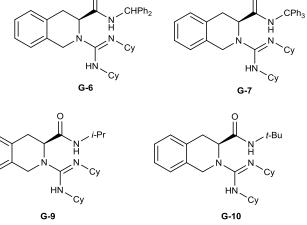
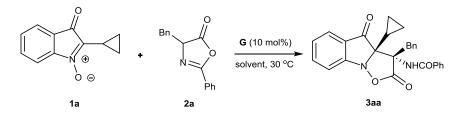

3. Optimization of the reaction conditions

Table S1. Screening of chiral guanidines^a



entry	cat.	yield (%) ^b	ee (%) ^c
1	G-1	65	59
2	G-2	56	76
3	G-3	44	62
4	G-4	36	63
5	G-5	26	41
6	G-6	53	70
7	G-7	57	31
8	G-8	33	44
9	G-9	43	51
10	G-10	54	47

^{*a*} The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **G** (10 mol%) in DCM (1.0 mL) at 30 °C under N₂ for 18 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase.

 Table S2. Screening of the solvents^a

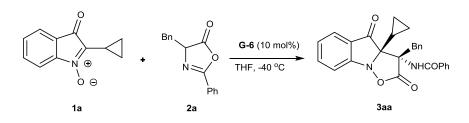
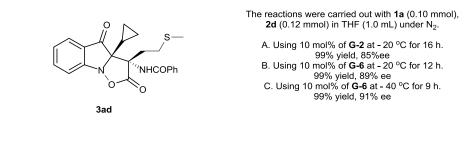
entry	G; solvent	yield $(\%)^b$	ee (%) ^c
1	G-1; Toluene	48	58
2	G-1 ; THF	99	65
3	G-1 ; DCM	65	59
4	G-1 ; Et ₂ O	69	66
5	G-2 ; THF	63	83
6	G-6 ; THF	52	83

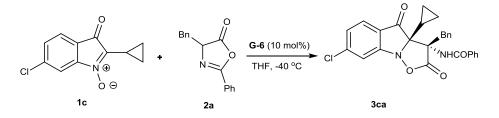
^{*a*} The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **G-1** (10 mol%) in solvent (1.0 mL) at 30 °C under N₂ for 18 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase.

Table S3. Screening of the temperature^a

ontru	T (0C)	G-	G-2		6
entry	ry T (°C)	yield $(\%)^b$	ee (%) ^c	yield $(\%)^b$	ee (%) ^c
1	0	46	91	80	87
2	-10	57	94	85	92
3	-20	64	93.5	85	93
4	-30	61	93	85	93
5	-40	46	93	88	95
6	-50	43	93	69	94

^{*a*} The reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol) and **G** (10 mol%) in THF (1.0 mL) under N₂ for 18 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase.

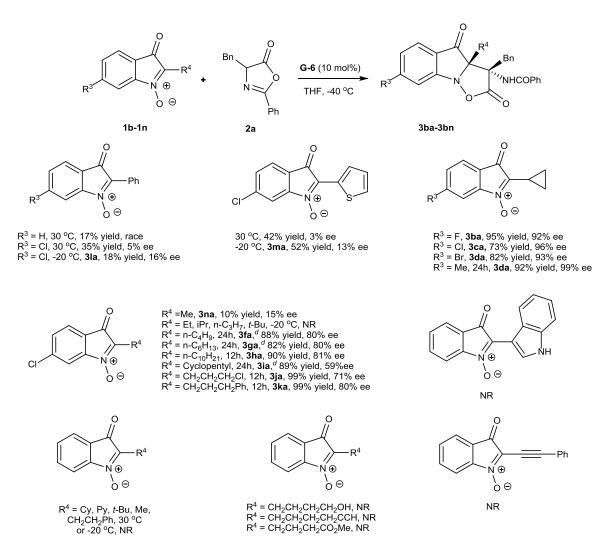




Table S4. Screening of the ratio of two substrates^a

entry	T (⁰ C)	cat. (mol%)	1a : 2a	yield $(\%)^b$	ee (%) ^c
1^d	-20	G-2 (10 mol%)	1:1	85	93.5
2^d	-20	G-2 (10 mol%)	1:1.2	92	92
3 ^{<i>d</i>}	-20	G-6 (10 mol%)	1:1.2	86	93
4^d	-20	G-6 (10 mol%)	12:1	78	93
5	-40	G-6 (10 mol%)	1:1.2	88	95
6	-40	G-6 (10 mol%)	1:1.5	78	93
7	-40	G-6 (5 mol%)	1:1.2	83	93
8	-40	G-6 (2.5 mol%)	1: 1.2	13	51
9	-40	G-6 (10 mol%)	1.2 : 1	94	95
10	-40	G-6 (5 mol%)	1.2 : 1	87	93
11^d	-40	G-6 (10 mol%)	1:1.2	92	94

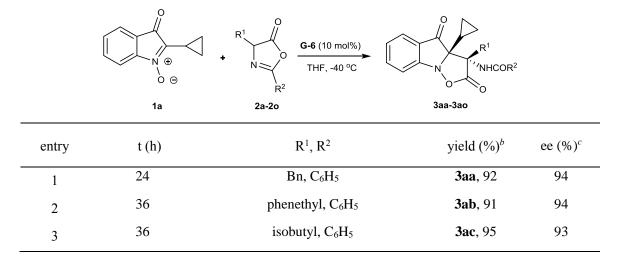
^{*a*} The reactions were carried out with **1a**, **2a** and **G** (10 mol%) in THF (1.0 mL) under N₂ for 18 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase. ^{*d*} For 24 h.

For example



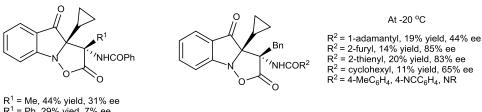
entry	1c : 2a	yield $(\%)^b$	ee (%) ^c
1	1:1	46	95
2	1:1.2	44	95
3	1:1.5	39	94
4	1.2 : 1	46	95
5	1.5 : 1	59	95
6^d	1:1	38	90
7^e	1:1	38	89
8 ^f	1.5 : 1	73	96

^{*a*} The reactions were carried out with 1c, 2a and G-6 (10 mol%) in THF (1.0 mL) at -40 °C under N₂ for 24 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase. ^{*d*} Using 5 mol% of G-6. ^{*e*} Using 2.5 mol% of G-6. ^{*f*} Using 10 mol% of G-6 for 36 h.


4. Substrate scope

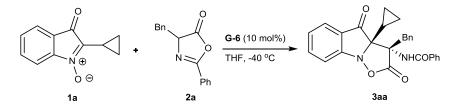
Scheme 1. Substrate scope of isatogens 1^a

^{*a*} The reactions were carried out with **1** (0.15 mmol), **2a** (0.10 mmol) and **G-6** (10 mol%) in THF (1.0 mL) at -40 °C under N₂ for 36 h. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase. ^{*d*} At -20 °C. NR = no reaction.

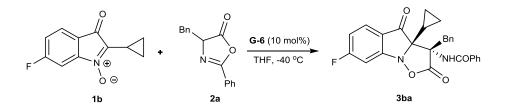

Table S5. Substrate scope of azlactones 2^a

4	9	2-(methylthio)ethyl, C ₆ H ₅	3ad , 99	91	
5	24	(1H-indol-3-yl)methyl, C ₆ H ₅	3ae , 84	91	
6	9	cyclohexylmethyl, C ₆ H ₅	3af , 81	93	
7	9	4-chlorobenzyl, C ₆ H ₅	3ag , 86	95	
8	9	4-bromobenzyl, C ₆ H ₅	3ah , 94	94	
9	9	3-methylbenzyl, C ₆ H ₅	3ai , 83	90	
10	9	Bn, 4-FC ₆ H ₄	3aj , 94	92	
11	9	Bn, 4-ClC ₆ H ₄	3ak , 96	92	
12	9	Bn, 4-BrC ₆ H ₄	3al , 82	91	
13 ^{<i>d</i>}	36	Bn, 4-MeOC ₆ H ₄	3am , 65	91	
14	9	Bn, 3,5-(Me) ₂ C ₆ H ₃	3an , 83	99	
15 ^e	36	Bn, 2-naphthyl	3ao , 78	94	

^{*a*} Unless otherwise noted, the reactions were carried out **G-6** (10 mol%), **1a** (0.10 mmol) and **2** (0.12 mmol) in THF (1.0 mL) at -40 °C. Dr values (>19:1) were determined by ¹H NMR. ^{*b*} Isolated yield. ^{*c*} Determined by UPCC analysis on a chiral stationary phase. ^{*d*} At -20 °C. ^{*e*} At -10 °C.

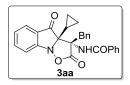

Substrate of failure : The reactions were carried out with **1a** (0.10 mmol) and **2** (0.10 mmol) and **G-6** (10 mol%) in THF (1.0 mL) at -40 °C under N₂ for 24 h.

 $\begin{array}{l} R^1 = Me,\, 44\% \,\, \text{yield},\, 31\% \,\, \text{ee} \\ R^1 = Ph,\, 29\% \,\, \text{yied},\, 7\% \,\, \text{ee} \\ R^1 = Et,\, 9\% \,\, \text{yield},\, 44\% \,\, \text{ee} \\ R^1 = \text{iPr},\, Cy,\, tBu,\, NR \end{array}$

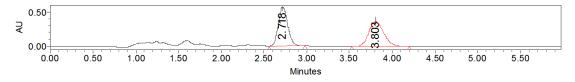

5. Typical procedure for the asymmetric reaction

5.1. Representative experimental procedure for the asymmetric reaction of isatogen 1a with azlactone 2a

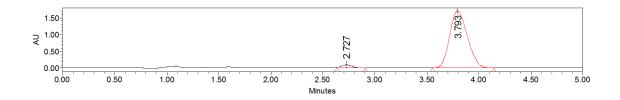
A dry tube was charged with **G-6** (5.6 mg, 0.01 mmol, 10 mol%) and **1a** (18.7 mg, 0.10 mmol). Under N₂ atmosphere, THF (1.0 mL) was added. The mixture was stirred at 30 °C for 30 min and then cooled to -40 °C. Then azlactone **2a** (30.1 mg, 0.12 mmol) was added under stirring and the mixture continued stirring at -40 °C for 24 h. The solvent was removed under reduced pressure, and then the mixture purified by column chromatography (petroleum ether/ethyl acetate = 5/1, v/v) to afford the product **3aa**. The product **3aa** was obtained in 92% yield (40.3 mg). The enantiomeric excess (ee) was determined by UPCC with Daicel Chiralcel **OJ** (94% ee).


5.2. Typical experimental procedure for the scale-up reaction

A dry round-bottom flask was charged with **G-6** (56.0 mg, 0.1 mmol, 10 mol%) and **1b** (307.5 mg, 1.5 mmol). Under N₂ atmosphere, THF (15.0 mL) was added. The mixture was stirred at 30 °C for 30 min and then cooled to -40 °C. Then azlactone **2a** (251.0 mg, 1.0 mmol) was added under stirring and the mixture continued stirring at -40 °C for 48 h. The solvent was removed under reduced pressure, and then the mixture was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) to afford the product **3ba**. The product **3ba** was obtained in 87% yield (396.7 mg). The enantiomeric excess (ee) was determined by UPCC with Daicel Chiralcel **OJ** (92% ee).

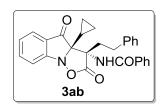

6. The analytical and spectral characterization data of the products

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

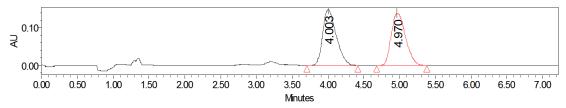


The compound **3aa** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 92% yield. **UPCC** (Daicel Chiralcel **OJ**, scCO₂/MeOH = 80/20, flow rate 1.5 mL/min, λ = 254 nm), t (major) = 3.79 min, t (minor) = 2.73 min, ee = 94%. dr >19:1 (by ¹H NMR).

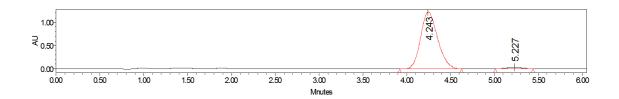
[α]²⁰_D = +279.7 (*c*: 0.86, in CH₂Cl₂). ¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 1H), 7.66 – 7.50 (m, 4H), 7.48 – 7.36 (m, 4H), 7.26 (5H), 6.48 (s, 1H), 4.02 (d, J = 15.2 Hz, 1H), 3.58 (d, J = 15.2 Hz, 1H), 1.68 (tt, J = 8.1, 5.3 Hz, 1H), 0.95 – 0.78 (m, 2H), 0.53 – 0.43 (m, 1H), 0.27 (dq, J = 10.1, 5.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.0, 172.6, 165.5, 159.8, 136.4, 132.5, 131.6, 131.3, 130.0, 128.4, 127.8, 127.4, 126.2, 126.0, 125.5, 122.8, 119.4, 78.7, 61.8, 39.2, 13.0, 2.8, 0.0. **IR** 3366, 1792, 1723, 1660, 1605, 1580, 1517, 1474, 1294, 1173, 1137, 769, 730, 701 cm⁻¹. **HRMS** (FTMS+c ESI) caled for $C_{27}H_{22}N_2O_4$ [(M+H⁺)] = 439.1652, Found 439.1658.



	Retention Time	Area	% Area
1	2.718	4409157	50.11
2	3.803	4389891	49.89

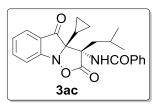

		Retention Time	Area	% Area
1	1	2.727	592177	2.85
2	2	3.793	20216256	97.15

N-[(3*S*,3a*S*)-3a-Cyclopropyl-2,4-dioxo-3-phenethyl-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

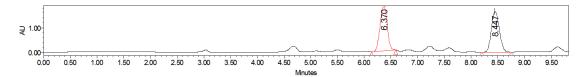


The compound **3ab** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 91% yield. **UPCC** (Daicel Chiralcel **OJ**, scCO₂/MeOH = 90/10, flow rate 1.5 mL/min, λ = 254 nm), t (major) = 4.24 min, t (minor) = 5.23 min, ee = 94%. dr >19:1 (by ¹H NMR). $[\alpha]^{23}_{D}$ = +299.4 (*c*: 0.37, in CH₂Cl₂). ¹H **NMR** (400 MHz, CDCl₃) δ 7.73 - 7.65 (m, 1H), 7.58 - 7.51 (m, 2H), 7.46 - 7.30 (m, 5H), 7.27 -

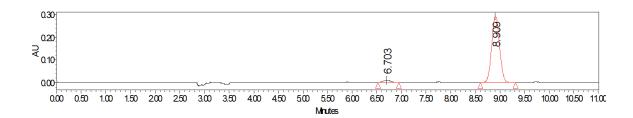
7.20 (m, 5H), 7.15 – 7.10 (m, 2H), 6.51 (s, 1H), 3.32 – 3.09 (m, 2H), 2.88 – 2.64 (m, 2H), 1.49 (tt, J = 8.1, 5.3 Hz, 1H), 0.88 – 0.70 (m, 2H), 0.50 – 0.35 (m, 1H), 0.22 (dq, J = 10.2, 5.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 173.2, 166.5, 160.8, 140.9, 137.2, 132.2, 132.1, 129.3, 128.8, 128.5, 127.0, 126.9, 126.8, 126.2, 123.6, 120.2, 79.7, 63.4, 35.3, 29.4, 12.7, 3.6, 0.5. IR 3361, 1781, 1720, 1656, 1604, 1580, 1519, 1485, 1455, 1293, 1139, 1088, 1030, 732, 700 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₈H₂₄N₂O₄ [(M+H⁺)] = 453.1809, Found 453.1810.



	Retention Time	Area	% Area
1	4.003	1968541	50.17
2	4.970	1954943	49.83

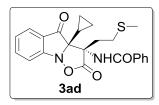

	Retention Time	Area	% Area
1	4.243	16616628	97.14
2	5.227	488879	2.86

N-[(3*S*,3a*S*)-3a-Cyclopropyl-3-isobutyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

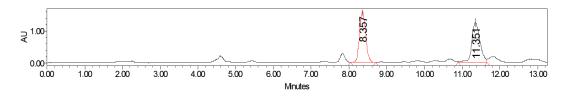


The compound **3ac** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 95% yield. **UPCC** (Daicel Chiralcel **ODH**, scCO₂/MeOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm), t (major) = 8.91 min, t (minor) = 6.70 min, ee = 93%. dr >19:1 (by ¹H NMR). $[\alpha]^{20}_{D}$ = +334.4 (*c*: 0.49, in CH₂Cl₂). ¹H NMR (400 MHz, MeOD) δ 7.84

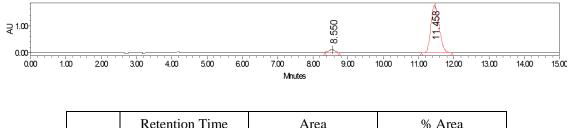
-7.78 (m, 1H), 7.68 - 7.58 (m, 4H), 7.57 - 7.51 (m, 1H), 7.48 - 7.41 (m, 3H), 2.46 (dd, J = 14.9, 4.2 Hz, 1H), 2.34 (dd, J = 14.9, 7.3 Hz, 1H), 2.24 (qd, J = 6.7, 4.2 Hz, 1H), 1.48 - 1.38 (m, 1H), 1.20 (d, J = 6.6 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H), 0.81 - 0.71 (m, 2H), 0.42 - 0.32 (m, 1H), -0.02 - -0.10 (m, 1H). $^{13}C{^{1}H} NMR (101 \text{ MHz, MeOD}) \delta 199.7, 173.5, 170.3, 161.3, 137.9, 134.3, 133.1, 129.5, 129.2, 128.6, 124.5, 122.4, 79.4, 65.4, 42.9, 25.6, 25.0, 24.2, 14.0, 4.9, 0.5. IR 3372, 1786, 1722, 1657, 1605, 1524, 1486, 1294, 1175, 1157, 1140, 1135, 765, 750, 709 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₄H₂₄N₂O₄ [(M+H⁺)] = 405.1809. Found 405.1806.$



	Retention Time	Area	% Area
1	6.370	17271337	49.52
2	8.447	17605467	50.48

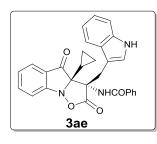

	Retention Time	Area	% Area
1	6.703	118897	3.54
2	8.909	3239699	96.46

N-[(3*S*,3a*S*)-3a-Cyclopropyl-3-(2-(methylthio)ethyl)-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

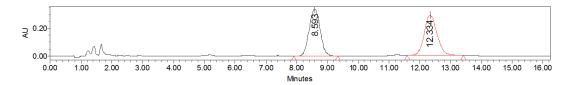


The compound **3ad** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a pale yellow oil in 99% yield. **UPCC** (Daicel Chiralcel **ODH**, scCO₂/MeOH = 80/20, 1.0 mL/min, λ = 254 nm), t (major) = 11.46 min, t (minor) = 8.55 min, ee = 91%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +350.0 (*c*: 0.65, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃)

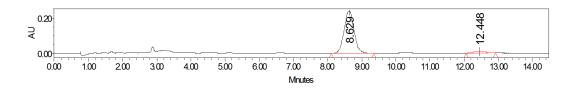
δ 7.96 (s, 1H), 7.73 – 7.68 (m, 1H), 7.64 – 7.52 (m, 4H), 7.48 – 7.42 (m, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 3.19 – 3.09 (m, 1H), 3.08 – 2.98 (m, 1H), 2.78 – 2.68 (m, 1H), 2.68 – 2.58 (m, 1H), 2.22 (s, 3H), 1.45 – 1.36 (m, 1H), 0.84 – 0.70 (m, 2H), 0.46 – 0.36 (m, 1H), 0.24 – 0.13 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.9, 173.4, 166.8, 160.5, 137.1, 132.2, 132.2, 128.6, 127.3, 127.1, 126.4, 123.6, 120.3, 79.0, 63.5, 32.3, 27.8, 16.0, 12.9, 3.6, 0.5. IR 3344, 1784, 1721, 1659, 1605, 1580, 1523, 1486, 1325, 1293, 1172, 1164, 1141, 768, 711cm⁻¹. HRMS (FTMS+c ESI) calcd for C₂₃H₂₂N₂O₄S [(M+H⁺)] = 423.1373. Found 423.1379.



	Retention Time	Area	% Area
1	8.357	18580170	49.61
2	11.351	18873540	50.39

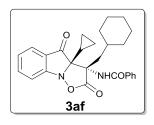

	Retention Time	Area	% Area
1	8.550	1291048	4.32
2	11.458	28611184	95.68

N-[(3*S*,3a*S*)-3-((1H-indol-3-yl)methyl)-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

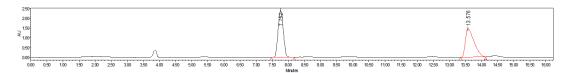


The compound **3ae** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 2/1) to afford a pale yellow solid in 84% yield. **UPCC** (Daicel Chiralcel. **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254nm), t (major) = 8.63 min, t (minor) = 12.45 min, ee = 91%. dr >19:1 (by ¹H NMR). mp decomposed at 80 °C. [α]²³_D = +343.3 (*c*: 0.24, in CH₂Cl₂). ¹H **NMR** (400 MHz, (CD₃)₂CO) δ 10.37 (s, 1H), 8.05 – 7.79 (m, 2H), 7.78 – 7.72 (m, 2H), 7.65 – 7.54 (m, 2H), 7.52 – 7.33 (m, 5H), 7.33 – 7.26 (m, 2H), 7.21 –

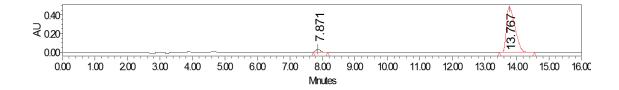
7.10 (m, 2H), 4.17 (dd, J = 15.7, 0.9 Hz, 1H), 3.86 (dd, J = 15.7, 0.8 Hz, 1H), 1.89 – 1.70 (m, 1H), 0.96 – 0.73 (m, 2H), 0.43 (tdd, J = 8.8, 6.1, 4.4 Hz, 1H), 0.14 (dtd, J = 9.7, 5.8, 4.5 Hz, 1H). ¹³C{¹H} NMR (101 MHz, (CD₃)₂CO) δ 198.2, 173.6, 167.2, 161.3, 137.5, 137.2, 133.7, 132.7, 129.7, 129.1, 128.2, 128.0, 127.9, 126.1, 124.0, 122.5, 121.3, 120.2, 118.9, 112.6, 107.6, 79.2, 64.4, 31.0, 14.2, 4.2, 0.6. **IR** 3401,1787, 1721, 1651, 1604, 1514, 1480, 1459, 1295, 1253, 1175, 1141, 1102, 740, 708 cm⁻¹. **HRMS** (FTMS+c ESI) calcd for C₂₉H₂₃N₃O₄ **[(M+H⁺)]** = 478.1761. Found 478.1767.



	Retention Time	Area	% Area
1	8.593	8323556	50.69
2	12.334	8096144	49.31

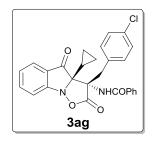

	Retention Time	Area	% Area
1	8.629	4831590	95.64
2	12.448	220198	4.36

N-[(3*S*,3a*S*)-3-(Cyclohexylmethyl)-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

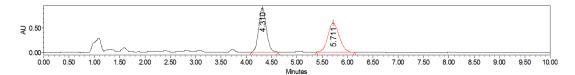


The compound **3af** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 81% yield. **UPCC** (Daicel Chiralcel **ODH**, scCO₂/MeOH = 80/20, 1.0 mL/min, λ = 254nm), t (major) = 13.77 min, t (minor) = 7.87 min, ee = 93%. dr >19:1 (by ¹H NMR). [α]¹⁶_D = +289.6 (*c*: 0.64, in CH₂Cl₂). ¹H **NMR** (400 MHz, CDCl₃) δ 7.73 - 7.66 (m, 1H), 7.59 - 7.52 (m, 2H), 7.51 - 7.43 (m, 3H), 7.42 - 7.32 (m, 2H),

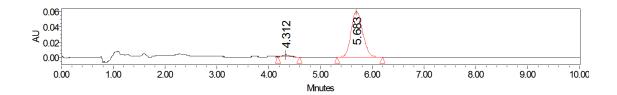
7.30 - 7.21 (m, 2H), 6.46 (s, 1H), 2.35 - 2.20 (m, 2H), 2.17 - 2.05 (m, 1H), 1.94 (dt, J = 12.5, 2.8 Hz, 1H), 1.87 - 1.77 (m, 1H), 1.77 - 1.61 (m, 3H), 1.46 - 1.31 (m, 3H), 1.25 - 1.10 (m, 3H), 0.87 - 0.67 (m, 2H), 0.48 - 0.35 (m, 1H), 0.15 (ddt, J = 9.7, 5.8, 4.8 Hz, 1H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 198.5, 172.9, 166.6, 160.7, 137.1, 132.6, 132.2, 128.8, 127.1, 127.0, 126.5, 123.6, 120.4, 79.4, 63.4, 41.8, 36.1, 32.4, 26.4, 26.2, 26.0, 13.0, 3.9, 0.5. IR 3364, 1787, 1721, 1655, 1605, 1580, 1522, 1484, 1448, 1293, 1265, 1178, 1159, 1135, 848, 767, 732, 707 cm⁻¹. HRMS (FTMS+c ESI) calcd for C₂₇H₂₈N₂O₄ [(M+H⁺)]= 445.2122. Found 445.2114.



	Retention Time	Area	% Area
1	7.752	26586325	49.71
2	13.576	26897750	50.29

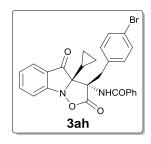

	Retention Time	Area	% Area
1	7.871	305724	3.36
2	13.767	8803146	96.64

N-[(3*S*,3a*S*)-3-(4-Chlorobenzyl)-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

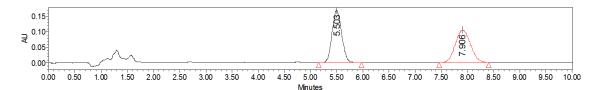


The compound **3ag** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 5/1) to afford a yellow solid in 86% yield. **UPCC** (Daicel Chiralcel **OJ**, scCO₂/MeOH = 80/20, flow rate 1.5 mL/min, λ = 254nm), t (major) = 5.68 min, t (minor) = 4.31 min, ee = 95%. dr >19:1 (by ¹H NMR). mp decomposed at 58 °C. [α]¹⁹_D = +284.6 (*c*: 0.60, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.698 (m, 1H), 7.61 – 7.54 (m, 2H), 7.49 – 7.36 (m, 5H), 7.33 – 7.26 (m, 5H), 6.40 (s, 1H), 3.96 (d, J = 15.3 Hz,

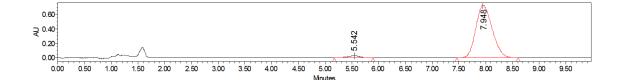
1H), 3.56 (d, J = 15.3 Hz, 1H), 1.63 (tt, J = 8.0, 5.3 Hz, 1H), 0.92 – 0.79 (m, 2H), 0.51 – 0.42 (m, 1H), 0.29 – 0.20 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.0, 173.0, 166.7, 160.6, 137.3, 134.3, 132.3, 132.3, 132.2, 131.9, 129.2, 128.7, 127.3, 126.9, 126.4, 123.7, 120.5, 79.3, 62.8, 39.3, 13.7, 3.8, 0.8. IR 3369, 1769, 1728, 1656, 1605, 1580, 1523, 1485, 1298, 1176, 1141, 1097, 1016, 766, 710 cm⁻¹. HRMS (FTMS+c ESI) calcd for C₂₇H₂₁N₂O₄Cl [(M+H⁺)] = 473.1263, 475.1233. Found 473.1265, 475.1240.



	Retention Time	Area	% Area
1	4.310	9406124	50.70
2	5.711	9146091	49.30

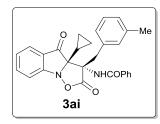

	Retention Time	Area	% Area
1	4.312	21958	2.37
2	5.683	905819	97.63

N-[(3*S*,3a*S*)-3-(4-Bromobenzyl)-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

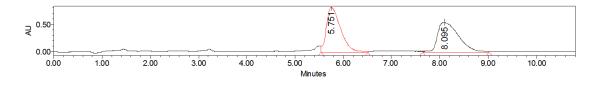


The compound **3ah** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 5/1) to afford a yellow solid in 94% yield. **UPCC**(Daicel Chiralcel. **OJ**, scCO₂/MeOH = 80/20, flow rate 1.5 mL/min, λ = 254 nm), t (major) = 7.95 min, t (minor) = 5.55 min, ee = 94%. dr >19:1 (by ¹H NMR). mp decomposed at 56 °C. [α]²⁰_D = +263.8 (*c*: 0.71, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 1H), 7.61 – 7.49 (m, 4H), 7.48 – 7.34 (m, 5H), 7.31 – 7.26 (m, 1H), 7.15 – 7.08 (m, 2H), 6.51 (s, 1H), 4.00 (d, J =

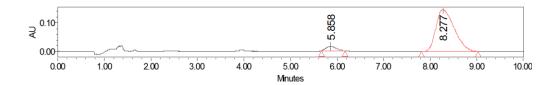
15.1 Hz, 1H), 3.57 (d, J = 15.1 Hz, 1H), 1.65 (tt, J = 8.0, 5.3 Hz, 1H), 0.94 – 0.79 (m, 2H), 0.52 – 0.42 (m, 1H), 0.30 – 0.19 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.0, 173.2, 165.6, 160.6, 137.3, 133.2, 131.9, 131.3, 130.9, 129.2, 128.5, 128.4, 127.3, 127.0, 126.4, 123.6, 120.4, 79.4, 62.7, 40.0, 13.8, 3.8, 0.9. IR 3381, 2360, 2340, 1769, 1730, 1655, 1605, 1523, 1485, 1298, 1176, 1143, 1074, 1014, 765, 749, 710 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₁N₂O₄Br [(M+H⁺)] = 517. 0758, 519.0737. Found 517.0761, 519.0736.



	Retention Time	Area	% Area
1	5.503	2140949	50.17
2	7.906	2126843	49.83

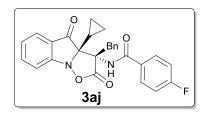

	Retention Time	Area	% Area
1	5.549	457790	2.89
2	7.953	15375050	97.11

N-[(3*S*,3a*S*)-3a-Cyclopropyl-3-(3-methylbenzyl)-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

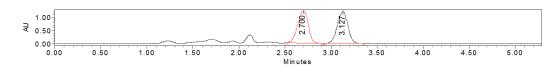


The compound **3ai** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 83% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 90/10, flow rate 1.5 mL/min, λ = 254 nm), t (major) = 8.28 min, t (minor) = 5.86 min, ee = 90%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +214.0 (*c*: 0.31, in CH₂Cl₂). ¹H **NMR** (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 1H), 7.60 – 7.48 (m, 2H), 7.47 – 7.31 (m, 4H),

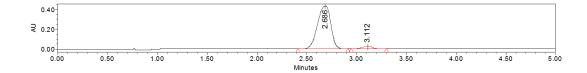
7.28 – 7.22 (m, 5H), 7.21 – 7.15 (m, 1H), 6.53 (s, 1H), 3.99 (d, J = 15.1 Hz, 1H), 3.53 (d, J = 15.2 Hz, 1H), 2.40 (s, 3H), 1.68 (tt, J = 8.1, 5.3 Hz, 1H), 0.98 – 0.75 (m, 2H), 0.54 – 0.42 (m, 1H), 0.34 – 0.19 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.8, 173.5, 166.2, 160.7, 139.0, 137.2, 133.2, 132.5, 132.1, 131.7, 129.1, 129.0, 128.6, 127.8, 127.0, 126.9, 126.3, 123.6, 120.2, 79.6, 62.5, 40.0, 21.6, 13.9, 3.7, 0.8. IR 3409, 1792, 1722, 1662, 1605, 1581, 1517, 1484, 1293, 1268, 1173, 1137, 1102, 849, 767, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₈H₂₄N₂O₄ [(M+H⁺)] = 453.1809. Found 453.1804.



	Retention Time	Area	% Area
1	5.751	16743233	50.62
2	8.095	16335395	49.38

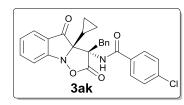

	Retention Time	Area	% Area
1	5.858	213398	5.08
2	8.277	3983455	94.92

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-4-fluorobenzamide

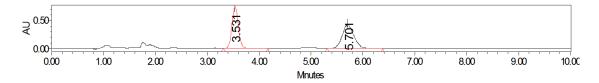


The compound **3aj** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 94% yield. **UPCC** (Daicel Chiralcel. **OX**, scCO₂/MeOH = 80/20, flow rate 1.5 mL/min, $\lambda = 254$ nm), t (major) = 2.69 min, t (minor) = 3.11 min, ee = 92%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +385.8 (*c*: 0.41, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 1H), 7.62

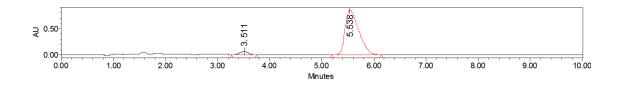
-7.48 (m, 4H), 7.48 -7.42 (m, 2H), 7.41 -7.35 (m, 1H), 7.31 -7.23 (m, 4H), 6.94 (t, J = 8.5 Hz, 2H), 6.41 (s, 1H), 4.01 (d, J = 15.2 Hz, 1H), 3.58 (d, J = 15.2 Hz, 1H), 1.73 -1.61 (m, 1H), 0.96 -0.78 (m, 2H), 0.53 -0.43 (m, 1H), 0.26 (dq, J = 10.2, 5.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.9, 173.4, 165.3, 165.1 (d, J = 253.5 Hz, 1C), 160.6, 137.2, 133.3, 130.9, 129.3 (d, J = 9.1 Hz, 1C), 129.2, 128.7 (d, J = 3.0 Hz, 1C), 128.3, 127.2, 126.4, 123.6, 120.4, 115.8 (d, J = 22.2 Hz, 1C), 79.4, 62.7, 40.0, 13.9, 3.8, 0.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -106.8. IR 3354, 1790, 1728, 1657, 1604, 1530, 1496,1293, 1236, 1159, 1136, 852, 766, 724, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₁N₂O₄F [(M+H⁺)] = 457.1558, Found 457.1554.



	Retention Time	Area	% Area
1	2.700	9707893	50.33
2	3.127	9579144	49.67

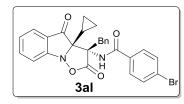

	Retention Time	Area	% Area
1	2.686	4002403	95.92
2	3.112	170406	4.08

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-4-chlorobenzamide

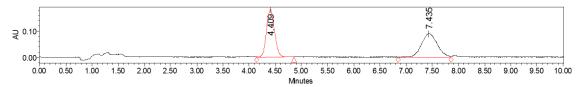


The compound **3ak** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 96% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm), t (major) = 5.54 min, t (minor) = 3.51 min, ee = 92%. dr >19:1 (by ¹H NMR). [α]²³_D = +262.2 (*c*: 0.26, in CH₂Cl₂). ¹H

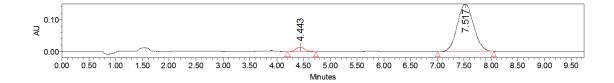
NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 1H), 7.62 – 7.50 (m, 4H), 7.48 – 7.33 (m, 5H), 7.30 – 7.22 (m, 2H), 7.14 – 7.08 (m, 2H), 6.41 (s, 1H), 4.01 (d, J = 15.2 Hz, 1H), 3.57 (d, J = 15.2 Hz, 1H), 1.73 – 1.63 (m, 2H), 0.93 – 0.78 (m, 2H), 0.53 – 0.43 (m, 1H), 0.31 – 0.20 (m, 1H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 197.1, 172.4, 164.6, 159.8, 137.7, 136.4, 132.4, 130.0, 130.0, 128.4, 128.2, 128.1, 128.1, 127.5, 126.4, 125.5, 122.8, 119.5, 78.5, 61.8, 39.1, 13.0, 2.9, 0.0. **IR** 3351, 1788, 1727, 1656, 1604, 1522, 1482, 1438, 1294, 1173, 1137, 1090, 1014, 847, 759, 723, 700 cm⁻¹. **HRMS** (FTMS+c ESI) caled for C₂₇H₂₁N₂O4CI [(M+H⁺)] = 473.1263, 475.1233, Found 473.1263, 475.1240.



	Retention Time	Area	% Area
1	3.531	6480906	49.46
2	5.701	6623395	50.54

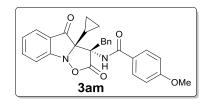

	Retention Time	Area	% Area
1	3.511	673103	4.20
2	5.538	15360420	95.80

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-4-bromobenzamide

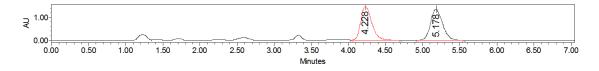


The compound **3al** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 82% yield. **UPCC** (Daicel Chiralcel **OJ**, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm), t (major) = 7.52 min, t (minor) = 4.44 min, ee = 91%. dr >19:1 (by ¹H NMR). [α]²⁰_D = +241.6 (*c*: 0.43, in CH₂Cl₂). ¹H

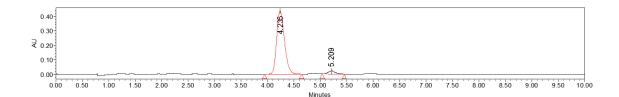
NMR (400 MHz, CDCl₃) δ 7.76 – 7.69 (m, 1H), 7.62 – 7.52 (m, 4H), 7.45 – 7.37 (m, 3H), 7.35 – 7.27 (m, 5H), 6.45 (s, 1H), 3.95 (d, J = 15.2 Hz, 1H), 3.54 (d, J = 15.2 Hz, 1H), 1.67 – 1.58 (m, 1H), 0.94 – 0.79 (m, 2H), 0.51 – 0.43 (m, 1H), 0.28 – 0.21 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.1, 172.2, 165.7, 159.8, 136.5, 131.7, 131.5, 131.5, 131.5, 131.3, 127.9, 126.5, 126.1, 125.5, 122.9, 121.6, 119.6, 78.5, 61.8, 43.1, 12.8, 2.9, 0.00. IR 3363, 1796, 1728, 1662, 1605, 151, 1523, 1479, 1296, 1173, 1138, 1010, 767, 756, 722, 700 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₁N₂O₄Br [(M+H⁺)] = 517.0758, 519.0737, Found 517.0761, 519.0736.



	Retention Time	Area	% Area
1	4.409	1938317	50.59
2	7.435	1893257	49.41

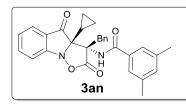

	Retention Time	Area	% Area
1	4.443	153767	4.69
2	7.517	3122205	95.31

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-4-methoxybenzamide

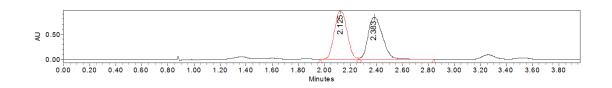


The compound **3am** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 65% yield. **UPCC** (Daicel Chiralcel. **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm), t (major) = 4.23 min, t (minor) = 5.21 min, ee = 91%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +256.5 (*c*: 0.43, in

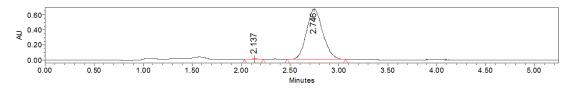
CH₂Cl₂). ¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 1H), 7.59 – 7.52 (m, 4H), 7.48 – 7.41 (m, 2H), 7.40 – 7.34 (m, 1H), 7.30 – 7.22 (m, 2H), 7.18 – 7.10 (m, 2H), 7.09 – 7.00 (m, 2H), 6.42 (s, 1H), 4.01 (d, J = 15.2 Hz, 1H), 3.57 (d, J = 15.2 Hz, 1H), 2.30 (s, 3H), 1.73 – 1.62 (m, 1H), 0.93 – 0.78 (m, 2H), 0.54 – 0.42 (m, 1H), 0.27 (dq, J = 10.3, 5.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.8, 173.6, 166.2, 160.7, 142.7, 137.2, 133.4, 130.9, 129.6, 129.3, 129.2, 128.2, 127.0, 126.9, 126.3, 123.6, 120.21, 79.7, 62.6, 40.1, 21.6, 13.9, 3.7, 0.8. IR 3356, 1790, 1724, 1656, 1606, 1527, 1494, 1294, 1174, 1138, 752, 724, 701 cm⁻¹. HRMS (FTMS+c ESI) calcd for C₂₈H₂₄N₂O₅ [(M+H⁺)] = 469.1758. Found 469.1759.



	Retention Time	Area	% Area
1	4.228	4.228	4.228
2	5.178	5.178	5.178

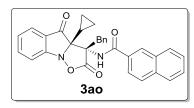

	Retention Time	Area	% Area
1	4.235	4484233	95.48
2	5.209	212440	4.52

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-3,5-dimethylbenzamide

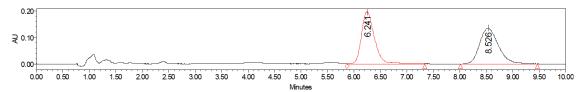


The compound **3an** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a t yellow oil in 83% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm), t (major) = 2.75 min, (minor) = 2.14 min, ee = 99%. dr >19:1 (by ¹H NMR). [α]²⁰_D = +288.6 (*c*: 0.53, in CH₂Cl₂).

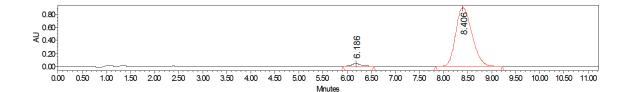
¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (ddd, J = 8.2, 7.2, 1.3 Hz, 1H), 7.63 – 7.50 (m, 4H), 7.49 – 7.42 (m, 2H), 7.41 – 7.36 (m, 1H), 7.31 – 7.25 (m, 2H), 7.01 (s, 1H), 6.83 (s, 2H), 6.43 (s, 1H), 4.01 (d, J = 15.1 Hz, 1H), 3.57 (d, J = 15.1 Hz, 1H), 2.20 (s, 6H), 1.72 – 1.61 (m, 1H), 0.95 – 0.77 (m, 2H), 0.52 – 0.43 (m, 1H), 0.30 – 0.22 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7, 160.6, 138.3, 137.1, 133.7, 133.4, 132.4, 131.0, 129.1, 128.2, 127.1, 126.4, 124.7, 123.7, 120.3, 79.4, 62.5, 40.0, 21.2, 21.2, 13.9, 3.7, 0.9. IR 3413, 1790, 1726, 1661, 1509, 1472, 1323, 1240, 1172, 1136, 858, 767, 722, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₉H₂₆N₂O₄ [(M+H⁺)] = 467.1965, Found 467.1962.



	Retention Time	Area	% Area
1	2.125	6490525	50.28
2	2.383	6418487	49.72

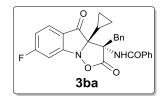

	Retention Time	Area	% Area
1	2.137	30114	0.39
2	2.746	7769718	99.61

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]-2-naphthamide

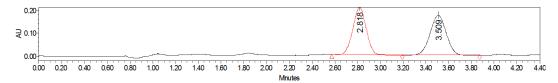


The compound **3ao** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 78% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 80/20, 1.5 mL/min, $\lambda = 254$ nm), t (major) = 8.41 min, t (minor) = 6.19 min, ee = 94%. dr >19:1 (by ¹H NMR). [α]²³_D = +209.1 (*c*: 0.23, in CH₂Cl₂).

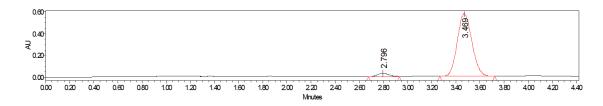
¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 7.67 (m, 5H), 7.64 – 7.54 (m, 4H), 7.53 – 7.44 (m, 4H), 7.44 – 7.37 (m, 1H), 7.32 – 7.25 (m, 2H), 6.64 (s, 1H), 4.05 (d, J = 15.1 Hz, 1H), 3.62 (d, J = 15.1 Hz, 1H), 1.70 (tt, J = 8.0, 5.3 Hz, 1H), 0.97 – 0.80 (m, 2H), 0.54 – 0.44 (m, 1H), 0.33 – 0.24 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.0, 172.6, 165.5, 159.8, 136.3, 134.1, 132.5, 131.5, 130.1, 128.8, 128.3, 128.2, 127.7, 127.4, 127.2, 126.9, 126.9, 126.2, 126.0, 125.5, 122.8, 122.2, 119.4, 78.7, 61.8, 39.2, 13.0, 2.8, 0.0. IR 3413, 1789, 1725, 1660, 1605, 1519, 1498, 1436, 1296, 1173, 1138, 777, 723, 701, 660 cm⁻¹. HRMS (FTMS+c ESI) caled for C₃₁H₂₄N₂O₄ [(M+H⁺)] = 489.1809. Found 489.1806.



	Retention Time	Area	% Area
1	6.241	3298237	50.13
2	8.526	3280843	49.87

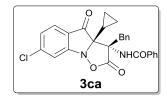

	Retention Time	Area	% Area
1	6.186	654474	2.98
2	8.406	21276720	97.02

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-7-fluoro-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

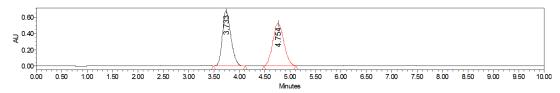


The compound **3ba** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a pale yellow oil in 95% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 85/15, 1.5 mL/min, λ = 254 nm), t (major) = 3.47 min, t (minor) = 2.80 min, ee = 92%. dr >19:1 (by ¹H NMR). $[\alpha]^{19}_{D}$ = +235.2 (*c*: 0.42, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.63

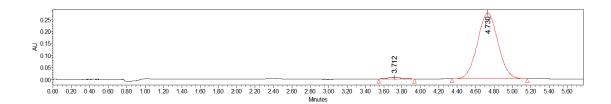
- 7.50 (m, 3H), 7.49 - 7.32 (m, 4H), 7.31 - 7.22 (m, 5H), 6.94 (td, J = 8.6, 2.2 Hz, 1H), 6.47 (s, 1H), 4.00 (d, J = 15.3 Hz, 1H), 3.58 (d, J = 15.3 Hz, 1H), 1.70 - 1.62 (m, 1H), 0.91 - 0.77 (m, 2H), 0.56 -0.44 (m, 1H), 0.35 - 0.26 (m, 1H). ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 195.1, 172.6, 167.8 (d, J = 259.6 Hz, 1C), 165.4, 162.0 (d, J = 13.1 Hz, 1C), 132.3, 131.4, 131.3, 123.0, 128.5, 127.8, 127.5, 126.0, 124.9 (d, J = 11.1 Hz, 1C), 121.5, 114.6 (d, J = 24.2 Hz, 1C), 106.2 (d, J = 26.3 Hz, 1C), 79.7, 61.4, 39.2, 13.0, 2.7, 0.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -97.4. IR 3350, 1796, 1727, 1659, 1599, 1517, 1483, 1314, 1270, 1229, 1139, 1063, 700, 638 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₁N₂O₄F [(M+H⁺)] = 457.1558. Found 457.1559.



	Retention Time	Area	% Area
1	2.818	1694422	49.79
2	3.509	1708547	50.21

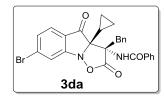

	Retention Time	Area	% Area
1	2.796	203350	4.05
2	3.469	4819902	95.95

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

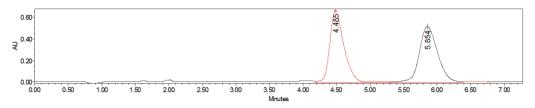


The compound **3ca** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a pale yellow oil in 73% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 85/15, 1.5 mL/min, λ = 254nm), t (major) = 4.73 min, t (minor) = 3.71 min, ee = 96%. dr >19:1 (by ¹H NMR). $[\alpha]^{19}_{D}$ = +392.4 (*c*: 0.36, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.62

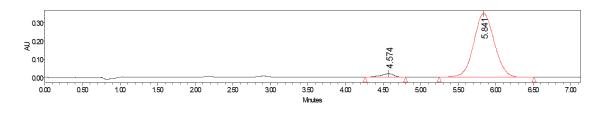
- 7.51 (m, 3H), 7.50 - 7.35 (m, 5H), 7.30 - 7.25 (m, 4H), 7.23 (dd, J = 8.2, 1.7 Hz, 1H), 6.51 (s, 1H), 3.99 (d, J = 15.3 Hz, 1H), 3.58 (d, J = 15.3 Hz, 1H), 1.69 - 1.59 (m, 1H), 0.92 - 0.78 (m, 2H), 0.55 - 0.43 (m, 1H), 0.31 - 0.21 (m, 1H). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 196.5, 173.2, 166.5, 161.3, 143.6, 133.2, 132.4, 132.1, 130.8, 129.3, 128.7, 128.4, 127.9, 126.9, 124.8, 124.5, 120.5, 79.9, 62.4, 40.0, 14.0, 3.7, 0.8. IR 3350, 1797, 1726, 1659, 1598, 151, 1481, 1314, 1137, 1063, 710, 698 cm⁻¹. HRMS (FTMS+cESI) caled for C₂₇H₂₁N₂O₄Cl [(M+H⁺)] = 473.1263, 475.1233. Found 473.1256, 475.1229.



	Retention Time	Area	% Area
1	3.733	7635204	49.23
2	4.754	7874066	50.77

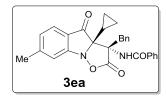

	Retention Time	Area	% Area
1	3.712	81532	1.88
2	4.730	4246430	98.12

N-[(3*S*,3a*S*)-3-Benzyl-7-bromo-3a-cyclopropyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

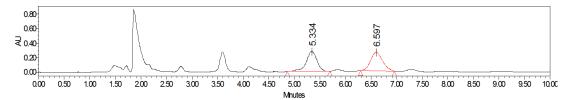


The compound **3da** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 82% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 85/15, 1.5 mL/min, λ = 254 nm), t (major) = 5.84 min, t (minor) = 4.57 min, ee = 93%. dr >19:1 (by ¹H NMR). [α]²³_D = +345.5 (*c*: 0.22, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃)

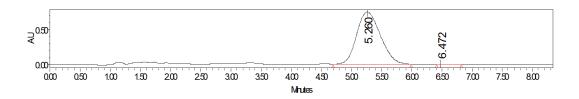
δ 7.76 (s, 1H), 7.56 – 7.51 (m, 2H), 7.49 – 7.34 (m, 6H), 7.31 – 7.26 (m, 4H), 6.52 (s, 1H), 3.98 (d, J = 15.2 Hz, 1H), 3.58 (d, J = 15.2 Hz, 1H), 1.67 – 1.58 (m, 1H), 0.91 – 0.78 (m, 2H), 0.53 – 0.43 (m, 1H), 0.30 – 0.20 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.7, 173.2, 166.5, 161.2, 133.2, 132.4, 132.2, 132.1, 130.8, 130.7, 129.3, 128.7, 128.4, 126.9 125.3, 124.6, 123.5, 79.6, 62.4, 40.0, 13.9, 3.8, 0.8. IR 3340,1795, 1724, 1656, 1596, 1514, 1481, 1137, 734, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₁N₂O₄Br [(M+H⁺)] = 517.0757, 519.0737. Found 517.0766, 519.0745.



	Retention Time	Area	% Area
1	4.485	9695252	50.15
2	5.854	9638151	49.85

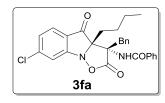

	Retention Time	Area	% Area
1	4.574	247336	3.57
2	5.841	6679215	96.43

N-[(3*S*,3a*S*)-3-Benzyl-3a-cyclopropyl-7-methyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide



The compound **3ea** was purified by Aluminum oxide (neutral) (petroleum ether/ethyl acetate = 3/1) to afford a yellow oil in 92% yield. **UPCC** (Daicel Chiralcel. **OJ**, scCO₂/MeOH = 85/15, 1.5 mL/min, λ = 254 nm), t (major) = 5.26 min, t (minor) = 6.47 min, ee = 99%. dr >19:1 (by ¹H NMR). $[\alpha]^{23}_{D}$ = +175.5 (*c*: 0.10, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.58

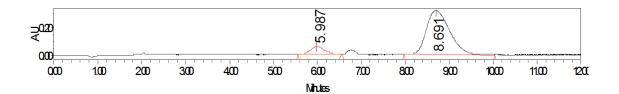
- 7.51 (m, 2H), 7.48 - 7.34 (m, 6H), 7.28 - 7.24 (m, 4H), 7.07 (dd, J = 8.0, 1.3 Hz, 1H), 6.47 (s, 1H), 4.02 (d, J = 15.2 Hz, 1H), 3.57 (d, J = 15.2 Hz, 1H), 2.48 (s, 3H), 1.74 - 1.60 (m, 1H), 0.92 - 0.77 (m, 2H), 0.53 - 0.40 (m, 1H), 0.32 - 0.19 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.3, 173.6, 166.3, 161.1, 149.1, 133.4, 132.5, 132.1, 130.9, 129.2, 128.6, 128.2, 126.9, 124.1, 123.4, 120.4, 79.7, 62.6, 40.1, 22.6, 13.9, 3.7, 0.8. **IR** 3350, 1792, 1717, 1658, 112, 1580, 1520, 1485, 1454, 1314, 1268, 1229, 1177, 1139, 128, 733, 700 cm⁻¹. **HRMS** (FTMS+c ESI) calcd for C₂₈H₂₄N₂O₄ [(M+H⁺)] = 453.1829. Found 453.1806.



	Retention Time	Area	% Area
1	5.334	3956964	49.29
2	6.597	4070922	50.71

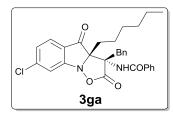
	Retention Time	Area	% Area
1	5.260	20494484	99.99
2	6.472	1220	0.01

N-[(3*S*,3a*S*)-3-Benzyl-3a-butyl-7-chloro-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

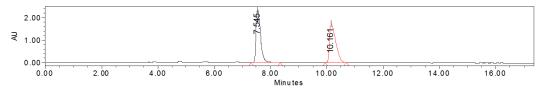


The compound **3fa** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 88% yield. **UPCC** (Daicel Chiralcel **OJ**, scCO₂/MeOH = 90/10, 1.5 mL/min, λ = 254 nm), t (major) = 8.69 min, t (minor) = 5.99 min, ee = 80%. dr >19:1 (by ¹H NMR). $[\alpha]^{19}_{D}$ = +319.9 (*c*: 0.45, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64

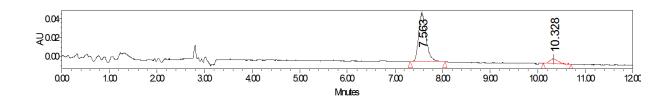
(d, J = 1.6 Hz, 1H), 7.55 – 7.34 (m, 7H), 7.29 – 7.23 (m, 3H), 7.22 – 7.15 (m, 3H), 6.26 (s, 1H), 3.61 (d, J = 15.0 Hz, 1H), 3.43 (d, J = 15.0 Hz, 1H), 2.35 (td, J = 12.3, 4.5 Hz, 1H), 2.16 (td, J = 12.5, 3.6 Hz, 1H), 1.40 – 1.31 (m, 2H), 1.31 – 1.16 (m, 2H), 1.07 – 0.95 (m, 1H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 196.8, 173.0, 166.1, 161.9, 143.8, 132.8, 132.3, 132.2, 131.0, 129.3, 128.7, 128.4, 127.8, 126.8, 125.4, 124.0, 120.6, 81.8, 62.2, 39.6, 34.0, 25.9, 23.2, 13.9. **IR** 3340, 1793, 1726, 1656, 1599, 1523, 1485, 1457, 1425, 1316, 1154, 1062, 937, 700 cm⁻¹. **HRMS** (FTMS+c ESI) caled for **C₂₈H₂₅CIN₂O4** [(M+H⁺)] = 489.1576, 491.1546. Found 489.1877, 491.1541.



	Retention Time	Area	% Area
1	5.901	11938359	50.13
2	8.735	11878136	49.87

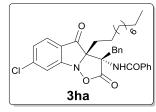

	Retention Time	Area	% Area
1	5.987	1285149	10.06
2	8.691	11487303	89.94

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-3a-hexyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

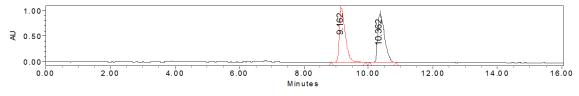


The compound **3ga** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 82% yield. **UPCC** (Daicel Chiralcel **ODH**, scCO₂/MeOH = 60/40, 1.0 mL/min, λ = 254 nm), t (major) = 7.56 min, t (minor) = 10.33 min, ee = 80%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +321.5 (*c*: 0.40, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.6 Hz, 1H), 7.50 – 7.35 (m, 7H), 7.28 – 7.23 (m,

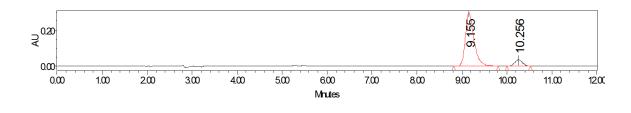
2H), 7.22 – 7.15 (m, 3H), 6.26 (s, 1H), 3.60 (d, J = 15.0 Hz, 1H), 3.43 (d, J = 15.0 Hz, 1H), 2.45 – 2.25 (m, 1H), 2.15 (td, J = 12.5, 3.1 Hz, 1H), 1.33 – 1.18 (m, 7H), 1.08 – 0.97 (m, 1H), 0.84 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 13C NMR (101 MHz, CDCl3) δ 196.8, 173.0, 166.1, 161.9, 143.7, 132.8, 132.3, 132.2, 131.0, 129.2, 128.7, 128.4, 127.7, 126.8, 125.4, 124.0, 120.5, 81.9, 62.2, 39.6, 34.2, 31.5, 29.7, 23.8, 22.6, 14.1. IR 3338, 1794, 1726, 1655, 1599, 1525, 1486, 1456, 1316, 1157, 1062, 700 cm⁻¹. HRMS (FTMS+c ESI) caled for C₃₀H₂₉ClN₂O₄ [(M+H⁺)] = 517.1889, 519.1859. Found 517.1890, 519.1851.



	Retention Time	Area	% Area
1	7.545	26170315	49.51
2	10.161	26685709	50.49

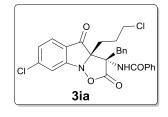

	Retention Time	Area	% Area
1	7.563	553280	90.19
2	10.328	60148	9.81

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-3a-decyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide



The compound **3ha** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 90% yield. **UPCC** (Daicel Chiralcel **ODH**, scCO₂/MeOH = 60/40, 1.0 mL/min, λ = 254 nm), t (major) = 9.15 min, t (minor) = 10.26 min, ee = 81%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +331.6 (*c*: 0.72, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃)

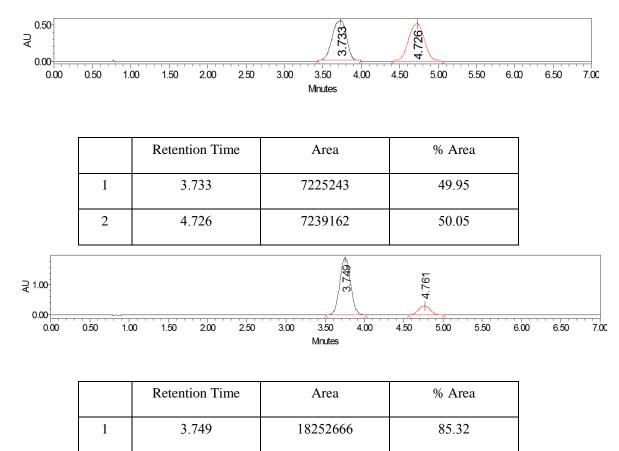
δ 7.63 (d, J = 1.6 Hz, 1H), 7.51 – 7.34 (m, 7H), 7.29 – 7.22 (m, 2H), 7.22 – 7.15 (m, 3H), 6.28 (s, 1H), 3.60 (d, J = 15.0 Hz, 1H), 3.43 (d, J = 15.0 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.15 (td, J = 12.5, 3.0 Hz, 1H), 1.31 – 1.16 (m, 15H), 1.08 – 0.97 (m, 1H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.8, 173.0, 166.1, 161.9, 143.7, 132.8, 132.3, 132.2, 131.0, 129.2, 128.7, 128.4, 127.7, 126.8, 125.4, 124.0, 120.5, 81.9, 62.2, 39.6, 34.2, 32.0, 30.0, 29.6, 29.56, 29.4, 23.9, 22.8, 14.2. **IR** 3348, 1794, 1727, 1653, 1599, 1524, 1486, 1457, 1316, 1158, 1062, 700 cm⁻¹. **HRMS** (FTMS+c ESI) caled for C₃₄H₃₇CIN₂O4 [(M+H⁺)] = 573.2515, 575.2485. Found 573.2510, 575.2487.



	Retention Time	Area	% Area
1	9.162	13427959	49.77
2	10.362	13553975	50.23

	Retention Time	Area	% Area
1	9.155	3999246	90.51
2	10.256	419362	9.49

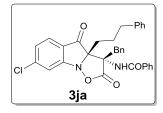
N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-3a-(3-chloropropyl)-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide



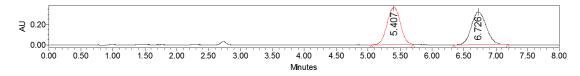
2

4.761

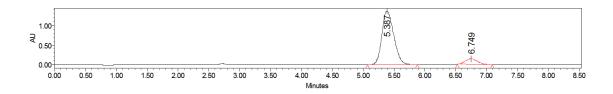
The compound **3ia** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a yellow oil in 99% yield. **UPCC** (Daicel Chiralcel **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm), t (major) = 3.75 min, t (minor) = 4.76 min, ee = 71%. dr >19:1 (by ¹H NMR). [α]²⁰_D = +293.7 (*c*: 1.01, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 1.7 Hz, 1H), 7.52 - 7.35 (m, 7H), 7.28 - 7.24 (m, 3H), 7.22 - 7.16


(m, 3H), 6.30 (s, 1H), 3.60 (d, J = 15.1 Hz, 1H), 3.53 (t, J = 6.2 Hz, 2H), 3.45 (d, J = 15.0 Hz, 1H), 2.52 (ddd, J = 13.0, 11.6, 4.6 Hz, 1H), 2.35 (td, J = 12.4, 3.9 Hz, 1H), 1.83 – 1.70 (m, 1H), 1.60 – 1.47 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.2, 172.8, 166.1, 161.8, 144.1, 132.5, 132.4, 132.0, 131.0, 129.3, 128.7, 128.5, 127.9, 126.8, 125.1, 124.1, 120.6, 81.4, 62.2, 44.6, 39.7, 31.6, 26.9. IR 3351, 1792, 1725, 1656, 1598, 1523, 1485, 456, 1426, 1316, 1267, 1221, 158, 1135, 1063 700 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₇H₂₂Cl₂N₂O₄ [(M+H⁺)] = 509.1029, 511.1000, 513.0970. Found 509.1017, 511.0987, 513.0972.

3139470

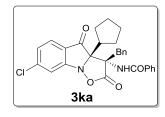

14.68

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-2,4-dioxo-3a-(3-phenylpropyl)-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

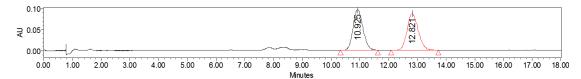


The compound **3ja** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 99% yield. **UPCC** (Daicel Chiralcel **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254nm), t (major) = 5.39 min, t (minor) = 6.75 min, ee = 80%. dr >19:1 (by ¹H NMR). $[\alpha]^{19}_{D}$ = +261.2 (*c*: 1.03, in CH₂Cl₂). ¹H **NMR** (400 MHz, CDCl₃) δ 7.61

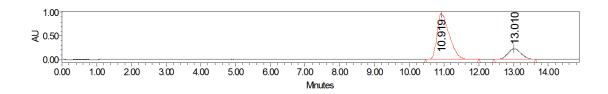
(d, J = 1.7 Hz, 1H), 7.43 – 7.34 (m, 7H), 7.28 – 7.22 (m, 5H), 7.22 – 7.15 (m, 4H), 7.14 – 7.08 (m, 2H), 6.30 (s, 1H), 3.54 (d, J = 15.0 Hz, 1H), 3.39 (d, J = 15.0 Hz, 1H), 2.63 (t, J = 7.6 Hz, 2H), 2.37 (td, J = 12.5, 4.4 Hz, 1H), 2.20 (td, J = 12.6, 3.9 Hz, 1H), 1.70 – 1.56 (m, 1H), 1.44 – 1.29 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.6, 172.9, 166.1, 161.9, 143.8, 141.1, 132.6, 132.3, 132.1, 131.0, 129.2, 128.7, 128.6, 128.5, 128.4, 127.8, 126.8, 126.2, 125.3, 124.0, 120.5, 81.7, 62.2, 39.5, 36.0, 33.7, 25.6. IR 3339, 1793, 1725, 1658, 1599, 1522, 1485, 1455, 1426, 1317, 1266, 1224, 1158, 1135, 1063, 700 cm⁻¹. HRMS (FTMS+c ESI) caled for C₃₃H₂₇CIN₂O₄ [(M+H⁺)] = 551.1732, 553.1703, Found 551.1725, 553.1694.



	Retention Time	Area	% Area
1	5.407	5182741	50.07
2	6.726	5169171	49.93

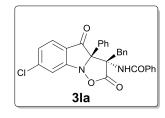

	Retention Time	Area	% Area
1	5.387	18311691	89.95
2	6.749	2045930	10.05

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-3a-cyclopentyl-2,4-dioxo-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

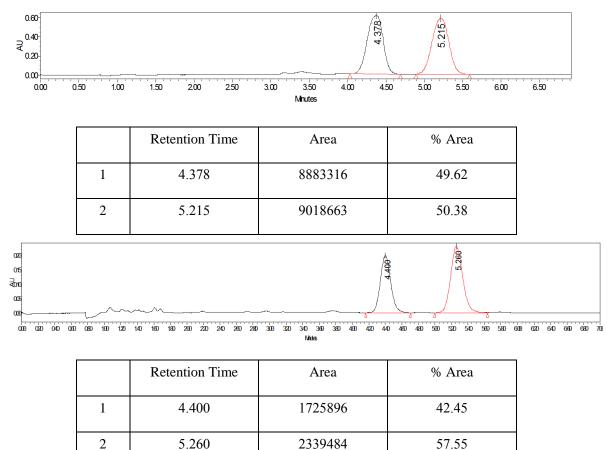


The compound **3ka** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 10/1) to afford a yellow oil in 89% yield. **UPCC** (Daicel Chiralcel **OX**, scCO₂/MeOH = 90/10, 1.5 mL/min, λ = 254nm), t (major) = 10.92 min, t (minor) = 13.01 min, ee = 59%. dr >19:1 (by ¹H NMR). [α]¹⁹_D = +244.6 (*c*: 0.86, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 - 7.55 (m, 3H), 7.49 - 7.42 (m, 2H), 7.41 - 7.32 (m, 2H), 7.31 -

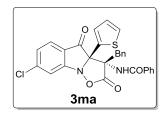
7.26 (m, 1H), 7.17 (t, J = 7.7 Hz, 2H), 7.09 – 7.01 (m, 1H), 6.97 – 6.88 (m, 2H), 5.93 (d, J = 3.7 Hz, 1H), 3.65 (d, J = 15.1 Hz, 1H), 3.56 (d, J = 15.1 Hz, 1H), 3.07 – 2.86 (m, 1H), 2.04 – 1.91 (m, 1H), 1.85 – 1.65 (m, 5H), 1.56 – 1.46 (m, 1H), 1.26 – 1.12 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.0, 174.0, 164.9, 162.3, 143.7, 132.8, 132.0, 131.2, 129.3, 128.5, 128.3, 126.6, 126.4, 124.0, 123.8, 119.4, 85.6, 61.3, 42.9, 40.2, 28.7, 28.2, 26.2, 25.3. IR 3348, 1796, 1721, 1672, 1600, 1514, 1483, 1316, 1063, 1288, 1141 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₉H₂₅ClN₂O₄ [(M+H⁺)] = 501.1576, 503.1546, Found 501.1558, 503.1546.



	RetentionTime	Area	% Area
1	10.925	2330844	49.86
2	12.821	2343992	50.14

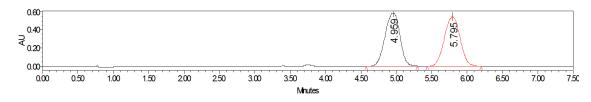

	RetentionTime	Area	% Area
1	10.919	23520009	79.73
2	13.010	5978033	20.27

N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-2,4-dioxo-3a-phenyl-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide

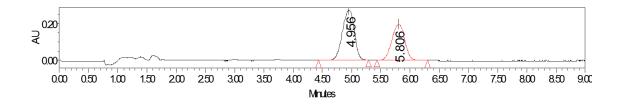


The compound **3la** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a pale yellow solid in 18% yield. **UPCC** (Daicel Chiralcel **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm), t (major) = 5.26 min, t (minor) = 4.40 min, ee = 15%. dr >19:1 (by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.83 (m, 2H), 7.74 (d, J = 1.6 Hz, 1H), 7.61 – 7.46 (m, 4H), 7.43 – 7.32 (m, 6H), 7.28 – 7.19

(m, 4H), 6.97 - 6.87 (m, 2H), 6.75 (s, 1H), 3.05 (d, J = 14.5 Hz, 1H), 2.96 (d, J = 14.5 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 195.1, 171.2, 167.8, 159.5, 143.0, 134.2, 132.4, 132.1, 130.6, 129.3, 129.0, 128.9, 128.7, 128.5, 128.1, 127.3, 127.1, 125.7, 125.3, 122.3, 79.4, 64.6, 42.2, 0.0. IR 3343, 1785, 1730, 1651, 1597, 1523, 1485, 1447, 1313, 1262, 1224, 1153, 1063, 731, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₃₀H₂₁CIN₂O₄ [(M+H⁺)] = 509.1263, 511.1233, Found 509.1269, 511.1251.

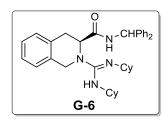


N-[(3*S*,3a*S*)-3-Benzyl-7-chloro-2,4-dioxo-3a-(thiophen-2-yl)-2,3,3a,4-tetrahydroisoxazolo[2,3-a]indol-3-yl]benzamide



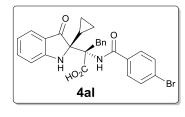
The compound **3ma** was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5/1) to afford a pale yellow solid in 52% yield. **UPCC** (Daicel Chiralcel **OX**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm), t (major) = 4.96 min, t (minor) = 5.81 min, ee = 13%. dr >19:1 (by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.63 (m, 2H), 7.62 – 7.45 (m, 5H), 7.44 – 7.32 (m, 4H), 7.32 – 7.26 (m, 3H), 7.11 – 6.90 (m, 2H), 6.69 (s, 1H),

3.05 (d, J = 2.4 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.5, 171.4, 167.7, 159.8, 143.1, 134.6, 132.4, 132.3, 132.3, 130.6, 129.2, 128.7, 128.7, 128.1, 127.2, 127.1, 126.8, 125.4, 125.2, 124.9, 122.2, 79.6, 64.1, 41.7. IR 3367, 1788, 1733, 1654, 1608, 1521, 1486, 1315, 1263, 1224, 1149, 1063, 779, 701 cm⁻¹. HRMS (FTMS+c ESI) caled for C₂₈H₁₉SClN₂O₄ [(M+H⁺)] = 515.0827, 517.0797. Found 515.0823, 517.0807.

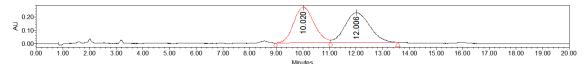


	Retention Time	Area	% Area
1	4.959	8440981	50.12
2	5.795	8401847	49.88

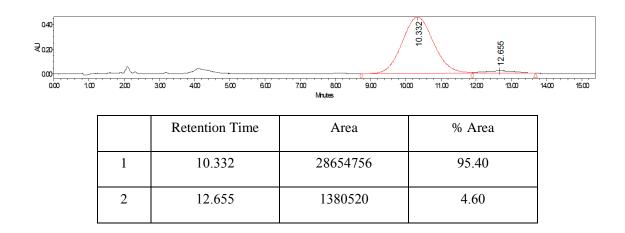
	Retention Time	Area	% Area
1	4.956	3864797	56.58
2	5.806	2966263	43.42


Chiral guanidine G-6

¹**H NMR** (400 MHz, CDCl₃) δ 10.51 (d, J = 8.4 Hz, 1H), 7.32 – 7.04 (m, 14H), 6.96 (d, J = 7.4 Hz, 1H), 6.17 (d, J = 7.9 Hz, 1H), 4.80 (d, J = 6.3 Hz, 1H), 4.34 (d, J = 16.5 Hz, 1H), 4.13 (d, J = 16.5 Hz, 1H), 3.51 – 3.28 (m, 2H), 3.03 – 2.84 (m, 3H), 1.91 (d, J = 11.4 Hz, 1H), 1.80 (d, J = 12.5 Hz, 1H), 1.71 – 1.42 (m, 9H), 1.28 – 0.85 (m, 10H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.7, 155.7, 142.6, 142.5, 134.4, 132.6, 129.0, 128.3,


128.2, 127.8, 127.7, 126.9, 126.8, 126.5, 125.7, 125.4, 56.9, 55.8, 55.4, 53.7, 47.3, 35.5, 35.2, 34.6, 33.8, 29.6, 25.7, 25.5, 25.2, 25.1, 24.8. $[\alpha]^{27}_{D} = -23.5$ (*c*: 0.31, in CH₂Cl₂). mp 72.0-79.3 °C. **IR** 2926, 2851, 2360, 1668, 1616, 1450, 1402, 1226, 740, 698 cm⁻¹. **HRMS** (FTMS+c ESI) caled for C₃₆H₄₄N₄O [(M+H⁺)] = 549.3588. Found 549.3591.

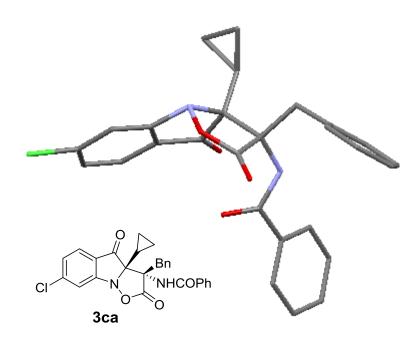
(S)-2-(4-bromobenzamido)-2-[(S)-2-cyclopropyl-3-oxoindolin-2-yl]-3-phenylpropanoic acid



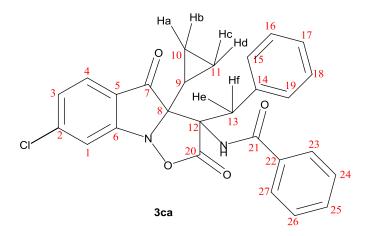
The **3al** (0.2 mmol, 103.2mg) in aqueous dioxane (10% v/v) was added to a suspention of 10% palladium on carbon in aqueous dioxane (10% v/v). The sample was placed in H₂ gas under the ambient pressure, and stirred at room temperature for 12 h. The solution was filtered through celite (solvent: DCM), and concentrated under reduced pressure. And then the mixture was purified by silica gel chromatography (ethyl

acetate/MeOH = 10/1) to afford the compound **4al** (yellow solid, 84% yield). **UPCC** (Daicel Chiralcel **AD**, scCO₂/MeOH = 80/20, 1.5 mL/min, λ = 254 nm), t (major) = 10.33 min, t (minor) = 12.65 min, ee = 91%. dr >19:1 (by ¹H NMR). ¹H NMR (400 MHz, DMSO-d6) δ 8.38 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.44 - 7.19 (m, 6H), 7.11 - 6.85 (m, 5H), 6.66 (t, J = 7.3 Hz, 1H), 3.94 (d, J = 13.0 Hz, 1H), 3.36 (d, J = 13.1 Hz, 1H), 1.64 - 1.51 (m, 1H), 0.53 - 0.28 (m, 2H), 0.12 - 0.03 (m, 1H), -0.24 - 0.41 (m, 1H). ¹³C{¹H} NMR δ 201.4, 169.6, 165.8, 161.1, 138.3, 136.4, 135.3, 131.4, 130.5, 128.4, 127.2, 125.6, 124.5, 123.9, 121.8, 117.5, 112.1, 73.0, 70.3, 33.1, 13.6, 2.6, -1.6. [α]²²_D = -24.3 (c: 0.50, in CH₂Cl₂). **IR** 3333, 1615, 1475, 1382, 1297, 1224, 1167, 1115, 1075, 1027, 881, 755, 703, 666, 630, 576, 516 cm⁻¹. **HRMS** (FTMS+c ESI) caled for C₂₇H₂₃BrN₂O₄ [(M+H⁺)] = 519.0914, 521.0893. Found 519.0920, 521.0901.

	Retention Time	Area	% Area
1	10.020	14202375	49.74
2	12.006	14351080	50.26


7. Crystallographic date and analysis results of 2D NMR spectra for 3ca.

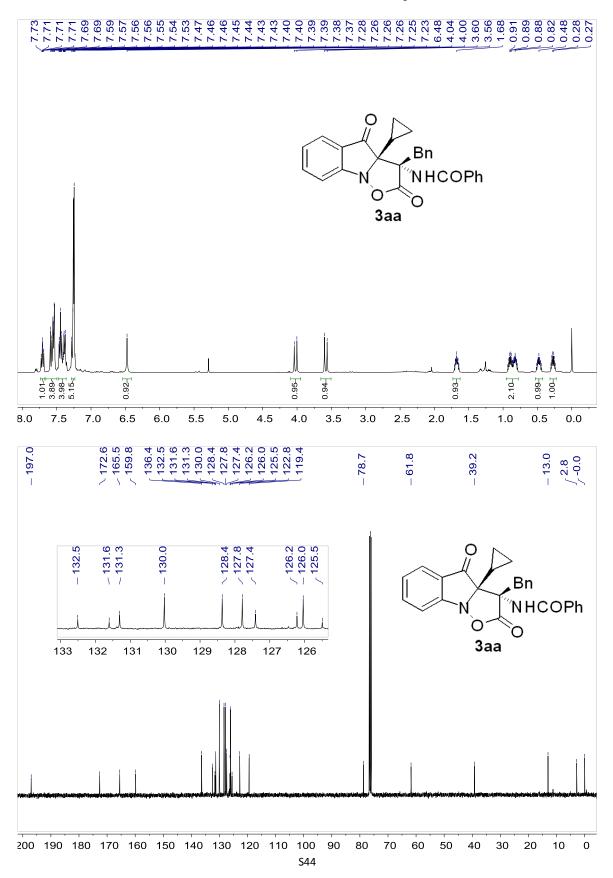
CCDC 1972984

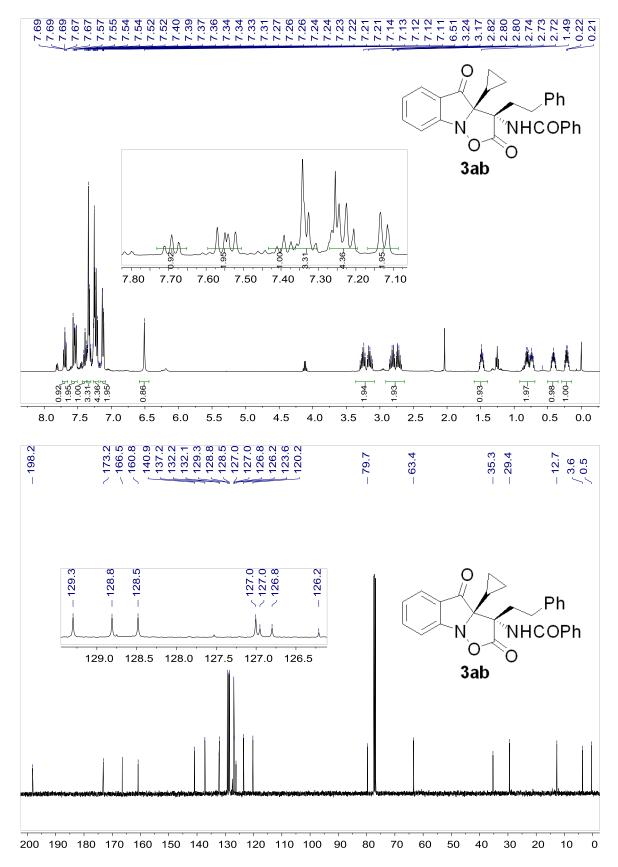

3ca was recrystallized from mixed solvents of Et₂O, *n*-hexane, isopropanol at -20 °C. The absolute configuration of the product **3ca** was determined to be (3*S*, 3a*S*) according to X-ray crystal structural analysis.

Formula	C27 H21 Cl N2 O4
Formula mass (amu)	472.91
Space group	$P2_{1}/n$
<i>a</i> (Å)	11.6645(7)
b (Å)	10.8473(7)
<i>c</i> (Å)	18.3820(11)
α (deg)	90
β (deg)	97.004(4)
γ (deg)	90
$V(Å^3)$	2308.5(2)
Ζ	4
λ (Å)	1.54178
<i>T</i> (K)	203 (2)
ρ_{calcd} (g cm ⁻³)	1.361
μ (mm ⁻¹)	1.775
Transmission factors	0.739,0.956

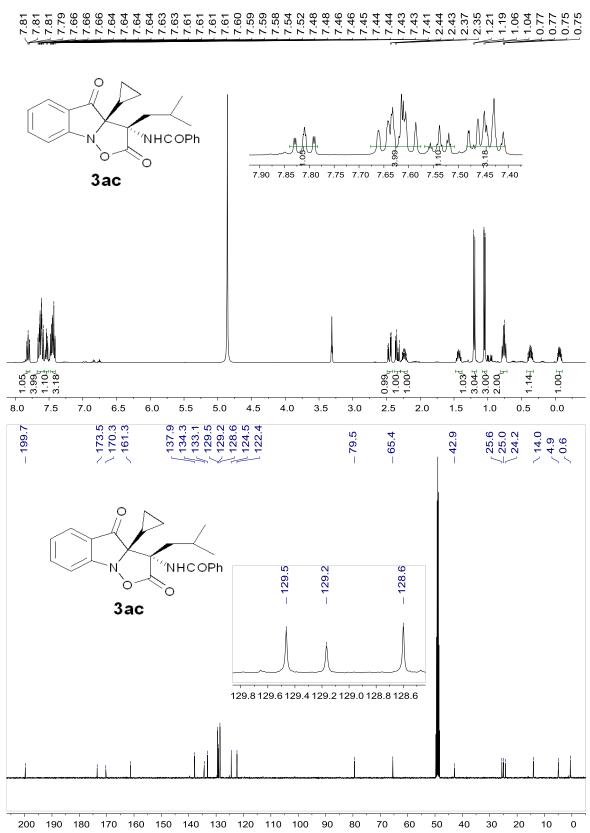
$2\theta_{\max}(\deg)$	69.066
No. of unique data, including $F_0^2 < 0$	4243
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	2177
No. of variables	311
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0844
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.2974
Goodness of fit	0.997

Analysis results of 2D NMR spectra of the product 3ja

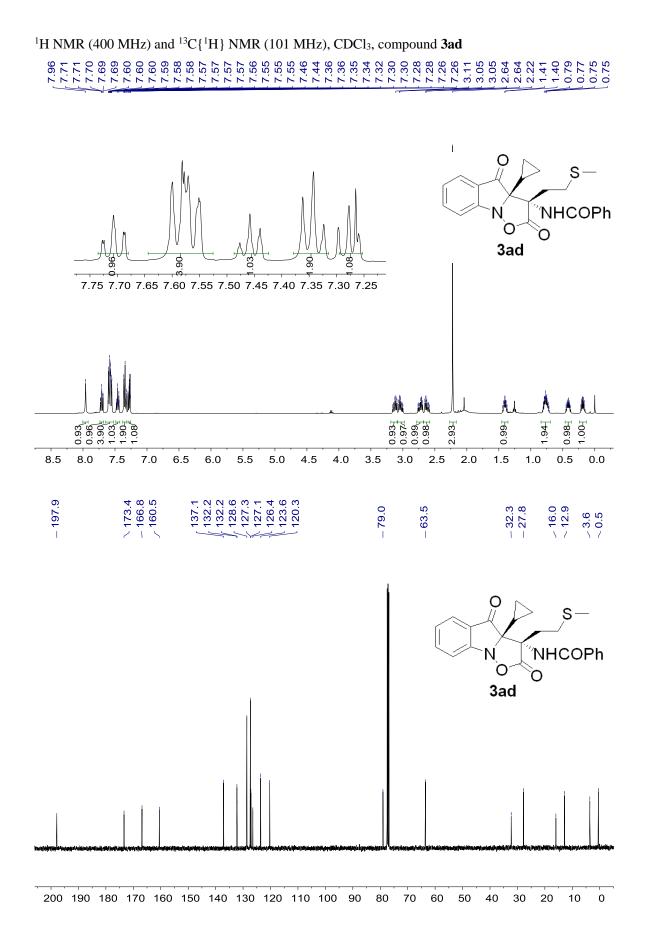

HSQC-Correlation Peak: (7.57, 120.31); (3.60, 39.96); (4.00, 39.79); (1.63, 13.80); (0.85, 3.52); (0.48, 0.77); (0.26, 0.76).

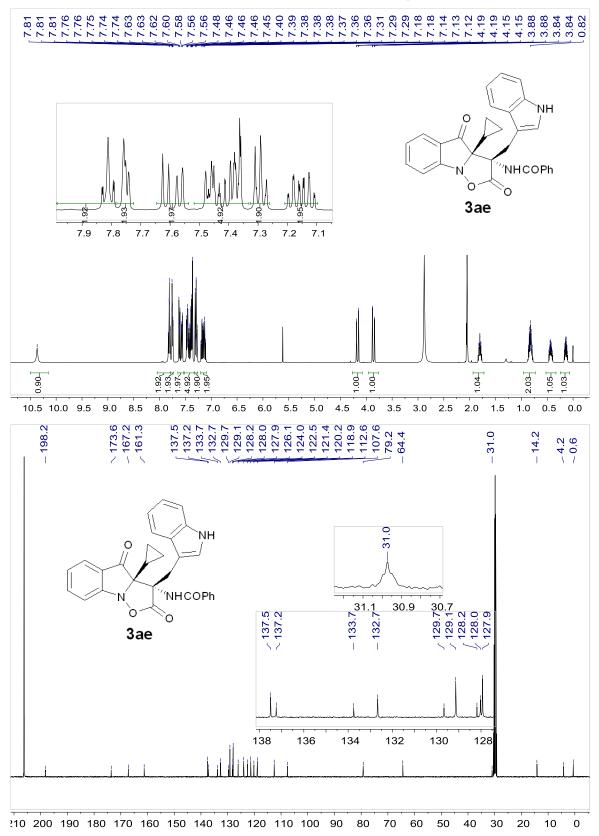

Number of Atom	Н	С
1, 3, 4	7.59-7.51 (m,3H)	120.5, 143.53, 161.13
2, 5, 6		can't be sure
7		166.5
8		62.4
10, 11	0.95-0.75 (m, 2H), 0.55-0.43 (tt, 1H), 0.32-0.20 (dq, 1H)	0.8, 3.7
9	1.63 (tt, 1H)	13.9
12		79.9
13	4.04-3.53 (dd, 2H)	40.0
14, 15, 16, 17, 18, 19	7.57.35 (m, 5H)	can't be sure
20		173.3
21		196.5
22, 23, 24, 25, 26, 27	7.30-7.20 (m, 5H)	can't be sure
NH	6.51 (s, 1H)	

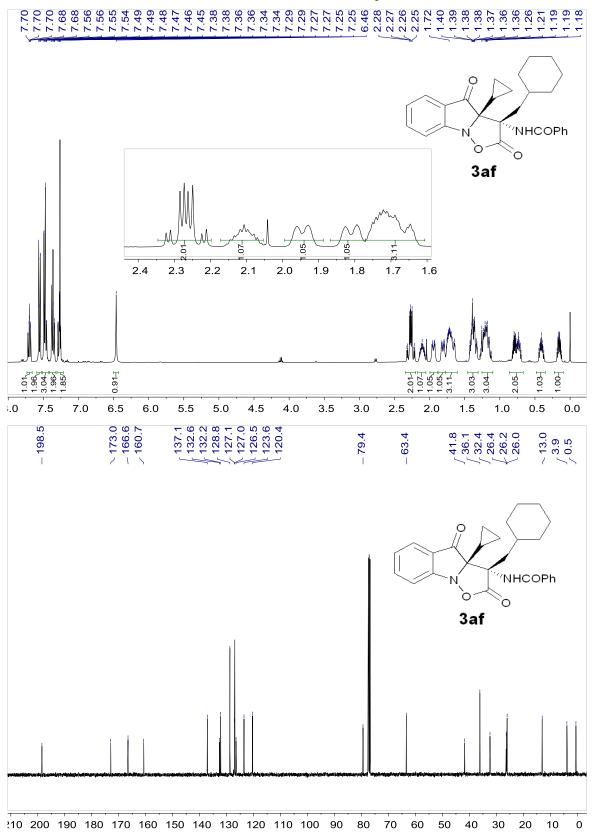
HMBC-Correlation Peak: (7.57, 143.53); (7.57, 161.13); (7.46, 196.40); (6.54, 166.34); (6.54, 62.43); (6.55, 40.02); (3.97, 173.12); (3.97, 62.36); (4.04, 78.92); (3.60, 173.09); (3.60, 80.11); (3.56, 62.33); (1.63, 79.83); (0.86, 79.74); (0.88, 13.58); (0.48, 80.00); (0.26, 79.71); (0.26, 13.89).

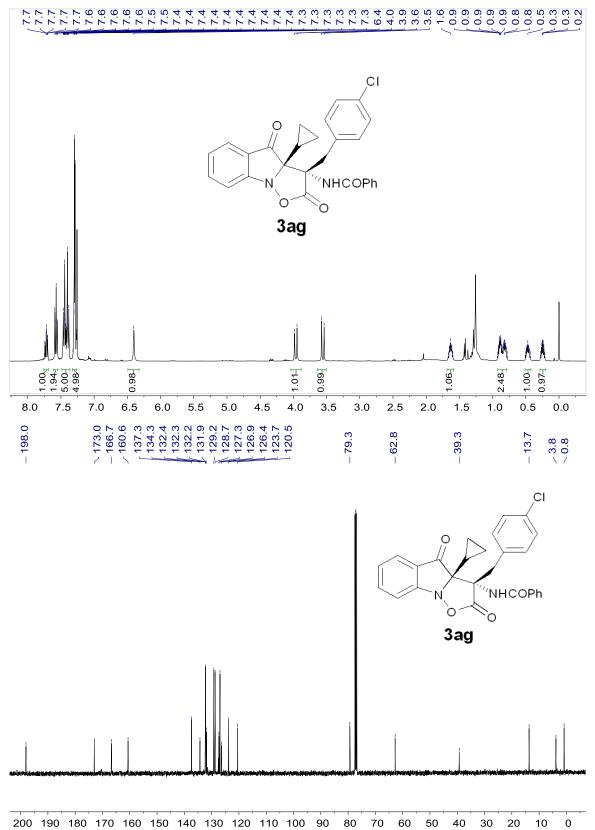

8. NMR spectra

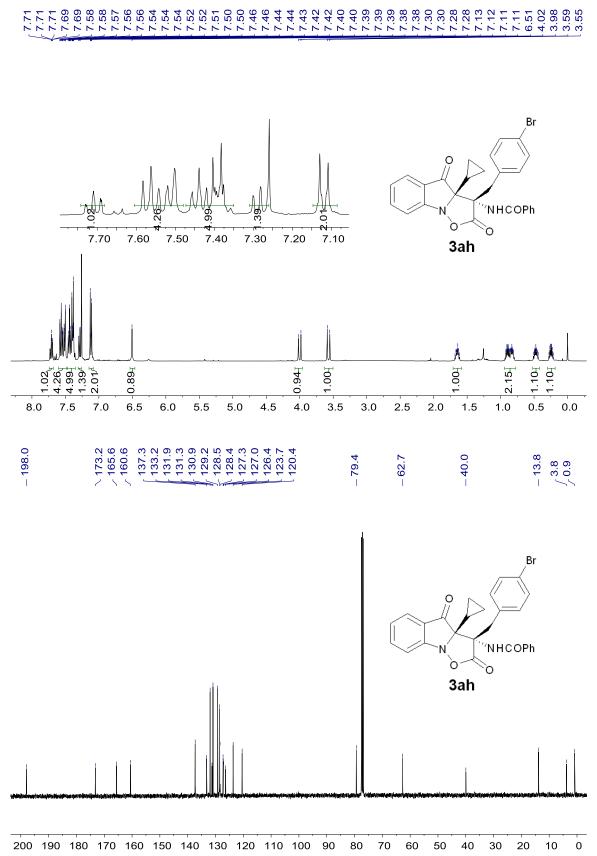
¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3aa**

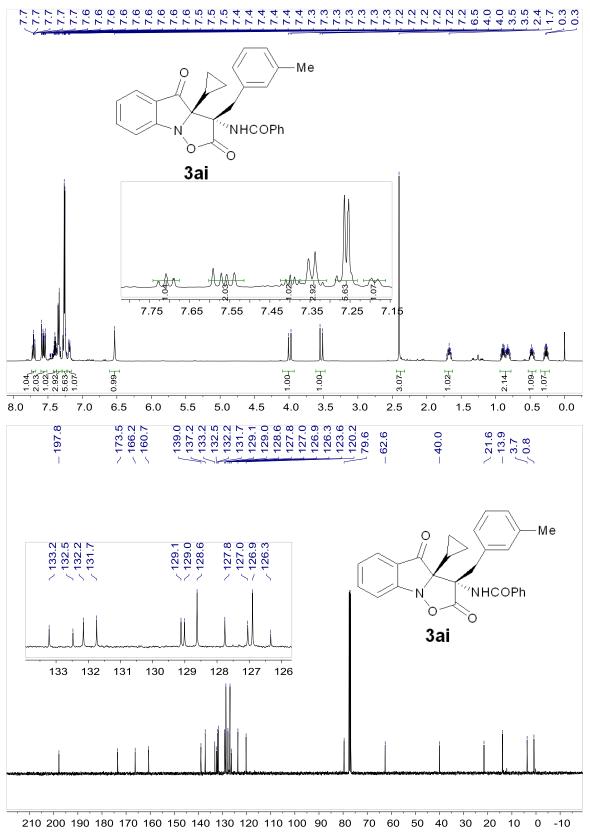



¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3ab**

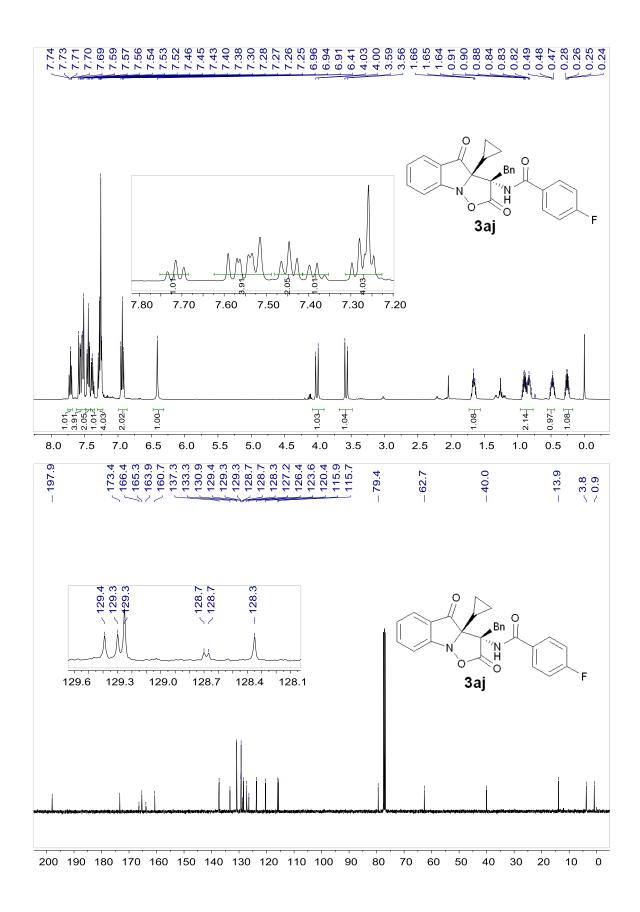

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), MeOD, compound $\boldsymbol{3ac}$

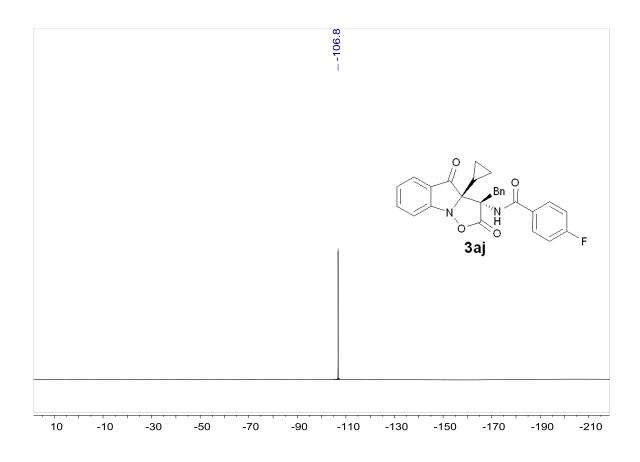

S47


¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), (CD₃)₂CO, compound **3ae**

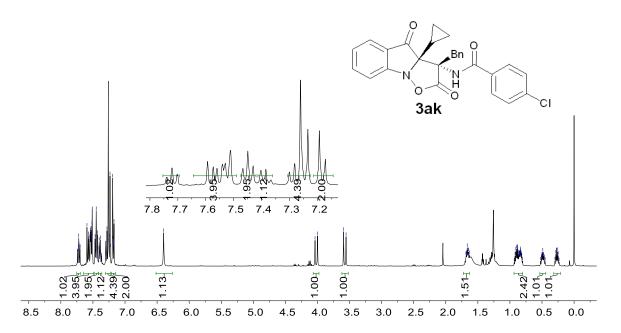

1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl_3, compound $\boldsymbol{3af}$

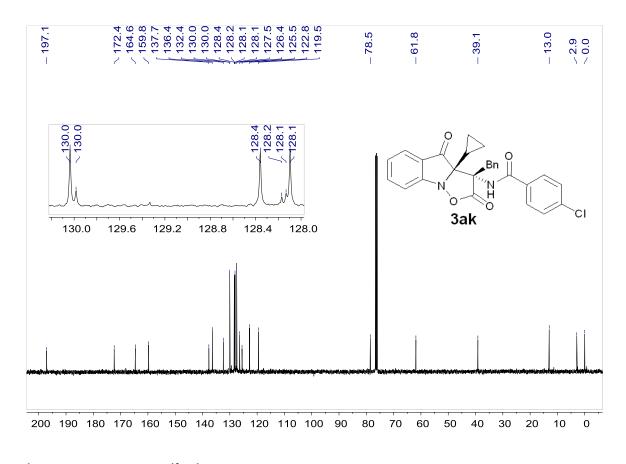
1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl_3, compound $\pmb{3ag}$



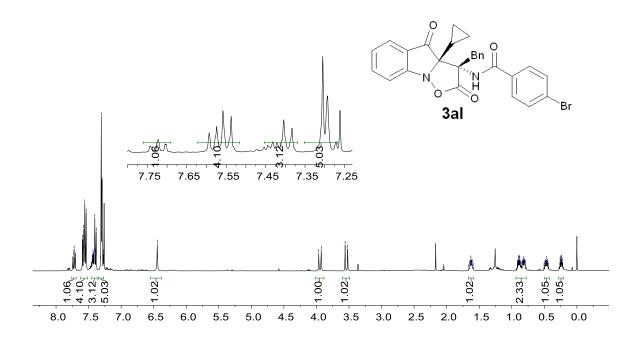

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl_3, compound 3ah

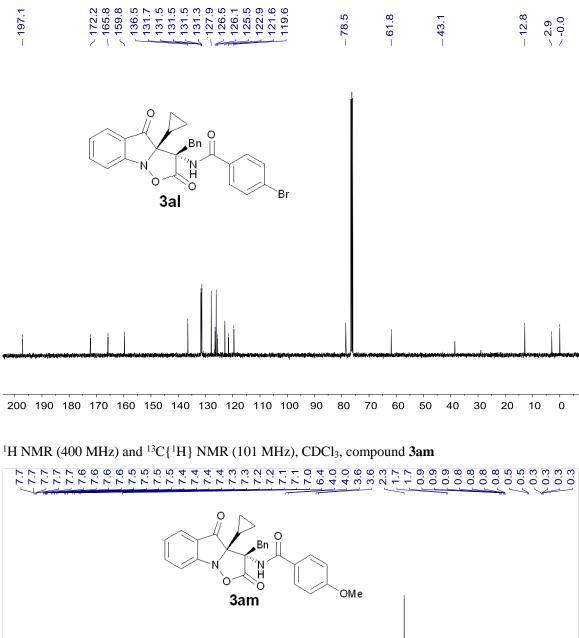
1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3ai**

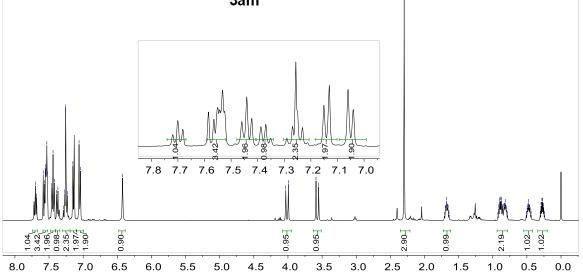

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3aj**

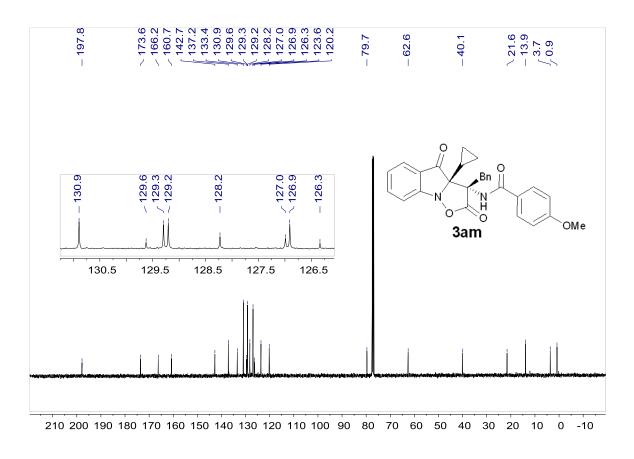


¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3ak**

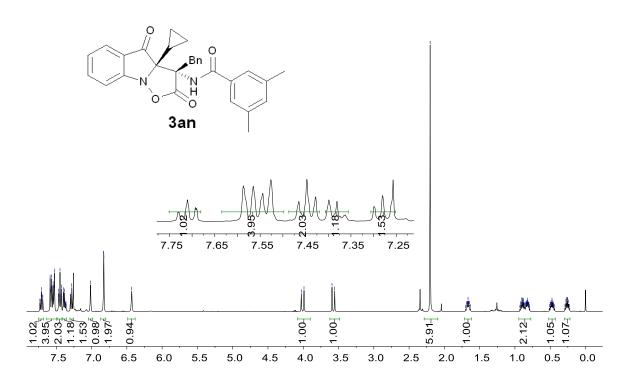


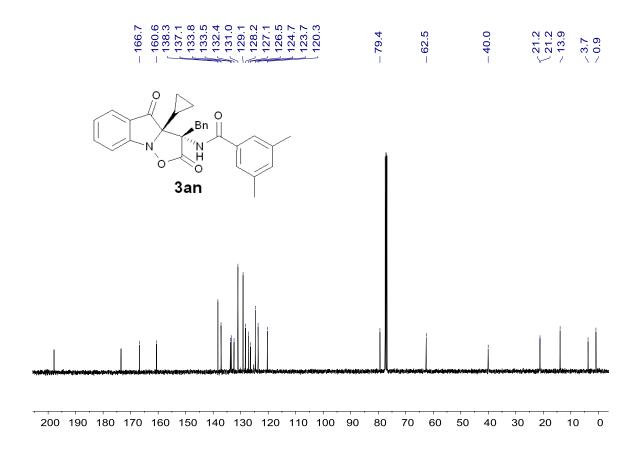


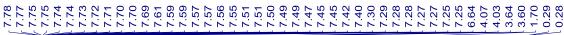


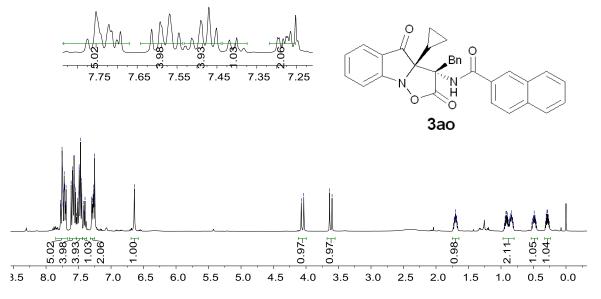

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3al**

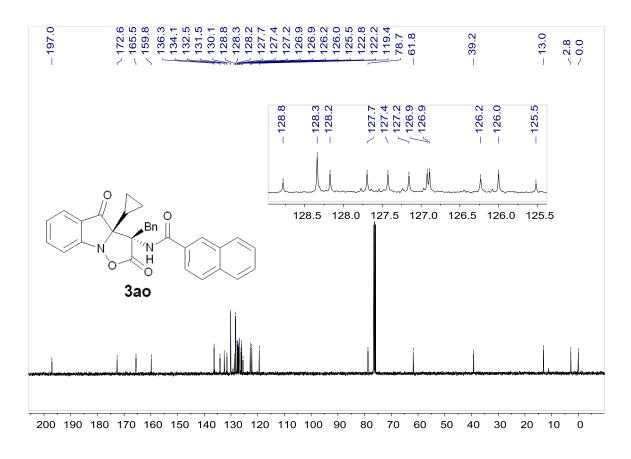
$\begin{array}{c} 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.73\\$

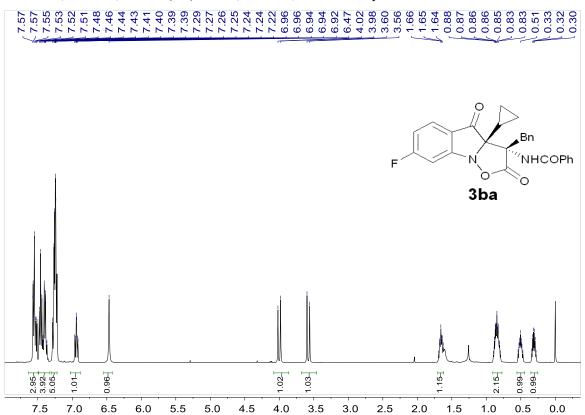


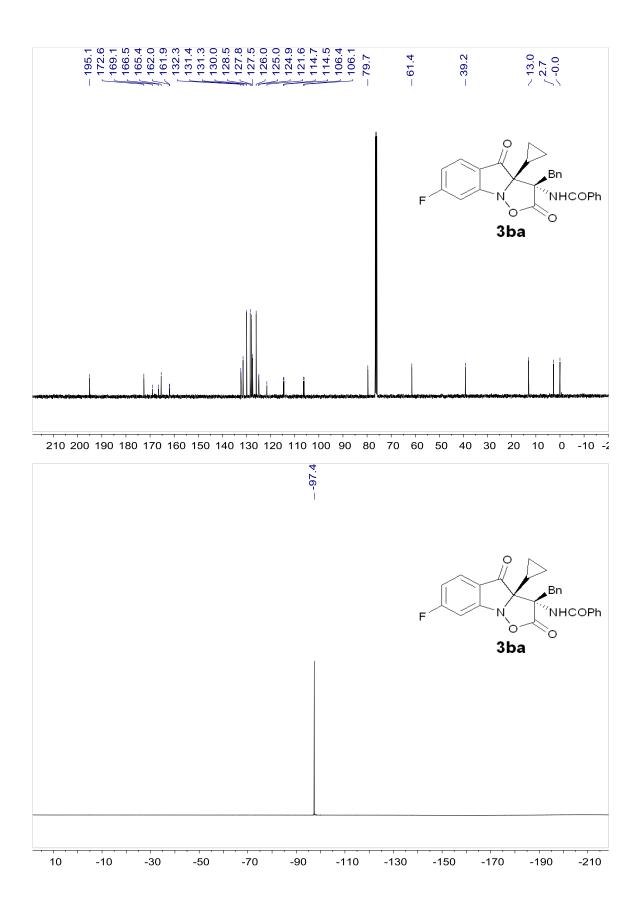


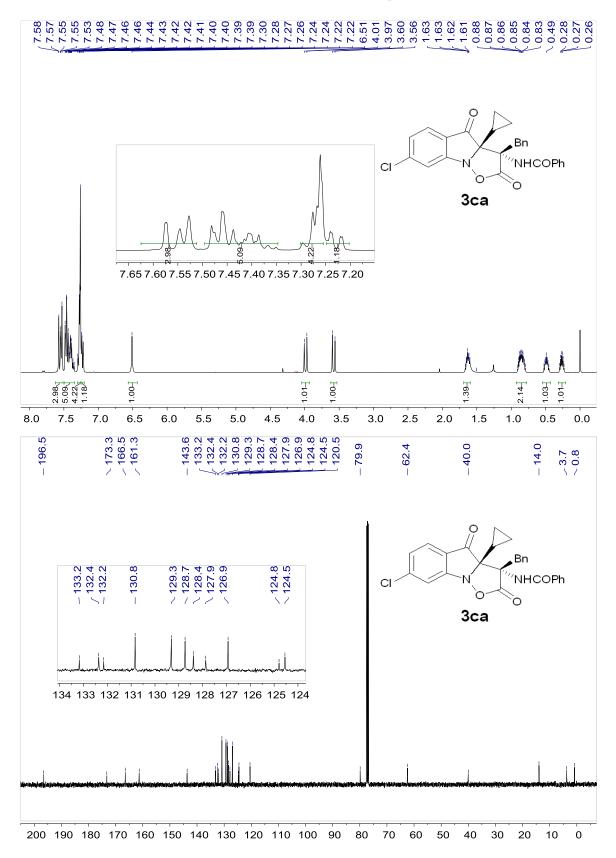


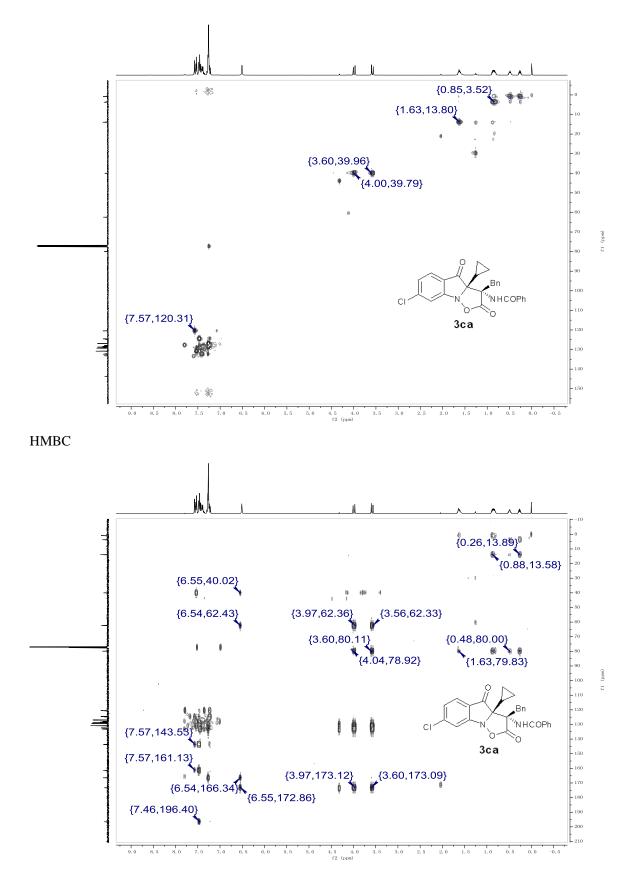

1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl_3, compound 3an

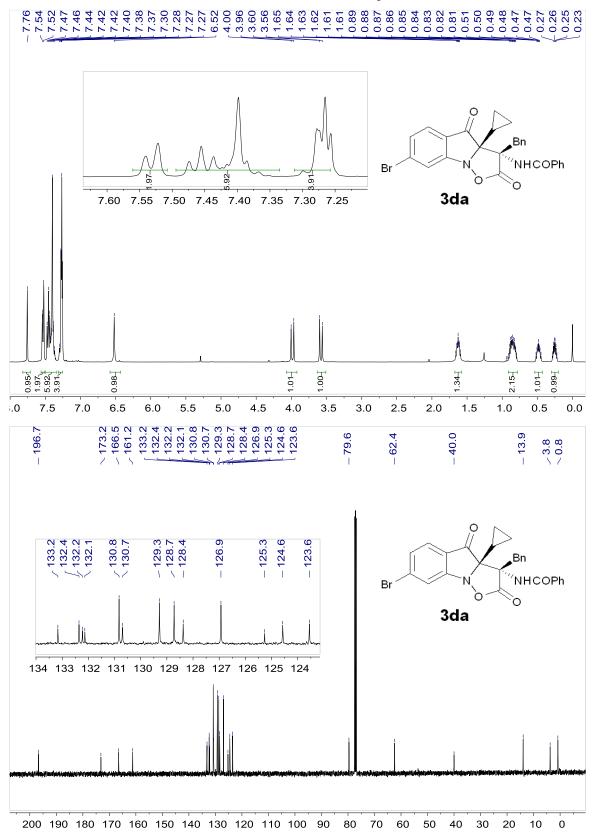




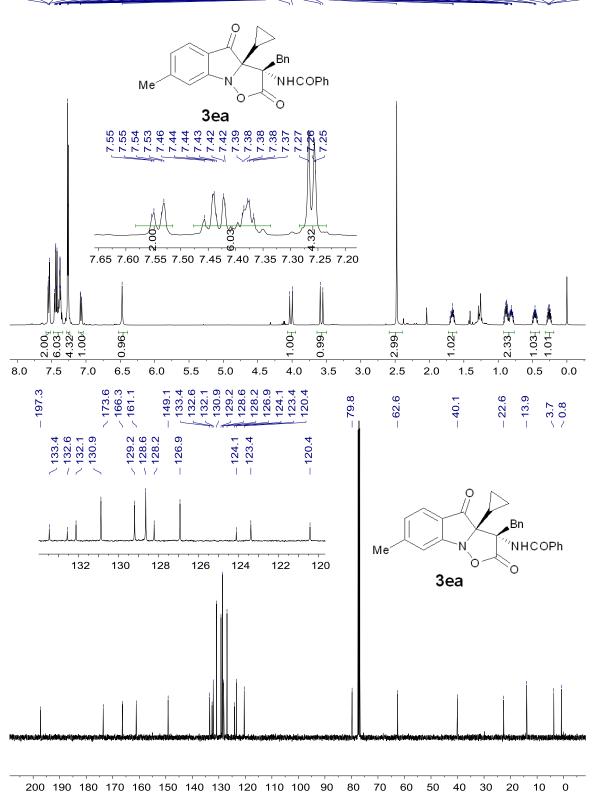


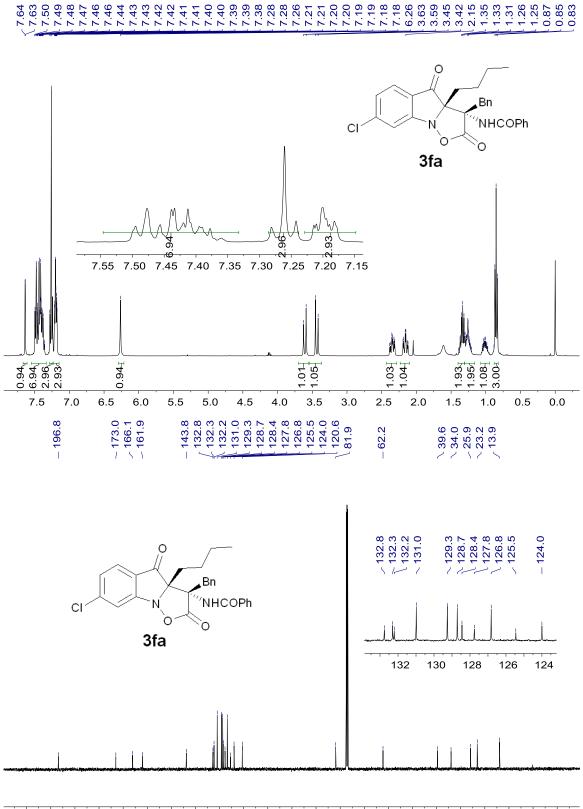



 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3ba**



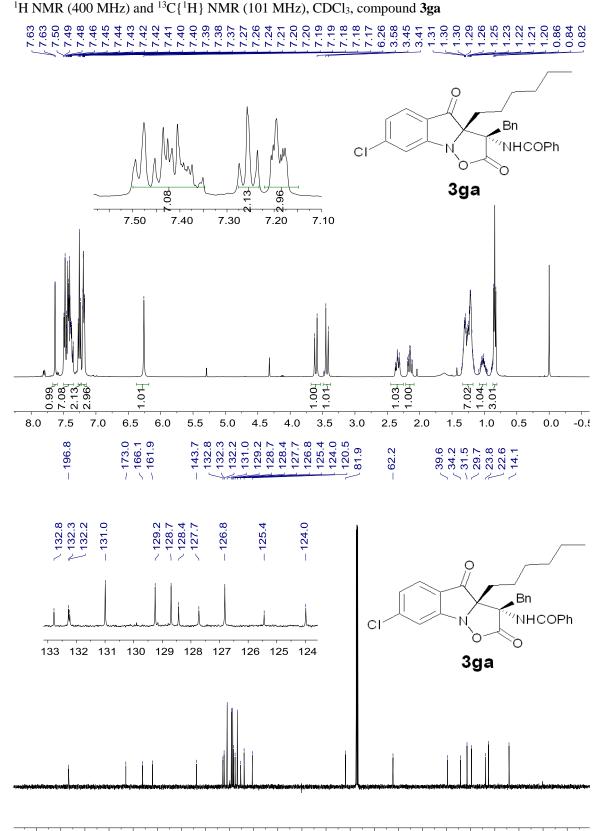
¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3ca**

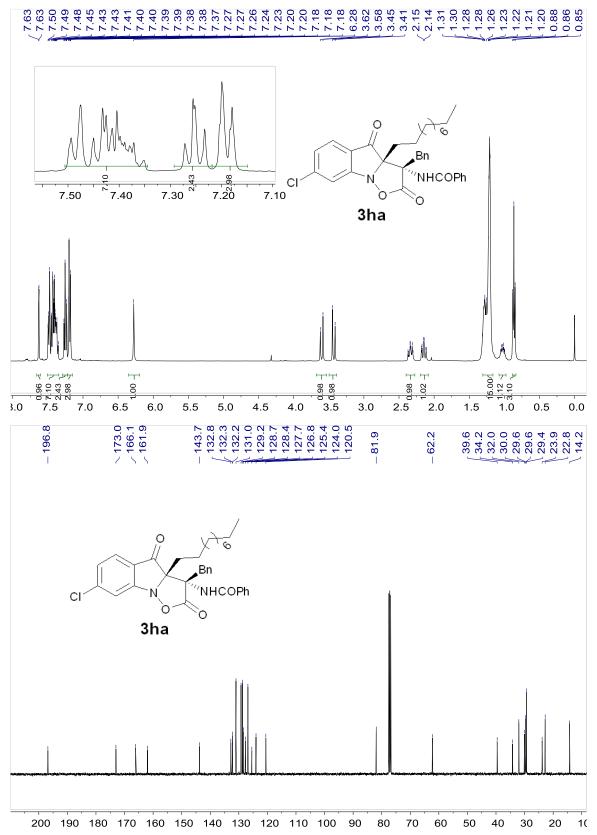




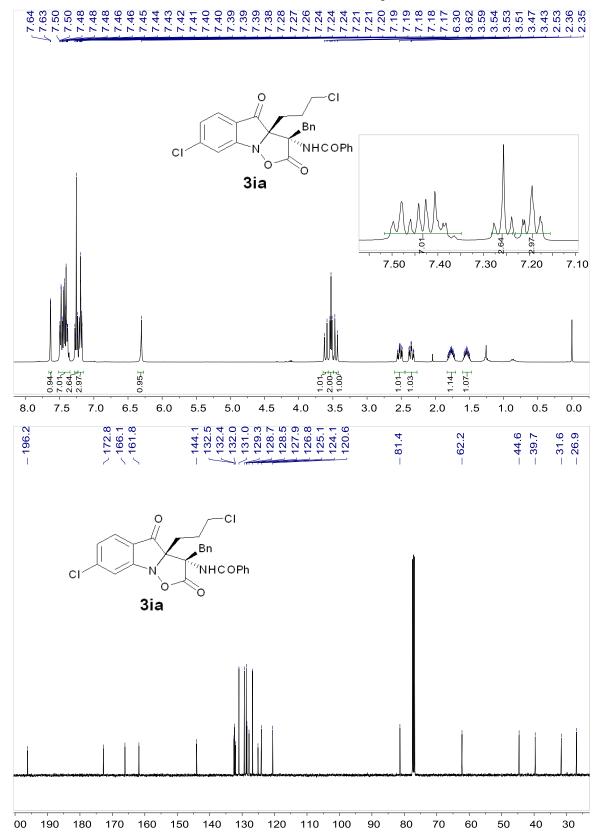
1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz), CDCl₃, compound **3da**

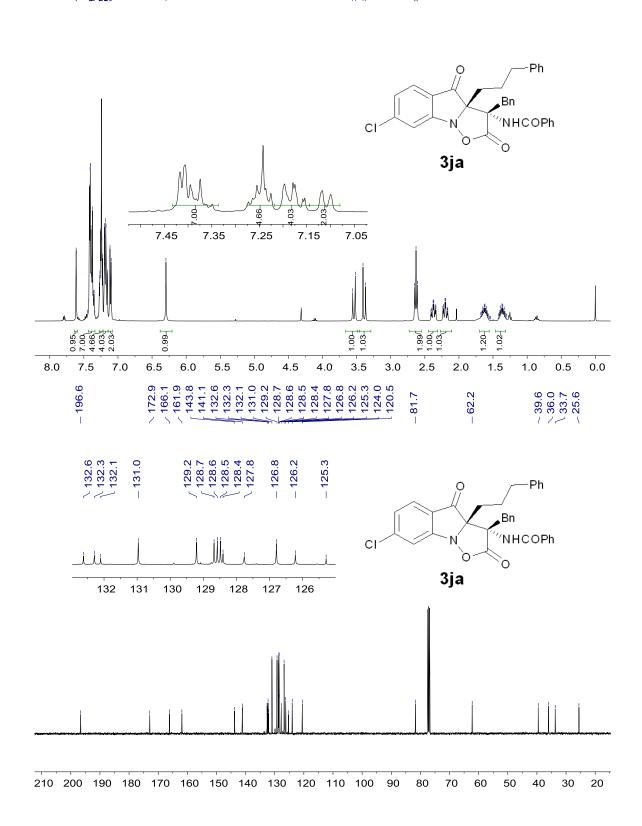
1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3ea**


 $\begin{array}{c} 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.25\\ 7.25\\ 7.32\\ 7.33\\$



1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3fa**


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3ha**

 1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound **3ia**

1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound 3ja

7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.62 7.337.33

1H NMR (400 MHz) and $^{13}C\{^1H\}$ NMR (101 MHz), CDCl₃, compound 3ka

 7.61

 7.59

 7.559

 7.557

 7.559

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.575

 7.470

 7.405

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

 7.105

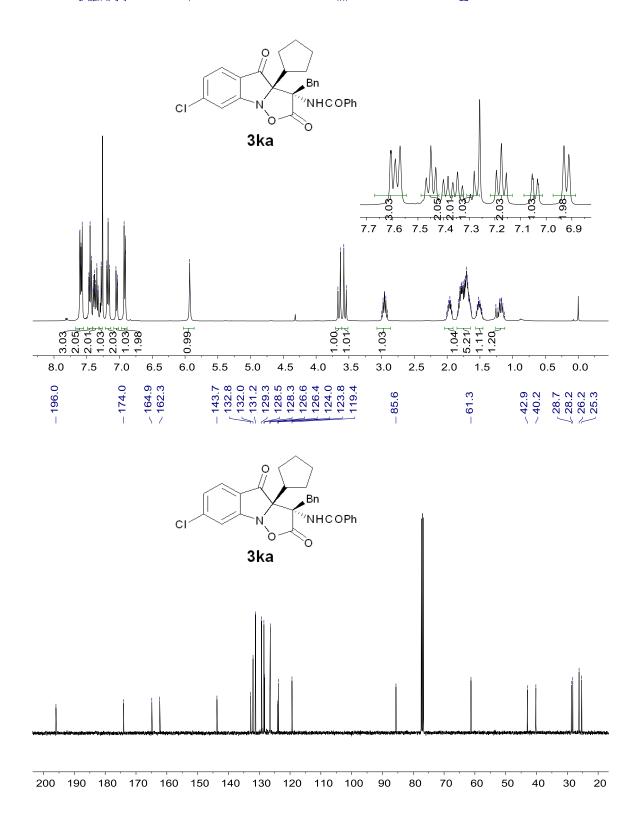
 7.105

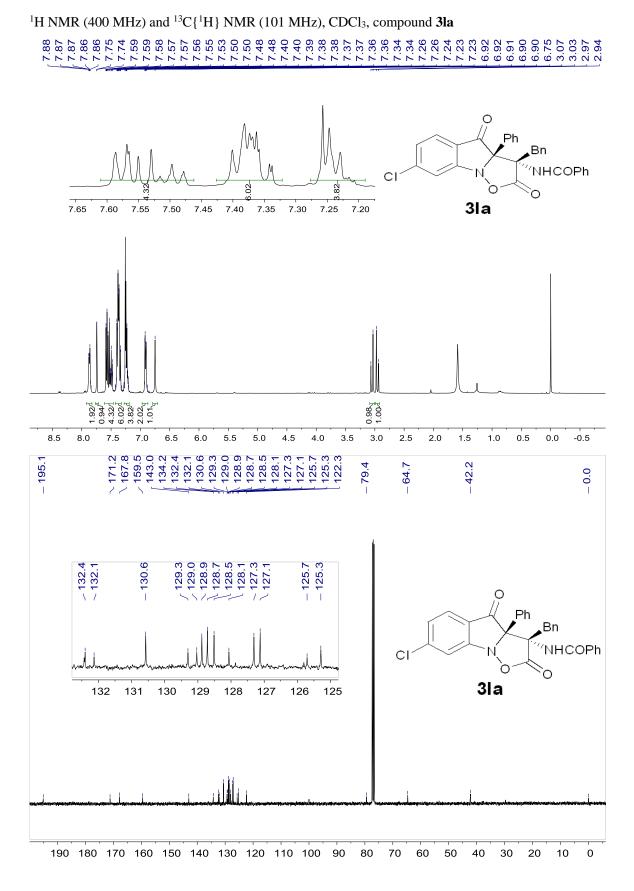
 7.105

 7.105

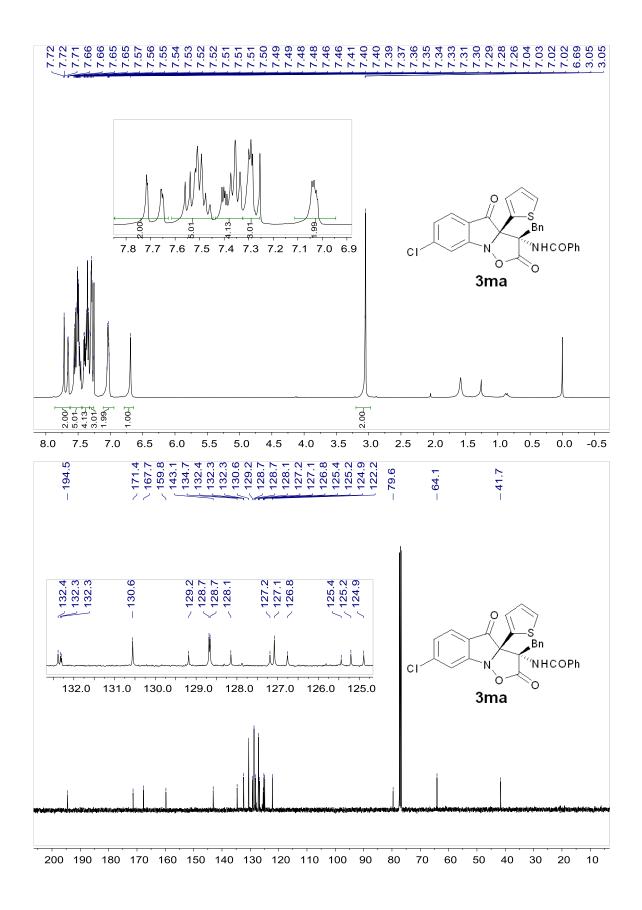
 7.105

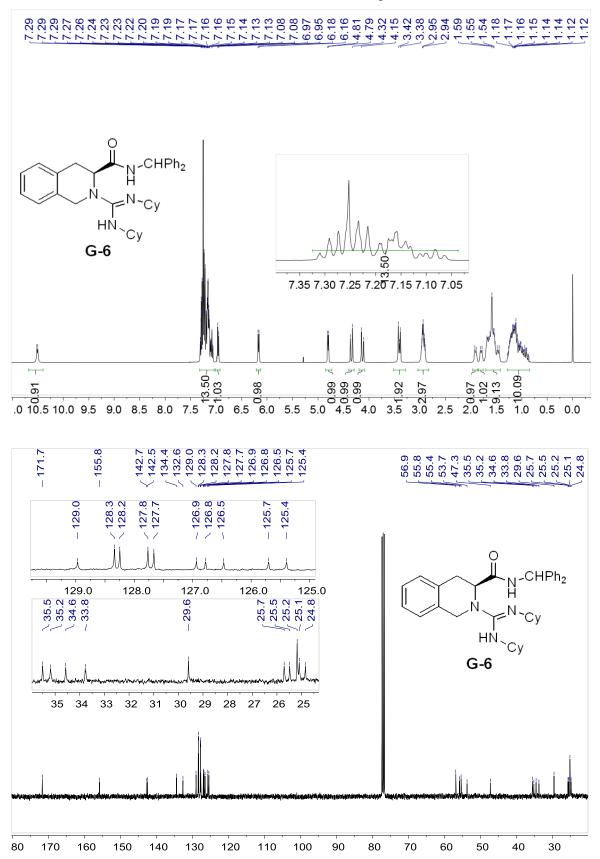
 7.105

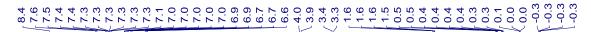

 7.106

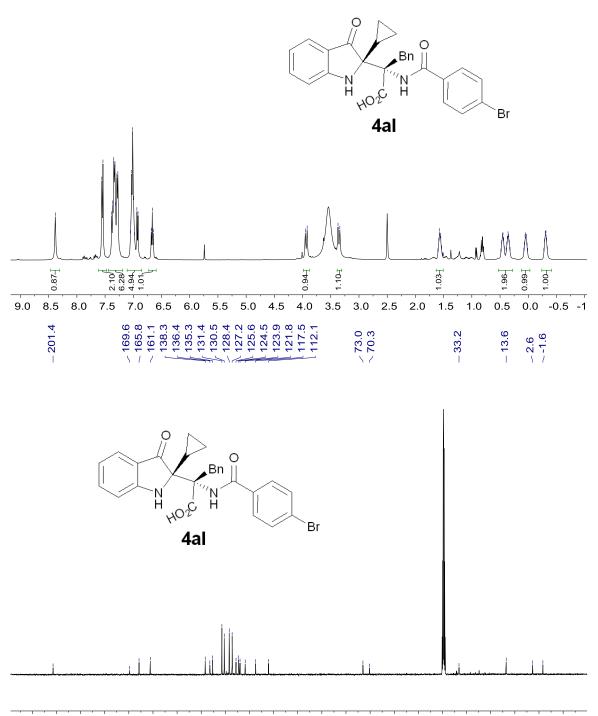

 7.107

 7.108


 7.107


 7.108
 </


¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz), CDCl₃, compound **3ma**



 1 H NMR (400 MHz) and 13 C{ 1 H} NMR (101 MHz), CDCl₃, compound G-6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

9. References

- (a) S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin and X. M. Feng, J. Am. Chem. Soc., 2010, 132, 10650; (b) K. A. Teegardina and J. D. Weaver, Chem. Commun., 2017, 53, 4771.
- 2. C. V. Ramana, P. Patel, K. Vanka, B. Miao, A. Degterev. Eur. J. Org. Chem. 2010, 5955.
- 3. (a) V. B. Génisson, A-V. Bouniol, F. Nepveu. *Synlett.*, 2001, 700; (b) B. Jeremie, B-G. Vania , F. Vincent, J-P. Souchard, N. Francoise, *Free Radical Research*, 2004, **38**, 459.
- 4. S. J. Edeson, E. J. M. Maduli, S. Swanson, P. A. Procopiou, J. P. A. Harrity. *Eur. J. Org. Chem.* 2016, 83.
- 5. I. S. Kovalev, D. S. Kopchuk, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin. *Mendeleev* Commun., 2014, 24, 40.
- 6. Z. P. Y, X. H. Liu, L. Zhou, L. L. Lin, X. M. Feng, Angew. Chem., Int. Ed., 2009, 48, 5195.