## **Supporting Information**

# Cobalt-Catalyzed Carboxylation of Aryl and Vinyl Chlorides with CO<sub>2</sub>

Yanwei Wang,<sup>†</sup> Xiaomei Jiang<sup>†</sup> and Baiquan Wang<sup>\*†,‡</sup>

<sup>†</sup>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

<sup>‡</sup>State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

## **Table of Contents**

| 1. Table of Contents                                                                        | S1      |
|---------------------------------------------------------------------------------------------|---------|
| 2. Experimental Section: General Considerations                                             | S2      |
| 3. Procedures for Preparation of Starting Materials                                         | S2-S3   |
| 4. Optimization Studies                                                                     | S3-S7   |
| 5. Procedures for the Cobalt-Catalyzed Carboxylations                                       | S8      |
| 6. Characterization of the Carboxylation Products                                           | S9-S17  |
| 7. Procedure for 5 mmol of Aryl Chlolide Carboxylation                                      | S19     |
| 8. Control Experiment                                                                       | S19-S20 |
| 9. Copies of <sup>1</sup> H, <sup>13</sup> C, and <sup>19</sup> F NMR Spectra for Compounds | S21-S62 |
| 10. References                                                                              | S63     |

#### 2. Experimental Section:

**General Considerations:** All the reactions were carried out under argon atmosphere using standard sealed Schlenk technique. <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (101 MHz) and <sup>19</sup>F (376 M Hz) were recorded on Bruker AV400 NMR spectrometer with CDCl<sub>3</sub> and DMSO-*d*<sub>6</sub> as solvent. Chemical shifts of <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl<sub>3</sub>:  $\delta$  H = 7.26 ppm,  $\delta$  C = 77.16 ppm; DMSO-*d*<sub>6</sub>:  $\delta$  H = 2.50 ppm,  $\delta$  C = 39.43 ppm). All coupling constants (*J* values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets (dd), doublet of triplets (dt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200–300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm and 365nm). High-resolution mass spectrometry (HRMS) was done on a FTICR-mass spectrometer. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available without any further purification.

#### **3.** Procedures for the Preparation of Substrates.

Aryl chlorides, aryl bromides and 2-chloropropene (2g) were purchased without any further purification. Vinyl chlorides (2a-2f) were prepared according to the literatures,<sup>1</sup> Vinyl chlorides (2h, 2i) were prepared according to the following procedures:<sup>2</sup>

Solution of corresponding ketones (6.0 mmol), PCl<sub>3</sub> (11.3 mmol) in 20 mL of glacial acetic acid was allowed to stand in stoppered flasks at room temperature for about 5 h. Afterwards, it was evaporated under reduced pressure and the residue was washed with dilute sodium bicarbonate solution. The crude product was collected by gravity filtration and washed with dilute sodium bicarbonate solution. The purification was performed by flash column chromatography on silica gel (eluent: EtOAc/petroleum ether = 1/50 to 1/30).



(8R,9S,10R,13S,14S,17S)-3-Chloro-10,13-dimethyl-2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclo penta[*a*]phenanthren-17-yl methyl carbonate

**MeOOCO** This compound is isolated as a white solid. M.p.: 133-135 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  6.05 (s, 1H), 5.38 (d, J = 3.1 Hz, 1H), 4.58 – 4.45 (m, 1H), 3.76 (s, 3H), 2.56 – 2.43 (m, 1H), 2.36 – 2.14 (m, 3H), 1.85 (dd, J = 12.6, 4.0 Hz, 2H), 1.73 – 1.57 (m, 5H), 1.46 – 1.28 (m, 3H), 1.23 (td, J = 12.9, 4.0 Hz, 1H), 1.14 – 1.07 (m, 1H), 1.06 – 0.98 (m, 1H), 0.96 (s, 3H), 0.85 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz): 155.8, 140.6, 130.4, 126.9, 123.6, 86.4, 54.6, 51.0, 47.8, 42.5, 36.6, 34.8, 34.5, 31.5, 31.2, 30.6, 27.4, 23.3, 20.6, 18.9, 11.9. HRMS (ESI): Calcd for C<sub>21</sub>H<sub>29</sub>ClO<sub>3</sub> [M+Na]<sup>+</sup> 387.1697, found 387.1698.



OCOOMe (8R,9S,10R,13S,14S)-17-Chloro-10,13-dimethyl-2,3, 4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopen ta[*a*]phenanthren-3-yl methyl carbonate

This compound is isolated as a white solid. M.p.: 168-170 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  5.63 (s,

1H), 5.41 (d, *J* = 4.9 Hz, 1H), 4.55 – 4.41 (m, 1H), 3.77 (s, 3H), 2.48 – 2.32 (m, 2H), 2.16 (ddd, *J* = 14.8, 6.2, 3.1 Hz, 1H), 2.06 – 1.77 (m, 5H), 1.71 – 1.59 (m, 4H), 1.58 – 1.45 (m, 2H), 1.34 (td, *J* = 12.6, 4.6 Hz, 1H), 1.22 – 1.02 (m, 5H), 0.89 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz): 155.1, 144.6, 139.8, 124.5, 122.3, 77.6, 55.6, 54.5, 50.3, 47.4, 38.0, 36.7, 36.7, 33.6, 31.0, 30.5, 30.5, 27.6, 20.5, 19.1, 14.9. HRMS (ESI): Calcd for C<sub>21</sub>H<sub>29</sub>ClO<sub>3</sub> [M+Na]<sup>+</sup> 387.1697, found 387.1699.

#### 4. Optimization studies.

#### The effect of ligands on the carboxylation of aryl chlorides with CO<sub>2</sub>

An oven-dried 50 mL schlenk tube containing a stirring bar was charged with CoBr<sub>2</sub> (5.5 mg, 5.0 mol %), ligand (10.0 mol%), Mn powder (41.2 mg, 0.75mmol, 1.5 equiv), and LiOAc (1.0 mmol, 66 mg, 2.0 equiv). The schlenk tube was evacuated and back-filled under CO<sub>2</sub> flow (this procedure was repeated three times). Then, anhydrous DMA (1.0 mL) and 1-chloro-4-methoxybenzene (0.5 mmol, 1.0 equiv.) was added under CO<sub>2</sub> flow, and the resulting mixture was stirred at 100 °C for 12 h. The mixture was then allowed to cool to

room temperature, carefully quenched with 4 M HCl (in 1,4-dioxane) and stirred for 10 minutes. The crude products were purified by flash chromatography (acetic acid/EtOAc/petroleum ether = 0/1/20 to 0.001/1/4).



Table S1 The effect of ligands on the carboxylation of aryl chlorides with CO<sub>2.<sup>a</sup></sub>

<sup>*a*</sup> Reaction conditions: 1-chloro-4-methoxybenzene (0.5 mmol, 1.0 equiv), CO<sub>2</sub> 1 atm, CoBr<sub>2</sub> (5 mol%), ligand (10 mol%), Mn powder (1.5 equiv), LiOAc (2.0 equiv), DMA (1.0 mL), 100 °C for 12 h. Isolated yield.

|                        | CI<br>+ CO <sub>2</sub> -<br>OMe 1 atm | CoBr <sub>2</sub> (5 mol%)<br>L6 (10 mol%)<br>Mn (1.5 equiv)<br>LiOAc (2.0 equiv)<br>additive (2.0 equiv)<br>solvent, T | 4 M HCI<br>in dioxane | COOH<br>Me                          |
|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|
| Entry                  | Additive                               | T (°C)                                                                                                                  | Solvent               | Yield (%)                           |
| 1                      |                                        | 120                                                                                                                     | DMA                   | 32                                  |
| 2                      |                                        | 80                                                                                                                      | DMA                   | 28                                  |
| 3                      |                                        | 60                                                                                                                      | DMA                   | trace                               |
| 4                      |                                        | RT                                                                                                                      | DMA                   | 0                                   |
| 5                      |                                        | 100                                                                                                                     | DMF                   | 31                                  |
| 6                      |                                        | 100                                                                                                                     | DMSO                  | 0                                   |
| 7                      |                                        | 100                                                                                                                     | CH <sub>3</sub> CN    | 0                                   |
| 8                      | Bu4NI                                  | 100                                                                                                                     | DMA                   | 66                                  |
| 9                      | Et <sub>4</sub> NI                     | 100                                                                                                                     | DMA                   | 71                                  |
| 10                     | Et <sub>4</sub> NBr                    | 100                                                                                                                     | DMA                   | 65                                  |
| 11                     | Et4NCl                                 | 100                                                                                                                     | DMA                   | 0                                   |
| $12^{b}$               | Et4NI                                  | 100                                                                                                                     | DMA                   | 19                                  |
| 13 <sup>c</sup>        | Et <sub>4</sub> NI                     | 100                                                                                                                     | DMA                   | 34                                  |
| $14^d$                 | Et4NI                                  | 100                                                                                                                     | DMA                   | 59                                  |
| 15 <sup>e</sup>        | Et4NI                                  | 100                                                                                                                     | DMA                   | 0                                   |
| 16                     | Et <sub>4</sub> NI                     | 100                                                                                                                     | DMA                   | trace <sup>f</sup> , 0 <sup>g</sup> |
| $17^{h}$               | Et <sub>4</sub> NI                     | 100                                                                                                                     | DMA                   | 0                                   |
| 18 <sup><i>i</i></sup> | Et <sub>4</sub> NI                     | 100                                                                                                                     | DMA                   | 12                                  |
| 19 <sup>j</sup>        | Et4NI                                  | 100                                                                                                                     | DMA                   | 0                                   |

Table S2 Optimization of the reaction conditions for the carboxylation of aryl chlorides.<sup>a</sup>

<sup>*a*</sup> Reaction conditions: 1-chloro-4-methoxybenzene (0.5 mmol, 1.0 equiv), CO<sub>2</sub> 1 atm, CoBr<sub>2</sub> (5 mol%), ligand (10 mol%), Mn powder (1.5 equiv), LiOAc (1.5 equiv), solvent (1.0 mL), 100 °C for 12 h. Isolated yield. <sup>*b*</sup> NaOAc instead of LiOAc. <sup>*c*</sup> KOAc instead of LiOAc. <sup>*d*</sup> Li<sub>2</sub>CO<sub>3</sub> instead of LiOAc. <sup>*e*</sup> LiCl instead of

LiOAc.  ${}^{f}$ Zn powder instead of Mn powder.  ${}^{g}$  In powder instead of Mn powder.  ${}^{h}$  Co(PPh<sub>3</sub>)<sub>3</sub>Cl (5 mol %) as catalyst, with **L6**.  ${}^{i}$  Without CoBr<sub>2</sub>.

|       | $\begin{array}{c} CI \\ \hline \\ \hline \\ OMe \end{array} + CO_2 \qquad \begin{array}{c} CoBr_2 (5 \text{ mol}\%) \\ \hline \\ L6 (10 \text{ mol}\%) \\ \hline \\ Mn (1.5 \text{ equiv}) \\ LiOAc (2 \text{ equiv}) \\ DMA, 100 \text{ °C}, 12 \text{ h} \end{array} \begin{array}{c} 4 \text{ M HCI} \\ \text{ in dioxane} \end{array}$ | COOH<br>OMe |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Entry | Aleration                                                                                                                                                                                                                                                                                                                                  | Yield (%)   |
| 1     | none                                                                                                                                                                                                                                                                                                                                       | 59          |
| 2     | LiCl (2 equiv) + NaOAc (2 equiv) instead of LiOAc                                                                                                                                                                                                                                                                                          | 51          |
| 3     | LiCl (2 equiv) + KOAc (2 equiv) instead of LiOAc                                                                                                                                                                                                                                                                                           | 49          |
| 4     | LiCl (2 equiv) + K <sub>2</sub> CO <sub>3</sub> (2 equiv) instead of LiOAc                                                                                                                                                                                                                                                                 | 53          |
| 5     | LiCl (2 equiv) + Et <sub>3</sub> N (2 equiv) instead of LiOAc                                                                                                                                                                                                                                                                              | 45          |
| 6     | LiCl (2 equiv)                                                                                                                                                                                                                                                                                                                             | 0           |

Table S3 Investigation Experiments about the Role of LiOAc.<sup>a</sup>

<sup>*a*</sup> Reaction conditions: 1-chloro-4-methoxybenzene (0.5 mmol, 1.0 equiv), CO<sub>2</sub> 1 atm, CoBr<sub>2</sub> (5 mol%), ligand (10 mol%), Mn powder (1.5 equiv), LiOAc (2.0 equiv), DMA (1.0 mL), 100 °C for 12 h. Isolated yield.

Table S4 Optimization of the reaction conditions for the carboxylation of aryl bromides.<sup>a</sup>

| Br    | + CO <sub>2</sub> -<br>1 atm<br>e | CoBr <sub>2</sub> (5 mol%)<br>L (10 mol%)<br>Mn (1.5 equiv)<br>LiOAc (2.0 equiv)<br>additive(2.0 equiv)<br>DMA, T | 4 M HCI<br>in dioxane | COOH<br>OMe |
|-------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|
| Entry | Ligand (L)                        | Additive                                                                                                          | T (°C)                | Yield (%)   |
| 1     | L1                                |                                                                                                                   | 60                    | trace       |
| 2     | L1                                |                                                                                                                   | 80                    | trace       |
| 2     | L1                                |                                                                                                                   | RT                    | 15          |
| 3     | L2                                |                                                                                                                   | RT                    | 75          |
| 4     | L3                                |                                                                                                                   | RT                    | 59          |

| 5               | L4     |                     | RT | 0     |
|-----------------|--------|---------------------|----|-------|
| 6               | L5     |                     | RT | 66    |
| 7               | L6     |                     | RT | 55    |
| 8               | L7     |                     | RT | 55    |
| 9               | L8     |                     | RT | trace |
| 10              | L9     |                     | RT | 53    |
| 11              | L10-12 |                     | RT | 0     |
| 12              | L2     | Et4NI               | RT | 65    |
| 13              | L2     | Et <sub>4</sub> NBr | RT | 62    |
| 14 <sup>b</sup> |        |                     | RT | 0     |
| 15 <sup>c</sup> | L2     |                     | RT | 59    |

<sup>*a*</sup> Reaction conditions: 1-bromo-4-methoxybenzene (0.5 mmol, 1.0 equiv),  $CO_2$  1 atm,  $CoBr_2$  (5 mol%), ligand (10 mol%), Mn powder (1.5 equiv), LiOAc (2.0 equiv), DMA (1.0 mL) for 12 h. Isolated yield. <sup>*b*</sup> Co(PPh<sub>3</sub>)<sub>3</sub>Cl (10 mol %) as catalyst, without L2. <sup>*c*</sup> Co(PPh<sub>3</sub>)<sub>3</sub>Cl (5 mol %) as catalyst.

#### 5. Procedures for the Cobalt-Catalyzed Carboxylation

#### General Procedure for the Cobalt-Catalyzed Carboxylation of Aryl Chlorides with CO2

An oven-dried 50 mL Schlenk tube containing a stirring bar was charged with CoBr<sub>2</sub> (5.5 mg, 5.0 mol %), **L6** (16 mg, 10.0 mol%), Mn powder (41.2 mg, 0.75mmol, 1.5 equiv), Et<sub>4</sub>NI (257 mg, 2.0 equiv) and LiOAc (1.0 mmol, 66 mg, 2.0 equiv). The Schlenk tube was evacuated and back-filled under CO<sub>2</sub> flow (this procedure was repeated three times). Then, anhydrous DMA (1.0 mL) and aryl chlorides (0.5 mmol, 1.0 equiv) was added under CO<sub>2</sub> flow, and the resulting mixture was stirred at 100 °C for 12 h. The mixture was then allowed to cool to room temperature, carefully quenched with 4 M HCl (in 1,4-dioxane) and stirred for 10 minutes. The crude products were purified by flash chromatography (acetic acid/EtOAc/petroleum ether = 0/1/20 to 0.001/1/4).

#### General Procedure for the Cobalt-Catalyzed Carboxylation of Aryl Bromides with CO2

An oven-dried 50 mL Schlenk tube containing a stirring bar was charged with CoBr<sub>2</sub> (5.5 mg, 10.0 mol %), **L2** (10.4 mg, 10.0 mol%), Mn powder (41.2 mg, 0.75mmol, 1.5 equiv), and LiOAc (1.0 mmol, 66 mg, 2.0 equiv). The Schlenk tube was evacuated and back-filled under CO<sub>2</sub> flow (this procedure was repeated three times). Then, anhydrous DMA (1.0 mL) and aryl bromides (0.5 mmol, 1.0 equiv) was added under CO<sub>2</sub> flow, and the resulting mixture was stirred at room temperature for 12 h. Then, the mixture was carefully quenched with 4 M HCl (in 1,4-dioxane) and stirred for 10 minutes. The crude products were purified by flash chromatography (acetic acid/EtOAc/petroleum ether = 0/1/20 to 0.001/1/4).

## 6. Characterization of the Carboxylation Products



#### 4-Methoxybenzoic acid (1)

The title compound was isolated as a white solid, 54 mg, 71% (from 1-chloro-4-methoxybenzene); 57 75% mg, (from

1-bromo-4-methoxybenzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  12.64 (s, 1H), 7.89 (d, J =8.7 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): δ 167.0, 162.8, 131.3, 122.9, 113.8, 55.4. Spectroscopic data for 1 match those previously reported in the literature.<sup>1</sup>



#### COOH Benzo[*d*][1,3]dioxole-5-carboxylic acid (2)

The title compound was isolated as a white solid, 62.3 mg, 75% (from 81% 5-chlorobenzo[*d*][1,3]dioxole); 67.2 mg, (from

5-bromobenzo[d][1,3]dioxole). <sup>1</sup>H NMR (DMSO- $d_{63}$ , 400 MHz):  $\delta$  12.77 (s, 1H), 7.54 (d, J = 6.6 Hz, 1H), 7.36 (s, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.12 (s, 2H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): 8 166.6, 151.1, 147.4, 124.9, 124.6, 108.7, 108.0, 101.9. Spectroscopic data for 2 match those previously reported in the literature.<sup>6</sup>



#### 4-Butylbenzoic acid (3)

The title compound was isolated as a white solid, 68.5 mg, 77% (from 1-chloro-4-butylbenzene); 72.1 mg, 81% (from 1-bromo-4-butylbenzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  12.77 (s, 1H), 7.85 (d, J = 7.9Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 1.64 – 1.49 (m, 2H), 1.36 – 1.23 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$ 167.2, 147.6, 129.3, 128.4, 128.2, 34.7, 32.7, 21.6, 13.6. Spectroscopic data for 3 match those previously reported in the literature.<sup>1</sup>



#### 4-(*tert*-Butyl)benzoic acid (4)

The title compound was isolated as a white solid, 65 mg, 73% (from 1-chloro-4-(tert-butyl)benzene); 71.2 mg, 80% (from 1-bromo-4-(tert

-butyl)benzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  12.78 (s, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 1.29 (s, 9H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  167.1, 155.7, 129.1, 127.9, 125.2, 34.7, 30.8. Spectroscopic data for **4** match those previously reported in the literature.<sup>1</sup>



#### 4-Methylbenzoic acid (5)

The title compound was isolated as a white solid, 49.6 mg, 73% (from 1-chloro-4-methylbenzene); 51 mg, 75% (from 1-bromo-4-methylbe

-nzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.79 (s, 1H), 7.83 (d, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.7 Hz, 2H), 2.36 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 167.2, 142.9, 129.2, 129.0, 127.9, 21.0. Spectroscopic data for **5** match those previously reported in the literature.<sup>6</sup>



#### (6) [1,1'-Biphenyl]-4-carboxylic acid

The title compound was isolated as a white solid, 72.3 mg, 73% (from 4-chloro-1,1'-biphenyl); 67.3 mg, 68% (from 4-bromo-1,1'-biphenyl).

<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  13.00 (s, 1H), 8.03 (d, *J* = 7.9 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.46 - 7.39 (m, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  167.1, 144.3, 139.0, 129.9, 129.5, 129.0, 128.3, 126.9, 126.8. Spectroscopic data for 6 match those previously reported in the literature.<sup>6</sup>



#### 4-(Methoxycarbonyl)benzoic acid (7)

The title compound was isolated as a white solid, 60.3 mg, 67% (from methyl 4-chlorobenzoate); 55.8 mg, 62% (from methyl

4-bromobenzoate). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.34 (s, 1H), 8.06 (s, 4H), 3.88 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 166.5, 165.5, 134.7, 133.1, 129.5, 129.3, 52.4. Spectroscopic data for 7 match those previously reported in the literature.<sup>1</sup>



#### 4-Fluorobenzoic acid (8)

The title compound was isolated as a white solid, 43.4 mg, 62% (from1-chloro-4-fluorobenzene);47.6 mg, 68% (from

1-bromo-4-fluorobenzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  13.05 (s, 1H), 8.00 (s, 2H), 7.31 (s, 2H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  166.3, 164.9 (d, J = 250.4 Hz), 132.0 (d, J =9.4 Hz), 127.3, 115.5 (d, J = 22.1 Hz). <sup>19</sup>F NMR (DMSO- $d_6$ , 376 MHz):  $\delta$  -106.90. Spectroscopic data for 8 match those previously reported in the literature.<sup>1</sup>



#### 4-(Trifluoromethyl)benzoic acide (9)

The title compound was isolated as a white solid, 65.6 mg, 69% (from 1-chloro-4-(trifluoromethyl)benzene); 55.1 mg. 58% (from

1-bromo-4-(trifluoromethyl)benzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.48 (s, 1H), 8.13 (d, J = 7.8 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H).<sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  166.6, 135.0, 132.9 (q, J = 31.6 Hz), 130.5, 126.0 (q, J = 3.6 Hz), 124.2 (q, J = 272.6 Hz). <sup>19</sup>F NMR (DMSO-d<sub>6</sub>, 376 MHz): δ -61.58. Spectroscopic data for 9 match those previously reported in the literature.<sup>1</sup>



#### 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid COOH (10)

The title compound was isolated as a white solid, 79.4 mg, 64% (from 2-(4-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborol

-ane); 62 mg, 50% (from 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane). <sup>1</sup>H **NMR (DMSO-***d*<sub>6</sub>, 400 MHz): δ 13.09 (s, 1H), 7.94 (d, *J* = 7.5 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 1.30 (d, J = 1.2 Hz, 12H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  167.1, 134.4, 133.1, 128.5, 83.9, 24.6. Spectroscopic data for 10 match those previously reported in the literature.<sup>1</sup>



#### COOH 3-Methoxybenzoic acid (11)

The title compound was isolated as a white solid, 62.3 mg, 82% (from 1-chloro-3-methoxybenzene); 50.2 66% (from mg, 1-bromo-3-methoxybenzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.00 (s,

1H), 7.53 (d, J = 7.6 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.18 (dd, J = 8.2, 1.9 Hz, 1H), 3.79 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 167.1, 159.2, 132.1, 130.0, 121.5, 118.9, 113.8, 55.2. Spectroscopic data for 11 match those previously reported in the literature.<sup>3</sup>

#### COOH 3-Methylbenzoic acid (12)



The title compound was isolated as a white solid, 42.8 mg, 63% (from 1-chloro-3-methylbenzene); 59.8 88% mg, (from 1-bromo-3-methylbenzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.88 (s, 1H), 7.83 – 7.67 (m, 2H), 7.51 – 7.27 (m, 2H), 2.35 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):

δ 167.4, 137.9, 133.4, 130.7, 129.7, 128.4, 126.4, 20.8. Spectroscopic data for **12** match those previously reported in the literature.<sup>4</sup>

#### **COOH** 3-(Trifluoromethoxy)benzoic acid (13)

The title compound was isolated as a white solid, 65.9 mg, 64% (from OCF<sub>3</sub> 1-chloro-3-(trifluoromethoxy)benzene); 87.6 mg, 85% (from 1-bromo-3-(trifluoromethoxy)benzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  13.43 (s, 1H), 8.03 – 7.93 (m, 1H), 7.80 (s, 1H), 7.72 – 7.55 (m, 2H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  165.9, 148.3, 133.1, 130.8, 128.3, 125.4, 121.2, 120.0 (q, J = 256.5 Hz). <sup>19</sup>F NMR (DMSO- $d_6$ , 376 MHz):  $\delta$  -57.0. Spectroscopic data for 13 match those previously reported in the literature.<sup>5</sup>

#### COOH 3-(Methoxycarbonyl)benzoic acid (14)

The title compound was isolated as a white solid, 67.5 mg, 75% (from methyl 3-chlorobenzoate); 59.4 mg, 66% (from methyl 3-bromobenzoate).
<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.32 (s, 1H), 8.47 (s, 1H), 8.21 – 8.14 (m, 2H), 7.66 (t, *J* = 7.8 Hz, 1H), 3.88 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 166.4, 165.5, 133.7, 133.2, 131.3, 130.0, 129.7, 129.3, 52.4. Spectroscopic data for 14 match those previously reported in the literature.<sup>6</sup>

#### COOH 3-Fluorobenzoic acid (15)

The title compound was isolated as a white solid, 49.7 mg, 71% (from 1-chloro-3-fluorobenzene); 44.8 mg, 64% (from 1-bromo-3-fluorobenzene).

<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.28 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 9.4 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.51 – 7.42 (m, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 166.1, 161.9 (d, J = 244.5 Hz), 133.2 (d, J = 7.3 Hz), 130.7 (d, J = 7.9 Hz), 125.3 (d, J = 2.8 Hz), 119.7 (d, J = 21.1 Hz), 115.6 (d, J = 22.7 Hz). <sup>19</sup>F NMR (DMSO-*d*<sub>6</sub>, 376 MHz): δ -112.6. Spectroscopic data for 15 match those previously reported in the literature.<sup>4</sup>

#### COOH 3-(Trifluoromethyl)benzoic acid (16)

The title compound was isolated as a white solid, 62.7 mg, 66% (from 1-chloro-3-(trifluoromethyl)benzene); 62.7 mg, 66% (from 1-bromo-3-(trifluoromethyl)benzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  13.51 (s, 1H), 8.22 (d, J = 7.7 Hz, 1H), 8.17 (s, 1H), 7.98 (d, J = 6.3 Hz, 1H), 7.80 – 7.71 (m, 1H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  166.0, 133.1, 131.9, 130.0, 129.4 (q, J = 32.1 Hz), 129.3 (q, J = 3.5

Hz), 125.4 (q, J = 3.8 Hz), 123.7 (q, J = 272.4 Hz). <sup>19</sup>F NMR (DMSO- $d_6$ , 376 MHz):  $\delta$  -61.4. Spectroscopic data for 16 match those previously reported in the literature.<sup>3</sup>

#### COOH 2-Methylbenzoic acid (17)

The title compound was isolated as a white solid, 41.5 mg, 61% (from Me 1-chloro-2-methylbenzene); 57.8 85% (from mg, 1-bromo-2-methylbenzene). <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  12.81 (s, 1H), 7.82 (d, J = 7.6Hz, 1H), 7.44 (t, J = 7.3 Hz, 1H), 7.34 – 7.23 (m, 2H), 2.52 (s, 3H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz):  $\delta$  169.1, 139.5, 132.2, 132.0, 130.9, 130.7, 126.3, 21.7. Spectroscopic data for 17 match those previously reported in the literature.<sup>6</sup>



#### COOH 3,5-dimethoxybenzoic acid (18)

The title compound was isolated as a white solid, 60.1 mg, 66% (from 1-chloro-3,5-dimethoxybenzene); 54.6 60% (from mg, 1-bromo-3,5-dimethoxybenzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):

δ 12.99 (s, 1H), 7.06 (d, J = 2.3 Hz, 2H), 6.73 (t, J = 2.2 Hz, 1H), 3.79 (s, 6H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): δ 166.9, 160.3, 132.8, 106.8, 104.8, 55.3. Spectroscopic data for 18 match those previously reported in the literature.<sup>7</sup>



#### **3,5-Dimethylbenzoic acid (19)**

The title compound was isolated as a white solid, 63 mg, 84% (from 1-chloro-3,5-dimethylbenzene); 62.3 83% (from mg, 1-bromo-3,5-dimethylbenzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ

12.78 (s, 1H), 7.55 (s, 2H), 7.22 (s, 1H), 2.31 (s, 6H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 167.5, 137.6, 134.1, 130.6, 126.9, 20.6. Spectroscopic data for 19 match those previously reported in the literature.<sup>8</sup>



The title compound was isolated as a white solid, 41.5 mg, 68% (from chlorobenzene); 39.7 mg, 65% (from bromobenzene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>,

**400 MHz**):  $\delta$  12.96 (s, 1H), 7.95 (d, J = 7.3 Hz, 2H), 7.61 (t, J = 7.0 Hz, 1H), 7.49 (t, J = 7.3 Hz, 2H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): δ 167.3, 132.8, 130.7, 129.2, 128.5. Spectroscopic data for 1 match those previously reported in the literature.<sup>6</sup>



#### COOH 1-Naphthoic acid (21)

The title compound was isolated as a white solid, 62.8 mg, 73% (from 1-chloronaphthalene); 58.5 mg, 68% (from 1-bromonaphthalene). <sup>1</sup>H NMR

(DMSO- $d_6$ , 400 MHz):  $\delta$  13.15 (s, 1H), 8.88 (d, J = 8.5 Hz, 1H), 8.23 – 8.10 (m, 2H), 8.01 (d, J = 8.0 Hz, 1H), 7.67 – 7.55 (m, 3H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  168.6, 133.4, 132.8, 130.6, 129.8, 128.5, 127.6, 127.5, 126.1, 125.4, 124.8. Spectroscopic data for 21 match those previously reported in the literature.<sup>3</sup>



#### COOH 2-Naphthoic acid (22)

The title compound was isolated as a white solid, 49.9 mg, 58% (from 2-chloronaphthalene); 47.3 mg, 55% (from 2-bromonaphthalene). <sup>1</sup>H

NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.09 (s, 1H), 8.62 (s, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 8.05 -7.94 (m, 3H), 7.70 – 7.56 (m, 2H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): δ 167.9, 135.4, 132.6, 131.0, 129.8, 128.8, 128.6, 128.5, 128.1, 127.3, 125.6. Spectroscopic data for 22 match those previously reported in the literature.<sup>3</sup>

#### Benzo[b]thiophene-4-carboxylic acid (23) COOH

The title compound was isolated as a white solid, 58.7 mg, 66% (from 4-chlorobenzo[b]thiophene); 55.2 mg, 62% (from 4-bromobenzo[b]thiophene). <sup>1</sup>**H NMR (DMSO-** $d_6$ , 400 MHz):  $\delta$  13.14 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 5.5 Hz, 1H), 8.06 (d, J = 7.4 Hz, 1H), 7.95 (d, J = 5.5 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): 8167.6, 140.7, 138.3, 129.8, 127.5, 127.4, 125.2, 124.1, 123.7. Spectroscopic data for 23 match those previously reported in the literature.<sup>8</sup>



#### COOH Thiophene-3-carboxylic acid (24)

The title compound was isolated as a white solid, 32.6 mg, 51% (from 3-chlorothiophene); 41.6 mg, 65% (from 3-bromothiophene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.71 (s, 1H), 8.26 (s, 1H), 7.65 – 7.55 (m, 1H), 7.42 (d, *J* = 4.7 Hz,

1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 164.0, 134.8, 133.8, 128.2, 127.7. Spectroscopic data for **24** match those previously reported in the literature.<sup>3</sup>

Thiophene-2-carboxylic acid (25) COOH The title compound was isolated as a white solid, 22.4 mg, 35% (from 2-chlorothiophene); 14.7 mg, 23% (from 2-bromothiophene). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  13.04 (s, 1H), 7.88 (d, J = 3.9 Hz, 1H), 7.73 (d, J = 2.6 Hz, 1H), 7.23 – 7.15 (t, 1H). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 101 MHz): § 162.8, 134.6, 133.2, 133.1, 128.1. Spectroscopic data for 25 match those previously reported in the literature.<sup>3</sup>



#### COOH 4-Chlorobenzoic acid (26)

The title compound was isolated as a white solid, 46.8 mg, 60%. <sup>1</sup>H **NMR (DMSO-** $d_6$ , 400 MHz):  $\delta$  13.18 (s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  166.4, 137.7, 131.1, 129.6, 128.7. Spectroscopic data for 26 match those previously reported in the literature.<sup>3</sup>

COOH **3-Chlorobenzoic acid (27)** 

The title compound was isolated as a white solid, 49.9 mg, 64%. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 13.27 (s, 1H), 7.89 (s, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  166.0,

133.3, 132.8, 132.6, 130.6, 128.8, 127.8. Spectroscopic data for 27 match those previously reported in the literature.<sup>3</sup>



### COOH 3-Chlorobenzoic acid (28)

The title compound was isolated as a white solid, 66.5 mg, 70%. <sup>1</sup>H **NMR (DMSO-** $d_6$ , 400 MHz):  $\delta$  13.48 (s, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.87 (dd, J = 8.4, 2.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H). <sup>13</sup>C NMR

(DMSO-d<sub>6</sub>, 101 MHz): δ 165.3, 135.7, 131.4, 131.3, 130.9, 130.8, 129.2. Spectroscopic data for **28** match those previously reported in the literature.<sup>9</sup>



#### COOH 1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-carboxylic acid (29)

The title compound was isolated as a white solid, 74.7 mg, 74%. <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400 MHz): δ 12.17 (s, 1H), 7.36 – 7.16 (m, 5H), 6.95 (s, 1H), 2.73 (d, J = 8.9 Hz, 1H), 2.51 (s, 1H), 2.47 – 2.32 (m, 2H), 2.33 – 2.19 (m, 2H), 1.89 (d, J = 11.2 Hz, 1H), 1.78 – 1.61 (m, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  167.9, 145.9, 138.3, 130.1, 128.3, 126.6, 126.0, 38.3, 33.0, 29.0, 24.5. HRMS (ESI): Calcd for C<sub>13</sub>H<sub>14</sub>O<sub>2</sub> [M-H]<sup>-</sup> 201.0921, found 201.0918. Spectroscopic data for **29** match those previously reported in the literature.<sup>1</sup>



COOH 4-(*tert*-Butyl)cyclohex-1-ene-1-carboxylic acid (30)

The title compound was isolated as a white solid, 69.7 mg, 83%. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  12.04 (s, 1H), 6.90 – 6.80 (m, 1H),

2.37 (d, *J* = 17.6 Hz, 1H), 2.19 (d, *J* = 18.9 Hz, 1H), 2.06 – 1.79 (m, 3H), 1.24 – 1.15 (m, 1H), 1.09 – 0.97 (m, 1H), 0.85 (s, 9H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 168.5, 139.6, 130.6, 43.2, 32.3, 27.4, 25.7, 23.7. Spectroscopic data for 30 match those previously reported in the literature.<sup>10</sup>



#### COOH 4-(Ethoxycarbonyl)cyclohex-1-ene-1-carboxylic acid (31)

The title compound was isolated as a white solid, 75.2 mg, 76%.

<sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.21 (s, 1H), 6.84 (s, 1H),

4.18 – 3.98 (m, 2H), 2.57 – 2.50 (m, 1H), 2.46 – 2.22 (m, 3H), 2.22 – 2.08 (m, 1H), 2.03 – 1.89 (m, 1H), 1.65 – 1.52 (m, 1H), 1.19 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  164.5, 155.6, 142.8, 135.2, 130.0, 127.9, 75.8, 53.6, 47.1, 45.5, 40.8, 34.2, 31.4, 26.4, 23.5, 22.0, 21.6, 20.7, 16.4. Spectroscopic data for **31** match those previously reported in the literature.<sup>10</sup>

COOH 3,4-Dihydronaphthalene-1-carboxylic acid (32)

The title compound was isolated as a white solid, 45.6 mg, 57%. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  12.59 (s, 1H), 7.76 (d, *J* = 5.0 Hz, 1H), 7.15 (d, *J* = 28.2 Hz, 4H), 2.76 – 2.62 (m, 2H), 2.34 (s, 2H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  167.3, 139.5, 136.0, 130.8, 130.4, 127.4, 127.3, 126.1, 125.7, 26.8, 22.9. Spectroscopic data for 32 match those previously reported in the literature.<sup>10</sup>

#### **COOH** 4-Methyl-3,4-dihydronaphthalene-1-carboxylic acid (33)



The title compound was isolated as a white solid, 51.7 mg, 55%. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.61 (s, 1H), 7.86 – 7.74 (m, 1H), 7.22 (s, 3H), 7.05 (t, *J* = 4.5 Hz, 1H), 2.95 – 2.81 (m, 1H), 2.54 – 2.48 (m, 1H), 2.27 – 2.13

(m, 1H), 1.16 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (DMSO- $d_6$ , 101 MHz):  $\delta$  167.4, 140.8, 138.0, 129.9, 127.7, 126.0, 30.9, 30.6, 19.7. Spectroscopic data for 33 match those previously reported in the literature.<sup>11</sup>



(DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  11.88 (s, 1H), 6.80 (d, *J* = 3.3 Hz, 1H), 2.42 (t, *J* = 3.5 Hz, 1H), 1.94 – 1.82 (m, 1H), 1.60 – 1.51 (m, 1H), 1.16 (s, 3H), 1.04 – 0.97 (m, 1H), 0.94 – 0.88 (m, 1H), 0.74 (d, *J* = 8.6 Hz, 6H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz):  $\delta$  166.0, 145.6, 141.0, 56.1, 53.2, 51.2, 30.8, 24.2, 19.1, 18.8, 11.8. Spectroscopic data for 34 match those previously reported in the literature.<sup>1</sup>

## $\searrow$

#### Methacrylic acid (35)

COOH The title compound was isolated as a colorless liquid, 29.2 mg, 68%. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  6.25 (s, 1H), 5.68 (s, 1H), 1.96 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz):  $\delta$  172.9, 135.7, 127.8, 17.8. Spectroscopic data for 35 match those previously reported in the literature.<sup>12</sup>



OCOOMe (8R,9S,10R,13S,14S,17S)-17-((Methoxycarbonyl) oxy)-10,13-dimethyl-2,7,8,9,10,11,12,13,14,15,16, 17-dodecahydro-1H-cyclopenta[a]phenanthrene-3-carboxylic acid (36)

The title compound was isolated as a white solid, 134.6 mg, 72%, M.p.: 201-203 °C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ 12.12 (s, 1H), 6.92 (s, 1H), 5.83 (s, 1H), 4.47 – 4.41 (m, 1H), 3.67 (s, 3H), 2.38 (dd, *J* = 18.3, 4.7 Hz, 1H), 2.28 – 2.08 (m, 3H), 1.84 (dd, *J* = 12.7, 4.3 Hz, 1H), 1.74 – 1.55 (m, 5H), 1.40 – 1.30 (m, 2H), 1.26 – 1.09 (m, 3H), 1.08 – 0.96 (m, 2H), 0.85 (s, 3H), 0.77 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 168.3, 155.0, 140.6, 137.2, 130.8, 126.0, 85.5, 54.3, 50.0, 47.3, 42.0, 36.0, 34.1, 32.9, 31.1, 30.9, 26.9, 22.7, 21.4, 20.06, 18.6, 11.7. HRMS (ESI): Calcd for C<sub>22</sub>H<sub>30</sub>O<sub>5</sub> [M-H]<sup>-</sup> 373.2020, found 373.2018.



MeOOCO

COOH (8R,9S,10R,13S,14S)-3-((Methoxycarbonyl)oxy)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15-dode cahydro-1H-cyclopenta[a]phenanthrene-17-carb oxylic acid (37)

The title compound was isolated as a white solid, 108.5 mg, 58%, M.p.: 209-211 °C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  12.03 (s, 1H), 6.69 – 6.61 (m, 1H), 5.38 (d, *J* = 4.8 Hz, 1H), 4.40 –

4.26 (m, 1H), 3.67 (s, 3H), 2.42 – 2.15 (m, 4H), 2.08 (s, 1H), 2.05 – 1.93 (m, 2H), 1.89 – 1.79 (m, 2H), 1.69 – 1.47 (m, 5H), 1.43 – 1.27 (m, 2H), 1.12 – 1.04 (m, 1H), 1.01 (s, 3H), 0.87 (s, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 101 MHz): δ 165.6, 154.4, 146.9, 142.6, 139.5, 122.0, 77.0, 55.9, 54.3, 49.7, 45.0, 37.5, 36.2, 34.2, 31.3, 30.8, 30.6, 29.7, 27.2, 20.1, 18.8, 15.6. HRMS (ESI): Calcd for C<sub>22</sub>H<sub>30</sub>O<sub>5</sub> [M-H]<sup>-</sup> 373.2020, found 373.2023.

#### 7. Procedure for 5 mmol Aryl Chlolide Carboxylation



An oven-dried 500 mL Schlenk flask containing a stirring bar was charged with CoBr<sub>2</sub> (55 mg, 5.0 mol %), L6 (160 mg, 10.0 mol%), Mn powder (412 mg, 0.75mmol, 1.5 equiv), Et4NI (2.57 g, 2.0 equiv) and LiOAc (660 mg, 2.0 equiv). The Schlenk flask was evacuated and back-filled under CO<sub>2</sub> flow (this procedure was repeated three times). Then, anhydrous DMA (20 mL) and aryl chlorides (5 mmol, 1.0 equiv) was added under CO<sub>2</sub> flow, and the resulting mixture was stirred at 100 °C for 24 h. The mixture was then allowed to cool to room temperature. Then HCl aq. (2 M) was added into the flask to quench this reaction and stirred for another 10 minutes at room temperature. The mixture was extracted with Et2O. The collected organic layer was combined and dried over anhydrous MgSO<sub>4</sub>. After removal of solvent, the crude products purified flash chromatography were by (acetic acid/EtOAc/petroleum ether = 0/1/20 to 0.001/1/4) affording 3,5-dimethylbenzoic acid (19) in 78% yield (0.59 g).

#### 8. Control Experiment

**Procedure for the preparation of phenyl manganese chloride:**<sup>13</sup> A solution of MnCl<sub>4</sub>Li<sub>2</sub> was prepared by stirring anhydrous MnCl<sub>2</sub> (1.98g, 15.75 mmol) and anhydrous LiCl (1.33g, 31.5 mmol) in 25 ml of THF at room temperature until all MnCl<sub>2</sub> and LiCl dissolved. Then, PhMgCl (15 mmol, 1 M solution in THF) was added at -10°C. The solution was stirred at -10 °C to 0 °C for 15 minutes, then for 1 h at 0 °C. The concentration of phenyl manganese chloride solution was determined by titration with I<sub>2</sub>/LiCl,<sup>14</sup> which was used immediately for next step.



An oven-dried 50 mL Schlenk tube containing a stirring bar was charged with CoBr<sub>2</sub> (5.5 mg, 5.0 mol %), L2 (10.4 mg, 10.0 mol%), Mn powder (41.2 mg, 1.5 equiv) and LiOAc (66

mg, 2.0 equiv). The Schlenk tube was evacuated and back-filled under CO<sub>2</sub> flow (this procedure was repeated three times). Then, anhydrous DMA (1.0 mL) and PhMnCl (0.5 mmol, 1.0 equiv, 0.32 M in THF) was added under CO<sub>2</sub> flow, and the resulting mixture was stirred at room temperature for 12 h. Then, the mixture was carefully quenched with 4 M HCl (in 1,4-dioxane) and stirred for 10 minutes. No desired product was detected. This result indicated ArMnCl may not serve as an intermediate in the catalytic cycle.

# 9. Copies of <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR Spectra for Compounds

 $^{1}$ H NMR spectrum of **2h** 



5.63
5.63
5.842
5.842
5.842
5.842
5.842
5.842
5.842
5.842
5.842
5.842
5.842
5.844
4.845
5.844
4.845
5.844
4.845
5.844
4.845
5.844
4.845
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.845
5.845
5.844
5.844
5.845
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.844
5.84





 $^{1}$ H NMR spectrum of **2** 







 $^{1}$ H NMR spectrum of **5** 



<sup>1</sup>H NMR spectrum of  $\mathbf{6}$ 



200 190 110 100 f1 (ppm) 





F COOH

50 140 130 120 110 100 50 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -1 fl (ppm)

--106.90











f1 (ppm) ò 













100 90 f1 (ppm) , L 







S43























13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)





S56





14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)



S59



13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)





#### **10. References:**

- (1) T. Fujihara, K. Nogi, T. Xu, J. Terao and Y. Tsuji, J. Am. Chem. Soc., 2012, 134, 9106.
- (2) J. A. Ross and M. D. Martz, J. Org. Chem., 1964, 29, 2784.
- (3) X. Zhang, W. -Z. Zhang, L. -L. Shi, C. -X. Guo, L. -L. Zhang and X. -B. Lu, Chem. Commun., 2012, 48, 6292.
- (4) Y.-N. Wu, M. -C. Fu, R. Shang and Y. Fu, Chem. Commun., 2020, 56, 4067.
- (5) W. Zheng, C. A. Morales-Rivera, J. W. Lee, P. Liu and M. -Y. Ngai, Angew. Chem. Int. Ed., 2018, 57, 9645.
- (6) W. Hang, Y. Yi and C. Xi, Adv. Synth. Catal., 2020, 362, 2337.
- (7) D. R. Pradhan, S. Pattanaik, J. Kishore and C. Gunanathan, Org. Lett., 2020, 22, 1852.
- (8) X. -Y. Wang, Z. -P. Shang, G. -F. Zha, X. -Q. Chen, S. N. A. Bukhari and H. -Li. Qin, *Tetrahedron Lett.*, 2016, 57, 5628.
- (9) Z. Yang, R. Luo, Z. Zhu, X. Yang and W. Tang, Organometallics, 2017, 36, 4095.
- (10) K. Nogi, T. Fujihara, J. Terao and Y. Tsuji, J. Org. Chem., 2015, 80, 11618.
- (11) M. C. Grossel, R. C. Hayward, J. Chem. Soc., Perkin Trans. 2, 1976, 851.
- (12) M. Ouchi, M. Nakano, T. Nakanishi and M. Sawamoto, *Angew. Chem. Int. Ed.* 2016, **55**, 14584.
- (13) (a) A. Leleu, Y. Fort and R. Schneider, *Adv. Synth. Catal.*, 2006, **348**, 1086; (b) G. Cahiez and E.Metais, *Tetrahedron Lett.*, 1995, **36**, 6449.
- (14) A. Krasovskiy and P. Knochel, *Synthesis*, 2006, **2006**, 890.