Supporting Information for

An Efficient Method for the Synthesis of 2-Pyridones *via* C-H Bond Functionalization

Shuguang Zhou,^a Duan-Yang Liu,^b Suo Wang,^a Jie-Sheng Tian,^{*a,b} and Teck-Peng Loh^{*a,b,c}

^aInstitute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China. Yangtze River Delta Research Institute of NPU, Taicang Jiangsu, 215400, China.

^bInstitute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.

^cDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

E-mail: ias_jstian@njtech.edu.cn, teckpeng@ntu.edu.sg

Table of Contents

1.	General information	S 2
2.	Synthesis and characterization of enaminones	S 3
3.	Optimization study	S24
4.	General procedure and characterization for [3+3] annulation into 2-pyridones	S25
5.	Practical utilities of [3+3] annulation into 2-pyridones	S45
6.	Mechanistic study	S46
7.	References	S53
8.	¹ H and ¹³ C NMR spectra	S54

1. General information

Materials:

All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated. HPLC grade CH₃OH was used directly. Toluene and THF were freshly distilled over Na/benzophenone before use. All chemicals were obtained from local suppliers or synthesized. The preparation of enaminones according to the previous procedure ¹⁻⁴.

Methods:

All [Cp*RhCl₂]₂-catalyzed reactions were carried out with precautions to extrude moisture or oxygen. All reactions beyond room temperature (r.t.) were run in oil baths with the temperature calibrated with a thermometer. Prior to an experiment, the oil bath could equilibrate to the desired temperature for 15 min. ¹H, ¹³C and ¹⁹F-NMR spectra were recorded on a Bruker 400 (400 MHz for ¹H, 100 MHz for ¹³C) or a JEOL ECX-400 (400 MHz for ¹H, 100 MHz for ¹³C) or Bruker 500 (500 MHz for ¹H, 125 MHz for ¹³C and 471 MHz for ¹⁹F) spectrometer using residue solvent as internal reference. Silica gel (200~300 mesh) was used for flash column chromatography. High resolution mass analyses (ESI+) were performed on Waters mass spectrometer and Agilent 6224. Specific rotations were recorded on a Anton paer MCP 150. The following notations were used: br-broad, s – singlet, d – doublet, t – triplet, q – quartet, m – multiplet, dd – doublet of doublet, dt – doublet of triplet, td – triplet of doublet, ddd – doublet of doublet.

2. Synthesis and characterization of enaminones

2.1 General procedure for preparation of enaminone substrates:

Substrate 1a-1ab synthesis:

Example **1a**:

A solution of (E)-3-(dimethylamino)-1-phenylprop-2-en-1-one (5 mmol) and methylamine hydrochloride (10 mmol) in ethanol (20 ml) was refluxed and it took 26-68 h to give the product **1a**.

Substrate **1ac** synthesis⁵:

Enaminones **1ac** were prepared by heating of equimolar amounts of the corresponding β -diketone and MeNH₂ in the presence of cat. PTSA. The H₂O formed during the reaction was removed by azeotropic distillation until only clear toluene distilled. The toluene distilled off was continuously replaced by fresh toluene. After completion of the reaction, the solvent was evaporated in vacuo and the residue was purified by vacuum distillation or crystallisation.

Substrate **1ad-1af** synthesis⁶:

General Procedure for substrate **1ad-1af** synthesis. To a solution of thioamide (1 mmol, 1.00 equiv) in DMSO (5 mL) was added NaH (95%) (1.1 mmol, 1.10 equiv), and the mixture was stirred at room temperature for 30 min under argon. The reaction mixture was treated with alkyl halide (1.05 mmol, 1.05 equiv), and after 30 min of stirring at rt, trimethyl phosphite (3 mmol, 3 equiv) and DABCO (3 mmol, 3 equiv) were added and the solution was allowed to stir at 90°C (internal temperature) until all alkylated species were consumed according to TLC (2-14 h). (In cases when chloroacetone was used as electrophile, 2 equiv of NaH and 2.5 equiv of chloroacetone gave the best results. Aryl halides were usually added in 1.1 equiv amounts, but in some cases 1.00 or 1.10 equiv was used. The actual amounts are specified below for each experiment.) After this time, the reaction mixture was poured into distilled water (50 mL) and extracted with CH_2Cl_2 (3×40 mL). The combined organic fractions were washed with water (5×80 mL), dried over Na₂SO₄, and evaporated under reduced pressure. Excess trimethyl phosphite and thioadducts were removed by coevaporation with ethanol. Crude products were usually solid, but in some cases the oily or semisolid crude material could be precipitated by addition of ethanol. Crude products were recrystallized from ethanol and oily products where purified by flash chromatography (EtOAc/Hep 1:4).

2.2 General procedure for characterization of enaminone substrates:

(Z)-3-(methylamino)-1-phenylprop-2-en-1-one (1a):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid. Yield = 81% (652 mg), mp: 138.2-139.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 7.90 – 7.80 (m, 2H), 7.46 – 7.36 (m, 3H), 6.92 (dd, J = 12.8, 7.4 Hz, 1H), 5.70 (d, J = 7.4 Hz, 1H), 3.07 (d, J = 5.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 190.2, 155.7, 140.1, 131.1, 128.5, 127.3, 90.5, 35.6.

HRMS (ESI, m/z): Calcd. for C₁₀H₁₂NO: [M+H]⁺, 162.0919. Found: *m/z* 162.0917.

1-(2-fluorophenyl)-3-(methylamino)prop-2-en-1-one (1b):

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid in an inseparable state (1:0.33 by ${}^{1}\text{H}$ NMR). Yield = 54% (484 mg), mp: 88.6-90.3 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 10.24 (s, 1H), 7.77-7.81 (m, 1H × 1 + 1H × 0.33), 7.35-7.38

(m, $1H \times 1 + 1H \times 0.33$), 7.16 - 7.20 (m, $1H \times 1 + 1H \times 0.33$), 7.04-7.09 (m, $1H \times 1 + 1H \times 0.33$), 6.89-6.94 (m, $1H \times 1 + 1H \times 0.33$), 5.65-5.68 (m, $1H \times 1 + 1H \times 0.33$), 3.08 (d, J = 2.6 Hz, $3H \times 1$), 2.83 (s, $3H \times 0.33$).

¹³C NMR (101 MHz, CDCl₃) δ 186.6, 160.6 (d, J = 251.9 Hz), 155.9, 132.06 (d, J = 8.8 Hz), 130.4 (d, J = 3.4 Hz), 128.6 (d, J = 13.2 Hz), 124.3 (d, J = 3.6 Hz), 116.5(d, J = 24.0 Hz), 116.2, 94.8 (dd, J = 9.5, 1.4 Hz), 35.7.

¹⁹F NMR (471 MHz, CDCl₃) δ -112.50.

HRMS (**ESI**, **m**/**z**): Calcd. for C₁₀H₁₁NOF: [M+H]⁺, 180.0825. Found: *m*/*z* 180.0826.

(Z)-3-(methylamino)-1-(o-tolyl)prop-2-en-1-one (1c):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 62% (543 mg), mp: 85.2-86.1 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 10.09 (s, 1H), 7.43 – 7.37 (m, 1H), 7.27 – 7.22 (m, 1H), 7.18 (d, *J* = 7.5 Hz, 2H), 6.85 (dd, *J* = 12.9, 7.3 Hz, 1H), 5.31 (d, *J* = 7.3 Hz, 1H), 3.07 (d, *J* = 5.1 Hz, 3H), 2.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.2, 155.2, 141.8, 131.1, 129.2, 127.6, 125.6, 94.5, 35.6, 20.5.

HRMS (ESI, m/z): Calcd. for C₁₁H₁₄NO: [M+H]⁺, 176.1075. Found: *m/z* 176.1073.

(Z)-1-(2-methoxyphenyl)-3-(methylamino)prop-2-en-1-one (1d):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield = 65% (621 mg), mp: 72.6-73.7 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.06 – 6.73 (m, 3H), 5.63 (d, J = 7.3 Hz, 1H), 3.84 (s, 3H), 3.03 (d, J = 5.0 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 190.8, 157.2, 154.9, 131.2, 130.8, 129.8, 120.6, 111.5, 95.3, 55.7, 35.5.

HRMS (**ESI, m/z**): Calcd. for C₁₁H₁₄NO₂: [M+H]⁺, 192.1025. Found: *m/z* 192.1025.

1-(3-fluorophenyl)-3-(methylamino)prop-2-en-1-one (1e):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solidin an inseparable state (1:0.81 by 1 H NMR), Yield = 58% (519 mg), mp: 87.2-87.8 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 10.24 (s, , 1H), 7.88-7.93 (m, 1H × 0.81) 7.54-7.67 (m, 2H × 1 + 2H × 0.81), 7.33-7.39 (m, 1H × 1 + 1H × 0.81), 7.10 – 7.17 (m, 1H × 1 + 1H × 0.81), 6.92-6.97 (m, 1H × 1), 5.79-5.82 (m, 1H × 0.81), 5.63-5.65 (m, 1H × 1), 3.07 (d, *J* = 2.6 Hz, 3H × 1), 2.87 (s, 3H × 0.81).

¹³C NMR (101 MHz, CDCl₃) δ 188.3(*Z*), 188.0(*E*), 163.0 (d, *J* = 247.0 Hz)(*Z*), 162.9 (d, *J* = 247.2 Hz), 156.2(*Z*), 152.4(*E*), 142.8 (d, *J* = 5.9 Hz)(*E*), 142.3 (d, *J* = 6.2 Hz)(*Z*), 129.9 (d, *J* = 7.7, 3.5 Hz)(*ZE*), 123.3(*E*), 122.7 (d, *J* = 2.8 Hz)(*Z*), 118.0(d, *J* = 23.3 Hz)(*E*), 117.7(d, *J* = 22.1 Hz)(*Z*), 114.5(d, *J* = 21.6 Hz)(*E*), 114.0(d, *J* = 22.2 Hz)(*Z*), 92.2(*E*), 90.2(*Z*), 35.6(*Z*), 30.4(*E*).

¹⁹F NMR (471 MHz, CDCl₃) δ -113.14.

HRMS (ESI, m/z): Calcd. for C₁₀H₁₁NOF: [M+H]⁺, 180.0825. Found: *m*/z 180.0830.

(Z)-3-(methylamino)-1-(m-tolyl)prop-2-en-1-one (1f):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography:PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 72% (630 mg), mp: 50.5-51.6 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 10.20 (s, 1H), 7.71 – 7.63 (m, 2H), 7.32 – 7.22 (m, 2H), 6.90 (dd, *J* = 12.8, 7.4 Hz, 1H), 5.69 (d, *J* = 7.4 Hz, 1H), 3.06 (d, *J* = 5.1 Hz, 3H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.3, 155.6, 140.0, 138.0, 131.8, 128.3, 127.8, 124.3, 90.5, 35.6, 21.6.

HRMS (ESI, m/z): Calcd. for C₁₁H₁₄NO: [M+H]⁺, 176.1075. Found: *m/z* 176.1077.

(Z)-1-(3-methoxyphenyl)-3-(methylamino)prop-2-en-1-one (1g):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield = 68% (650 mg), mp: 54.5-55.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.71 – 7.63 (m, 2H), 7.32 – 7.22 (m, 2H), 6.90 (dd, *J* = 12.8, 7.4 Hz, 1H), 5.69 (d, *J* = 7.4 Hz, 1H), 3.06 (d, *J* = 5.1 Hz, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 159.9, 155.8, 141.5, 129.4, 119.7, 117.4, 111.9, 90.6, 55.5, 35.6.

HRMS (**ESI, m/z**): Calcd. for C₁₁H₁₄NO₂: [M+H]⁺, 192.1025. Found: *m/z* 192.1019.

(Z)-1-(4-fluorophenyl)-3-(methylamino)prop-2-en-1-one (1h):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 59% (528 mg), mp: 114.2-115.9 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.89 – 7.83 (m, 2H), 7.08 – 7.03 (m, 2H), 6.91 (ddd, J = 12.9, 7.3, 0.8 Hz, 1H), 5.63 (dd, J = 7.4, 1.2 Hz, 1H), 3.06 (dd, J = 5.1, 1.7 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 188.6, 164.6(d, J = 251.3 Hz), 155.8, 136.2 (d, J = 3.1 Hz), 129.4 (d, J = 8.9 Hz), 115.3(d, J = 21.7 Hz), 90.0, 35.6.

¹⁹F NMR (471 MHz, CDCl₃) δ -109.75.

HRMS (ESI, m/z): Calcd. for C₁₀H₁₁NOF: [M+H]⁺, 180.0825. Found: *m/z* 180.0822.

(Z)-1-(4-chlorophenyl)-3-(methylamino)prop-2-en-1-one (1i):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 75% (732 mg),mp: 109.7-111.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 7.81 – 7.73 (m, 2H), 7.37 – 7.31 (m, 2H),
6.90 (dd, J = 12.9, 7.3 Hz, 1H), 5.62 (d, J = 7.3 Hz, 1H), 3.05 (d, J = 5.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 188.5, 156.0, 138.3, 137.0, 128.6, 90.1, 35.7.

HRMS (ESI, m/z): Calcd. for C₁₀H₁₁NOCl: [M+H]⁺, 196.0529. Found: *m/z* 196.0529.

(Z)-1-(4-bromophenyl)-3-(methylamino)prop-2-en-1-one (1j):

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield = 80% (956 mg), mp: 117.5-118.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.73 – 7.66 (m, 2H), 7.53 – 7.48 (m, 2H), 6.90 (dd, J = 12.9, 7.3 Hz, 1H), 5.61 (d, J = 7.3 Hz, 1H), 3.05 (d, J = 5.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 188.5, 156.0, 138.7, 131.5, 128.8, 125.6, 90.0, 35.7.
HRMS (ESI, m/z): Calcd. for C₁₀H₁₁NOBr: [M+H]⁺, 240.0024. Found: *m/z* 240.0024.

(Z)-3-(methylamino)-1-(p-tolyl)prop-2-en-1-one (1k):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 77% (674 mg), mp: 121.8-122.0 °C.

¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.79 – 7.74 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H),
6.89 (dd, J = 12.8, 7.4 Hz, 1H), 5.68 (d, J = 7.4 Hz, 1H), 3.06 (d, J = 5.1 Hz, 3H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.9, 155.4, 141.3, 137.2, 129.1, 127.2, 90.2, 35.5, 21.6.
HRMS (ESI, m/z): Calcd. for C₁₁H₁₄NO: [M+H]⁺, 176.1075. Found: *m/z* 176.1077.

(Z)-1-(4-methoxyphenyl)-3-(methylamino)prop-2-en-1-one (11):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 71% (679 mg), mp: 88.1-88.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.84 (d, *J* = 8.9 Hz, 2H), 6.92 – 6.83 (m, 3H), 5.65 (d, *J* = 7.5 Hz, 1H), 3.83 (s, 3H), 3.04 (d, *J* = 5.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.2, 162.0, 155.2, 132.7, 129.1, 113.6, 89.9, 55.5, 35.5.

HRMS (**ESI, m/z**): Calcd. for C₁₁H₁₄NO₂: [M+H]⁺, 192.1025. Found: *m/z* 192.1022.

(Z)-3-(methylamino)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield=53% (607mg), mp: 103.7-104.9 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 10.32 (s, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.9 Hz, 2H), 7.04 – 6.91 (m, 1H), 5.71 – 5.61 (m, 1H), 3.09 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 188.4, 156.4, 143.2, 132.4 (q, J = 32.3 Hz), 127.5, 126.4 (q, q, J = 32.3 Hz), 127.5, 126.4 (q, J = 32.3 Hz), 127.5, 126.5 (q, J = 32.3 Hz), 127.5, 126.5 (q, J = 32.3 Hz), 127.5 (q, J = 32.3 Hz), 127.5 (q, J = 32.5

J = 273 Hz), 125.5 (q, *J* = 3.7 Hz), 90.5, 35.7.

¹⁹F NMR (471 MHz, CDCl₃) δ -62.75.

HRMS (ESI, m/z): Calcd. for C₁₁H₁₁NOF₃: [M+H]⁺, 230.0787. Found: *m/z* 230.0795.

Methyl (Z)-4-(3-(methylamino)acryloyl)benzoate

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield =43% (471mg), mp: 96.6-98.4 °C.

¹H NMR (500 MHz, CDCl₃) δ 10.32 (s, 1H), 8.05 (dd, J = 6.7, 1.3 Hz, 2H), 7.92 – 7.84 (m,

2H), 7.02 – 6.88 (m, 1H), 5.74 – 5.64 (m, 1H), 3.91 (s, 3H), 3.09 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 188.7, 166.9, 156.3, 143.9, 132.0, 129.7, 127.1, 90.70, 52.4, 35.7.

HRMS (ESI, m/z): Calcd. for C₁₂H₁₄NO₃: [M+H]⁺, 220.0968. Found: *m/z* 220.0971.

Tert-butyl (Z)-(4-(3-(methylamino)acryloyl)phenyl)carbamate

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield =35% (483mg), mp: 79.4-80.6 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 10.12 (s, 1H), 7.86 – 7.78 (m, 2H), 7.39 (d, J = 8.6 Hz, 2H), 6.88 (dd, J = 12.7, 7.4 Hz, 1H), 6.70 (s, 1H), 5.66 (d, J = 7.4 Hz, 1H), 3.05 (d, J = 5.0 Hz,

3H), 1.52 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 189.2, 155.4, 152.7, 141.1, 134.6, 128.5, 117.8, 90.2, 35.6, 29.9, 28.5.

(Z)-3-(methylamino)-1-(naphthalen-2-yl)prop-2-en-1-one (1p):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 55% (581 mg), mp: 101.0-101.8 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 10.29 (s, 1H), 8.38 (s, 1H), 7.99 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.93 (dd, *J* = 6.6, 2.5 Hz, 1H), 7.86 (dd, *J* = 8.7, 6.6 Hz, 2H), 7.57 – 7.45 (m, 2H), 6.95 (dd, *J* = 12.8, 7.4 Hz, 1H), 5.85 (d, *J* = 7.4 Hz, 1H), 3.09 (d, *J* = 5.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.0, 155.7, 137.3, 134.8, 133.0, 129.4, 128.1, 127.8, 127.6, 127.4, 126.4, 124.3, 90.6, 35.6.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₄NO: [M+H]⁺, 212.1075. Found: *m/z* 212.1078.

(Z)-1-(furan-2-yl)-3-(methylamino)prop-2-en-1-one (1q):

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 40% (302 mg), mp: 52.3-53.7 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 9.93 (s, 1H), 7.47 (dd, J = 1.6, 0.7 Hz, 1H), 6.98 (dd, J = 3.4,

0.7 Hz, 1H), 6.88 (dd, *J* = 12.9, 7.4 Hz, 1H), 6.46 (dd, *J* = 3.4, 1.7 Hz, 1H), 5.61 (d, *J* = 7.4 Hz, 1H), 3.06 (d, *J* = 5.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 179.5, 155.7, 154.3, 144.4, 112.9, 112.0, 90.1, 35.7.
HRMS (ESI, m/z): Calcd. for C₈H₁₀NO₂: [M+H]⁺, 152.0712. Found: *m/z* 152.0710.

(Z)-3-(methylamino)-1-(thiophen-2-yl)prop-2-en-1-one (1r):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 47% (393 mg), mp: 84.7-85.6 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 9.88 (s, 1H), 7.52 (dd, J = 3.7, 1.1 Hz, 1H), 7.44 (dd, J = 4.9,

1.1 Hz, 1H), 7.04 (dd, J = 4.9, 3.7 Hz, 1H), 6.84 (dd, J = 12.9, 7.3 Hz, 1H), 5.56 (d, J = 7.3

Hz, 1H), 3.03 (d, *J* = 5.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 183.0, 155.4, 146.9, 130.4, 128.0, 127.9, 90.2, 35.7.

HRMS (ESI, m/z): Calcd. for C₈H₁₀NOS: [M+H]⁺, 168.0483. Found: *m/z* 168.0482.

(Z)-1-ferrocene-3-(phenylamino)prop-2-en-1-one (1s):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 38% (507 mg), mp: 136.9-137.5

¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 6.71 (dd, J = 12.7, 7.5 Hz, 1H), 5.29 (d, J = 7.4 Hz, 1H), 4.72 (t, J = 1.9 Hz, 2H), 4.38 – 4.29 (m, 2H), 4.15 (s, 5H), 3.02 (d, J = 5.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 194.1, 153.4, 91.7, 82.3, 71.0, 70.0, 68.6, 35.5.
HRMS (ESI, m/z): Calcd. for C₁₄H₁₆NOFe: [M+H]⁺, 268.0628. Found: *m/z* 268.0624.

(Z)-1-(methylamino)dec-1-en-3-one (1t):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 49% (434 mg), mp: 114.7-115.3 °C.

¹**H NMR** (**400 MHz, CDCl**₃) ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.11 (dd, *J* = 15.1, 11.2 Hz, 1H), 6.76 (dd, *J* = 12.6, 7.2 Hz, 1H), 6.47 (dd, *J* = 14.8, 10.8 Hz, 1H), 6.28 – 6.05 (m, 3H), 5.86 (dq, *J* = 13.9, 6.8 Hz, 1H), 5.09 (d, *J* = 7.2 Hz, 1H), 3.02 (d, *J* = 5.0 Hz, 3H), 1.80 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.5, 155.1, 139.3, 138.5, 133.5, 131.9, 131.0, 129.2, 94.9,
35.6, 18.8.

HRMS (ESI, m/z): Calcd. for C₁₁H₁₆NO: [M+H]⁺, 178.1232. Found: *m/z* 178.1233.

(Z)-4-(methylamino)but-3-en-2-one (1u):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown liquid, Yield = 51% (253 mg).

¹**H NMR (400 MHz, CDCl₃)** δ 9.62 (s, 1H), 6.60 (dd, J = 12.8, 7.3 Hz, 1H), 4.96 (d, J = 7.3

Hz, 1H), 2.96 (d, *J* = 5.0 Hz, 3H), 2.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 154.0, 93.9, 35.4, 29.1.

HRMS (ESI, m/z): Calcd. for C₅H₁₀NO: [M+H]⁺, 100.0762. Found: *m*/*z* 100.0762.

(3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-((Z)-3-(methylamino) acryloyl)-2,3,4,7,8,9, 10,11,12,13,14,15-dodeca hydro-1H-cyclopenta [a] phenanthren-3-yl acetate (1v):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 46% (914 mg), mp: 151.5-152.9 °C.

¹**H NMR** (**400 MHz, CDCl₃**) δ 9.78 (s, 1H), 6.68 (dd, *J* = 12.7, 7.5 Hz, 1H), 6.39 (dd, *J* = 3.2, 1.8 Hz, 1H), 5.38 (d, *J* = 5.0 Hz, 1H), 5.32 (d, *J* = 7.5 Hz, 1H), 4.62 – 4.57 (m, 1H), 2.98 (d, *J* = 5.1 Hz, 3H), 2.32 (d, *J* = 7.2 Hz, 3H), 2.05 – 2.00 (m, 6H), 1.88 (d, *J* = 3.3 Hz, 2H), 1.66 (d, *J* = 6.6 Hz, 2H), 1.63 – 1.56 (m, 5H), 1.43 (s, 1H), 1.13 (d, *J* = 4.1 Hz, 1H), 1.06 (s,

3H), 1.00 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.3, 170.8, 156.4, 153.8, 140.4, 136.7, 122.5, 92.0, 74.2, 56.7, 50.7, 46.6, 38.4, 37.1, 37.0, 35.4, 35.2, 32.2, 31.8, 30.5, 28.0, 21.7, 21.0, 19.5, 16.5.
HRMS (ESI, m/z): Calcd. for C₂₅H₃₆NO₃: [M+H]⁺, 398.2695. Found: *m/z* 398.2702.
Specific rotation: [α] = -33.600

(Z)-3-(benzylamino)-1-phenylprop-2-en-1-one (1w):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 66% (783 mg), mp: 74.2-74.5 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 10.64 (s, 1H), 7.92 (dd, J = 8.0, 1.5 Hz, 2H), 7.50 – 7.40 (m,

3H), 7.39 – 7.34 (m, 2H), 7.34 – 7.27 (m, 3H), 7.01 (dd, J = 12.7, 7.5 Hz, 1H), 5.79 (d, J =

7.5 Hz, 1H), 4.44 (d, *J* = 6.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.3, 154.3, 139.7, 137.9, 131.2, 129.0, 128.4, 127.9, 127.4, 127.3, 90.9, 52.9.

HRMS (ESI, m/z): Calcd. for C₁₆H₁₆NO: [M+H]⁺, 238.1232. Found: *m/z* 238.1230.

(Z)-1-phenyl-3-((2,2,2-trifluoroethyl)amino)prop-2-en-1-one (1x):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (3:1)

The title compound was obtained as a brown solid, Yield = 54% (619 mg), mp: 100.1-101.1 $^{\circ}$ C.

¹**H NMR (400 MHz, CDCl**₃) δ 10.23 (s, 1H), 7.94 – 7.84 (m, 2H), 7.54 – 7.34 (m, 3H), 6.85 (d, *J* = 12.0, 7.8 Hz, 1H), 5.88 (d, *J* = 7.8 Hz, 1H), 3.80 – 3.61 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 191.6, 153.5, 139.2, 131.8, 128.6, 127.6, 126.7(q, *J* = 280 Hz), 93.5, 50.2 (q, *J* = 34.34 Hz).

HRMS (ESI, m/z): Calcd. for C₁₁H₁₁NOF₃: [M+H]⁺, 230.0793. Found: *m/z* 230.0798.

(Z)-3-(allylamino)-1-phenylprop-2-en-1-one (1y):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown liquid, Yield =62% (580 mg).

¹**H NMR (500 MHz, CDCl₃)** δ 10.33 (s, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.39 (dd, J = 7.1, 5.8)

Hz, 3H), 6.94 – 6.76 (m, 1H), 5.90 – 5.77 (m, 1H), 5.75 – 5.61 (m, 1H), 5.28 – 5.19 (m, 1H),

5.19 – 5.11 (m, 1H), 3.80 (d, J = 1.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 190.0, 154.2, 139.7, 134.2, 130.9, 128.3, 127.1, 117.0, 90.7, 51.0.

HRMS (ESI, m/z): Calcd. for C₁₂H₁₄NO: [M+H]⁺, 188.1070. Found: *m/z* 188.1073.

(Z)-1-phenyl-3-(phenylamino)prop-2-en-1-one (1z):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield = 94% (1.05 g), mp: 139.8-140.3 °C.

¹**H NMR (400 MHz, CDCl**₃) ¹H NMR (400 MHz, CDCl₃) δ 12.16 (d, *J* = 11.3 Hz, 1H), 7.95 (dd, *J* = 7.8, 1.0 Hz, 2H), 7.60 – 7.42 (m, 4H), 7.35 (dd, *J* = 8.4, 7.5 Hz, 2H), 7.16 – 7.04 (m, 3H), 6.04 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 191.2, 145.2, 140.4, 139.4, 131.8, 130.0, 128.7, 127.5, 123.9, 116.6, 93.9.

HRMS (ESI, m/z): Calcd. for C₁₅H₁₄NO: [M+H]⁺, 224.1075. Found: *m/z* 224.1072.

(Z)-3-((4-(tert-butyl)phenyl)amino)-1-phenylprop-2-en-1-one (1aa):

The synthetic method was followed the synthetic procedure of compound **1a**.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown solid, Yield =69% (963mg), mp: 139.8-140.3

°C.

¹**H NMR (500 MHz, CDCl₃)** δ 12.18 (d, J = 12.1 Hz, 1H), 7.98 – 7.92 (m, 2H), 7.54 – 7.48 (m, 2H), 7.48 – 7.43 (m, 2H), 7.39 – 7.35 (m, 2H), 7.06 (d, J = 8.7 Hz, 2H), 6.01 (d, J = 7.8 Hz, 1H), 1.33 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 191.0, 147.1, 145.5, 139.5, 137.9, 131.7, 128.6, 127.5, 126.8, 116.3, 93.5, 34.6, 31.6.

HRMS (ESI, m/z): Calcd. for C₁₉H₂₂NO: [M+H]⁺, 280.1696. Found: *m/z* 280.1699.

(*R*,*Z*)-1-phenyl-3-((1-phenylethyl)amino)prop-2-en-1-one (1ab):

The synthetic method was followed the synthetic procedure of compound 1a.

Flash chromatography: PE/EA (5:1)

The title compound was obtained as a brown oil, Yield = 38% (477 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 10.70 (s, 1H), 7.91 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.52 – 7.26 (m, 8H), 6.98 (dd, *J* = 12.8, 7.6 Hz, 1H), 5.76 (d, *J* = 7.6 Hz, 1H), 4.55 (p, *J* = 6.8 Hz, 1H), 1.65 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.2, 152.8, 143.3, 139.8, 131.1, 129.0, 128.4, 127.8, 127.2, 126.3, 90.8, 57.9, 23.8.

HRMS (ESI, m/z): Calcd. for C₁₇H₁₈NO: [M+H]⁺, 252.1388. Found: *m/z* 252.1385.

Specific rotation: $[\alpha] = -228.100$

(Z)-3-(methylamino)-1-phenylbut-2-en-1-one (1ac):

This compound was prepared according to the literature procedure⁵.

Flash chromatography: PE/EA (6:1)

The title compound was obtained as a brown solid, Yield = 65% (569 mg), mp: 74.4-75.1 °C.

¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 11.33 (s, 1H), 7.90 – 7.79 (m,

2H), 7.44 – 7.34 (m, 3H), 5.69 (s, 1H), 3.02 (d, *J* = 5.3 Hz, 3H), 2.06 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 187.9, 166.2, 140.7, 130.6, 128.4, 127.1, 92.2, 29.9, 19.5.

HRMS (ESI, m/z): Calcd. for C₁₁H₁₄NO: [M+H]⁺, 176.1075. Found: *m/z* 176.1075.

(Z)-1-(2-azaspiro[4.5]decan-3-ylidene)propan-2-one (1ad):

This compound was prepared according to the literature procedure in 1mmol scale⁶.

Flash chromatography: PE/EA (8:1)

The title compound was obtained as a brown solid, Yield = 70% (136 mg), mp: 110.2-111.0 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 9.61 (s, 1H), 5.03 (s, 1H), 3.32 (s, 2H), 2.39 (s, 2H), 2.00 (s, 3H), 1.44 (d, *J* = 13.1 Hz, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 195.3, 167.2, 90.4, 40.7, 37.1, 36.3, 28.9, 26.0, 23.5, 23.1.

HRMS (ESI, m/z): Calcd. for C₁₂H₂₀NO: [M+H]⁺, 194.1545. Found: *m/z* 194.1544.

(Z)-1-(piperidin-2-ylidene)propan-2-one (1ae):

This compound was prepared according to the literature procedure in 1mmol scale⁶.

Flash chromatography: PE/EA (8:1)

The title compound was obtained as a brown oil, Yield = 73% (102 mg).

¹**H NMR (400 MHz, CDCl₃)** δ 11.06 (s, 1H), 4.85 (s, 1H), 3.30 – 3.33 (m, 2H), 2.31 – 2.35

(m, 2H), 1.97 (s, 3H), 1.65-1.79 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 194.2, 164.4, 93.6, 41.2, 28.8, 28.6, 22.5, 19.5.

HRMS (ESI, m/z): Calcd. for C₁₈H₁₄NO: [M+H]⁺, 140.1075. Found: *m/z* 140.1078.

(Z)-1-(azepan-2-ylidene)propan-2-one (1af):

This compound was prepared according to the literature procedure in 1mmol scale⁶.

Flash chromatography: PE/EA (8:1)

The title compound was obtained as a brown oil, Yield = 75% (115 mg).

The title compound was obtained as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 10.84 (s,

1H), 4.94 (s, 1H), 4.07 – 4.13 (m, 2H), 3.18 – 3.24 (m, 2H), 2.27-2.31 (m, 2H), 1.98 (s, 3H), 1.35-1.65 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 195.4, 169.8, 94.2, 44.3, 34.9, 30.6, 29.5, 28.9, 25.9.

HRMS (ESI, m/z): Calcd. for C₉H₁₆NO: [M+H]⁺, 154.1232. Found: *m/z* 154.1232.

3. Optimization study

То verifv this idea. started investigations we our by using (Z)-3-(methylamino)-1-phenylprop-2-en-1-one **1a** and widely existed methyl acrylate **2** as the model substrates. Firstly, several solvents were examined by using $[Cp*RhCl_2]_2$ (2.0) mol%) as the catalyst precursor and $Cu(OAc)_2$ (2.0 equiv) as oxidant under nitrogen atmosphere at 100 °C for 12 h (Table S1, entries 2-5). To our delight, when methanol was used as the solvent, the 2-pyridone product **3a** was obtained in 45% yield (Table S1, entry 5). No desired product was detected in the absence of [Cp*RhCl₂]₂ catalyst (Table S1, entry 1). We then varied the temperature in the range of 70-100 °C and found that 90 °C was most suitable temperature for this reaction (Table S1, entries 5-7). The screening of additives showed that potassium acetate (KOAc) was more efficient as compared with other tested additives (Table S1, entries 8-10) and could greatly increase the yield of **3a** to 75% (Table S1, entry 10). Moreover, it was observed that the catalytic system of [Cp*RhCl₂]₂ (2.0 mol%) and silver salt (8.0 mol%) was more favorable to the formation of 2-pyridone **3a** (Table S1, entries 10-12). Therefore, [Cp*RhCl₂]₂ (2.0 mol%), AgOAc (8.0 mol%), Cu(OAc)₂ (2.0 equiv), and KOAc (2.0 equiv) in methanol at 90 °C under N2 atmosphere for 12 h were identified as the optimal reaction conditions.

Table S1. Optimization study^{a,b}

Pł	0 1a	HN ^{_Me} +		hCp*Cl ₂] ₂ (2.0 mol AgX (8.0 mol%) Cu(OAc) ₂ (2.0 equi Additive (2.0 equiv Solvent, T, 12 h	1%) iv) ')	O N Me 3a
	Entry	AgX	Additive	Solvent	T (°C)	Yield (%) ^b
	1	_		MeOH	100	0°
	2	—		DCE	100	28
	3			THF	100	trace
	4	—	—	Toluene	100	trace
	5			MeOH	100	45
	6	—	—	MeOH	90	50
	7	_	_	MeOH	70	26
	8	—	HOAc	MeOH	90	47
	9	_	PivOH	MeOH	90	48
	10	_	KOAc	MeOH	90	75
	11	AgOAc	KOAc	MeOH	90	81
	12	AgSbF ₆	KOAc	MeOH	90	78

^{*a*}Reaction conditions: enaminone **1a** (0.2 mmol, 1.0 equiv), methyl acrylate **2** (0.3 mmol, 1.5 equiv), Cu(OAc)₂ (0.4 mmol, 2.0 equiv), additive (0.4 mmol, 2.0 equiv), solvent (1.0 mL), [Cp*RhCl₂]₂ (2.0 mol%), AgX (8.0 mol%), 12 h. ^{*b*}Isolated yields. ^{*c*}Without [Cp*RhCl₂]₂.

4. General procedure and characterization for [3+3] annulation into 2-pyridones

$$\begin{array}{c} \begin{array}{c} & H \\ R^{2} \\ R^{3} \end{array} + \begin{array}{c} & O \\ R^{3} \end{array} + \begin{array}{c} O \\ R^{3} \\ Cu(OAc)_{2} (2.0 \text{ equiv.}) \\ KOAc (2.0 \text{ equiv.}) \\ MeOH, 90 \ ^{\circ}C, 12 \text{ h} \end{array} + \begin{array}{c} O \\ R^{3} \\ R^{3} \\ R^{2} \end{array} + \begin{array}{c} O \\ R^{3} \\ R^{3} \\ R^{2} \end{array} + \begin{array}{c} O \\ R^{3} \\ R^{3} \\ R^{2} \\ 3a-3z, 3aa-3af \end{array}$$

.--.

Typical procedure for [3+3] annulation into 2-pyridones: (*Z*)-3-(methylamino)-1phenylprop-2-en-1-one **1a** and methyl acrylate **2** as the model substrates): To a 10 mL Schlenk flask equipped with magnetic stir bar was added (*Z*)-3-(methylamino)-1phenylprop-2-en-1-one **1a** (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol), AgOAc (2.7 mg, 0.016 mmol, 0.08 equiv), Cu(OAc)₂ (72.6 mg, 0.4 mmol, 2.0 equiv), KOAc (39.3 mg, 0.4 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that methyl acrylate (**2**, 25.8 mg, 0.30 mmol, 1.5 equiv) in MeOH (1.0 mL) was injected into the test tube via syringe under N_2 atmosphere. The reaction mixture was allowed to stir at 90 °C for 12 h, during which time a constant checking by TLC was performed. Once the reaction proceeded to a desired degree, the resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to afford the yellow solid **3a**.

5-benzoyl-1-methylpyridin-2(1H)-one (3a)

Flash chromatography: PE/EA (6:1)

This compound was prepared by the general procedure described above, affording the desired product **3a** as a yellow solid (34.5 mg, 81%). mp: 183.0-183.7 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.98 (d, *J* = 2.3 Hz, 1H), 7.87 (d, *J* = 9.5 Hz, 1H), 7.67 (dd, *J* = 7.3, 0.8 Hz, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.46 (m, 2H), 6.59 (d, *J* = 9.5 Hz, 1H), 3.59 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 192.0, 162.9, 145.3, 139.5, 137.4, 132.5, 129.2, 128.8, 119.7, 117.5, 38.6.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₂NO₂: [M+H]⁺, 214.0868. Found: *m/z* 214.0867.

5-(2-fluorobenzoyl)-1-methylpyridin-2(1H)-one (3b):

Flash chromatography: PE/EA (6:1)

This compound was prepared by the general procedure described above, affording the desired product **3b** as a yellow solid (20.8 mg, 45%). mp: 150.6-152.1 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.96 (d, *J* = 1.7 Hz, 1H), 7.83 (ddd, *J* = 9.5, 2.6, 1.4 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.29 (td, *J* = 7.6, 1.0 Hz, 1H), 7.21 – 7.14 (m, 1H), 6.58 (d, *J* = 9.6 Hz, 1H), 3.59 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.4, 163.0, 159.6(d, J = 252.2 Hz), 145.6 (d, J = 2.1 Hz), 138.8 (d, J = 1.5 Hz), 133.5 (d, J = 8.3 Hz), 130.6 (d, J = 3.1 Hz), 126.2 (d, J = 15.5 Hz), 125.0 (d, J = 3.7 Hz), 119.8, 118.0 (d, J = 1.4 Hz), 116.6(d, J = 21.8 Hz), 38.7.

¹⁹F NMR (471 MHz, CDCl₃) δ -112.02.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₁FNO₂: [M+H]⁺, 232.0774. Found: *m/z* 232.0778.

1-methyl-5-(2-methylbenzoyl)pyridin-2(1H)-one (3c):

Flash chromatography: PE/EA (6:1)

This compound was prepared by the general procedure described above, affording the desired product **3c** as a yellow solid (19.5 mg, 43%). mp: 142.5-143.2 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.77 (m, 2H), 7.38 (ddd, *J* = 7.9, 5.3, 3.7 Hz, 1H), 7.28 (d, *J* = 7.1 Hz, 1H), 7.25 (dd, *J* = 4.7, 1.2 Hz, 2H), 6.57 (d, *J* = 9.5 Hz, 1H), 3.53 (s, 3H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 193.7, 163.0, 145.8, 138.8, 137.7, 136.5, 131.5, 130.6, 127.7, 125.7, 119.9, 118.2, 38.6, 19.8.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₄ NO₂: [M+H]⁺, 228.1025. Found: *m/z* 228.1024.

5-(2-methoxybenzoyl)-1-methylpyridin-2(1H)-one (3d):

Flash chromatography: PE/EA (6:1)

This compound was prepared by the general procedure described above, affording the desired product **3d** as a yellow solid (24.3 mg, 50%). mp: 135.6-137.1 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 (d, *J* = 2.5 Hz, 1H), 7.76 (dd, *J* = 9.5, 2.6 Hz, 1H), 7.46 (dd, *J* = 8.4, 7.5, 1.8 Hz, 1H), 7.31 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.04 (td, *J* = 7.5, 0.8 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.52 (d, *J* = 9.5 Hz, 1H), 3.77 (s, 3H), 3.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.6, 163.1, 156.9, 145.2, 139.2, 132.4, 129.5, 127.8, 121.1, 119.3, 118.4, 111.6, 55.8, 38.6.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₄ NO₃: [M+H]⁺, 244.0974. Found: *m/z* 244.0974.

5-(3-fluorobenzoyl)-1-methylpyridin-2(1H)-one (3e):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3e** as a yellow solid (21.3 mg, 46%). mp: 162.2-163.8 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 8.02 (s, 1H), 7.87 (d, *J* = 9.4 Hz, 1H), 7.48 (dd, *J* = 12.4, 7.5 Hz, 2H), 7.40 (d, *J* = 8.6 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 6.61 (d, *J* = 9.5 Hz, 1H), 3.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.5 (d, J = 2.3 Hz), 162.8, 162.7(d, J = 250.3 Hz), 145.5, 139.4 (d, J = 6.4 Hz), 139.2, 130.6 (d, J = 7.9 Hz), 124.9 (d, J = 3.2 Hz), 119.9, 119.5(d, J = 21.4 Hz), 117.0, 116.1(d, J = 22.6 Hz), 38.7.

¹⁹**F NMR (471 MHz, CDCl₃)** δ -111.08.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₁F NO₂: [M+H]⁺, 232.0774. Found: *m/z* 232.0773.

1-methyl-5-(3-methylbenzoyl)pyridin-2(1H)-one (3f):

Flash chromatography: PE/EA (6:1)

This compound was prepared by the general procedure described above, affording the desired product **3f** as a yellow solid (30.9 mg, 68%). mp: 147.6-149.2 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.98 (d, *J* = 2.4 Hz, 1H), 7.86 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.49 (s, 1H), 7.44 (d, *J* = 6.9 Hz, 1H), 7.41 – 7.33 (m, 2H), 6.58 (d, *J* = 9.5 Hz, 1H), 3.58 (s, 3H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 192.2, 162.9, 145.2, 139.53, 138.9, 137.5, 133.3, 129.7, 128.6, 126.4, 119.7, 117.6, 38.6, 21.6.

5-(3-methoxybenzoyl)-1-methylpyridin-2(1H)-one (3g):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3g** as a yellow solid (39.9 mg, 82%). mp: 133.7-134.5 °C.

¹**H NMR (400 MHz, CDCl₃)** ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 2.5 Hz, 1H), 7.86 (d, *J* = 9.5, 2.6 Hz, 1H), 7.38 (t, *J* = 8.1 Hz, 1H), 7.22 – 7.15 (m, 2H), 7.13 – 7.07 (m, 1H), 6.57 (d, *J* = 9.5 Hz, 1H), 3.84 (s, 3H), 3.58 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.7, 162.9, 160.0, 145.3, 139.4, 138.8, 129.8, 121.6, 119.7, 118.6, 117.5, 114.0, 55.7, 38.6.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₄ NO₃: [M+H]⁺, 244.0974. Found: *m/z* 244.0977.

5-(4-fluorobenzoyl)-1-methylpyridin-2(1H)-one (3h):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3h** as a yellow solid (29.1 mg, 63%). mp: 182.7-184.2 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.98 (d, *J* = 2.5 Hz, 1H), 7.83 (dd, *J* = 9.5, 2.6 Hz, 1H), 7.76

-7.69 (m, 2H), 7.22 - 7.14 (m, 2H), 6.59 (d, *J* = 9.5 Hz, 1H), 3.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.6, 165.4(d, J = 254.8 Hz), 162.9, 145.1, 139.4, 133.7 (d, J = 3.3 Hz), 131.8 (d, J = 9.1 Hz), 119.8, 117.4, 116.1(d, J = 22.0 Hz), 38.7.

¹⁹F NMR (471 MHz, CDCl₃) δ -105.79.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₁F NO₂: [M+H]⁺, 232.0774. Found: *m/z* 232.0777.

5-(4-chlorobenzoyl)-1-methylpyridin-2(1H)-one (3i):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3i** as a yellow solid (38.5 mg, 78%). mp: 187.9-189.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 2.5 Hz, 1H), 7.81 (dd, *J* = 9.5, 2.6 Hz, 1H), 7.65

-7.59 (m, 2H), 7.48 - 7.43 (m, 2H), 6.57 (d, *J* = 9.5 Hz, 1H), 3.58 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.7, 162.8, 145.2, 139.2, 138.9, 135.7, 130.6, 129.1, 119.9, 117.2, 38.7.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₁ NO₂Cl: [M+H]⁺, 248.0478. Found: *m/z* 248.0480.

5-(4-bromobenzoyl)-1-methylpyridin-2(1H)-one (3j):

Flash chromatography: PE/EA (4:1)

This compound was prepared by the general procedure described above, affording the desired product **3j** as a yellow solid (41.9 mg, 72%). mp: 191.0-191.6 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.96 (d, J = 2.5 Hz, 1H), 7.82 (dd, J = 9.5, 2.6 Hz, 1H), 7.66

-7.60 (m, 2H), 7.57 - 7.52 (m, 2H), 6.58 (d, *J* = 9.5 Hz, 1H), 3.59 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.9, 162.8, 145.3, 139.2, 136.2, 132.2, 130.8, 127.5, 119.9, 117.2, 38.7.

HRMS (ESI, m/z): Calcd. for C₁₃H₁₁ NO₂Br: [M+H]⁺, 291.9973. Found: *m/z* 291.9975.

1-methyl-5-(4-methylbenzoyl)pyridin-2(1H)-one (3k):

Flash chromatography: PE/EA (4:1)

This compound was prepared by the general procedure described above, affording the desired product **3k** as a yellow solid (41.3 mg, 91%). mp: 185.6-186.7 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.97 (d, *J* = 2.4 Hz, 1H), 7.85 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.57 (d, *J* = 9.5 Hz, 1H), 3.58 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.8, 145.0, 143.4, 139.6, 134.7, 129.5, 119.7, 117.7, 38.6, 21.8.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₄ NO₂: [M+H]⁺, 228.1025. Found: *m/z* 228.1027.

5-(4-methoxybenzoyl)-1-methylpyridin-2(1H)-one (3l):

Flash chromatography: PE/EA (3:1)

This compound was prepared by the general procedure described above, affording the desired product **31** as a yellow solid (36.5 mg, 75%). mp: 182.7-183.3 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 2.5 Hz, 1H), 7.81 (dd, J = 9.5, 2.6 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.00 – 6.92 (m, 2H), 6.56 (d, J = 9.5 Hz, 1H), 3.87 (s, 3H), 3.58 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 190.8, 163.3, 162.9, 144.6, 139.7, 131.7, 129.8, 119.6, 117.9, 114.0, 55.7, 38.6.

HRMS (**ESI, m/z**): Calcd. for C₁₄H₁₄NO₃: [M+H]⁺, 244.0974. Found: *m/z* 244.0975.

1-methyl-5-(4-(trifluoromethyl)benzoyl)pyridin-2(1H)-one (3m):

Flash chromatography: PE/EA (3:1)

This compound was prepared by the general procedure described above, affording the desired product **3m** as a yellow solid (26.4 mg, 47%). mp: 173.7-175.3°C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.97 (d, *J* = 2.5 Hz, 1H), 7.82 (dt, *J* = 9.5, 2.5 Hz, 1H), 7.78 − 7.70 (m, 4H), 6.56 (dd, *J* = 9.5, 4.1 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 190.7, 162.7, 145.7, 140.7, 138.9, 133.8(d, J = 33.0 Hz),
129.4, 125.9(q, J = 3.7 Hz),123.7 (d, J = 273.2 Hz), 120.0, 116.9, 38.6.

¹⁹F NMR (471 MHz, CDCl₃) δ -63.04.

Methyl 4-(1-methyl-6-oxo-1,6-dihydropyridine-3-carbonyl)benzoate (3n):

Flash chromatography: PE/EA (3:1)

This compound was prepared by the general procedure described above, affording the desired product **3n** as a yellow solid (30.4 mg, 56%). mp: 171.3-173.0 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.23 – 8.10 (m, 2H), 7.96 (d, J = 2.2 Hz, 1H), 7.85 (ddd, J = 9.5, 4.7, 2.6 Hz, 1H), 7.71 (dd, J = 8.2, 4.7 Hz, 2H), 6.59 (dd, J = 9.5, 6.5 Hz, 1H), 3.95 (s, 3H), 3.58 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 191.2, 166.3, 162.8, 145.6, 141.3, 139.1, 133.4, 130.0, 129.0, 120.0, 117.1, 52.8, 38.7

HRMS (ESI, m/z): Calcd. for C₁₅H₁₄NO₄: [M+H]⁺, 272.0916. Found: *m/z* 272.0921.

Tert-butyl (4-(1-methyl-6-oxo-1,6-dihydropyridine-3-carbonyl)phenyl)carbamate

Flash chromatography: PE/EA (3:1)

This compound was prepared by the general procedure described above, affording the desired product **30** as a yellow viscous liquid (13.8 mg, 21%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.96 (d, *J* = 2.5 Hz, 1H), 7.84 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.09 (s, 1H), 6.59 (d, *J* = 9.5 Hz, 1H), 3.59 (s, 3H), 1.51 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 190.8, 163.0, 152.6, 144.8, 142.9, 139.7, 131.5, 130.9, 119.7, 117.9, 81.5, 38.6, 28.5.

HRMS (ESI, m/z): Calcd. for C₁₈H₂₁N₂O₄: [M+H]⁺, 329.1496. Found: *m/z* 329.1488.

5-(2-naphthoyl)-1-methylpyridin-2(1H)-one (3p):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3m** as a yellow solid (47.9 mg, 91%). mp: 128.3-128.9 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.16 (s, 1H), 8.04 (d, *J* = 2.5 Hz, 1H), 7.97 – 7.89 (m, 4H), 7.77 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.59 (dtd, *J* = 14.6, 6.9, 1.3 Hz, 2H), 6.61 (d, *J* = 9.5 Hz, 1H), 3.58 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 192.0, 162.9, 145.3, 139.5, 135.3, 134.7, 132.4, 130.3, 129.4,

128.9, 128.6, 128.1, 127.3, 125.4, 119.8, 117.7, 38.6.

HRMS (**ESI, m/z**): Calcd. for C₁₇H₁₄NO₂: [M+H]⁺, 262.1025. Found: *m/z* 264.1026.

5-(furan-2-carbonyl)-1-methylpyridin-2(1H)-one (3q):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3n** as a yellow solid (19.1 mg, 47%). mp: 190.8-191.5 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 2.5 Hz, 1H), 8.06 (dd, J = 9.6, 2.6 Hz, 1H), 7.64 (d, J = 0.9 Hz, 1H), 7.30 (d, J = 3.2 Hz, 1H), 6.63 – 6.53 (m, 2H), 3.62 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 176.7, 162.9, 152.7, 146.5, 144.9, 139.1, 119.7, 119.5, 116.8, 112.7, 38.7.

HRMS (**ESI, m/z**): Calcd. for C₁₁H₁₀ NO₃: [M+H]⁺, 204.0661. Found: *m/z* 204.0661.

1-methyl-5-(thiophene-2-carbonyl)pyridin-2(1H)-one (3r):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **30** as a yellow solid (29.8 mg, 68%). mp: 174.2-175.1 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 8.12 (d, *J* = 2.5 Hz, 1H), 7.89 (dd, *J* = 9.5, 2.6 Hz, 1H), 7.69 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.60 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.15 (dd, *J* = 4.9, 3.8 Hz, 1H), 6.57 (d, *J* = 9.5 Hz, 1H), 3.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 182.9, 162.9, 144.1, 142.5, 139.1, 134.0, 133.3, 128.2, 119.8, 117.8, 38.6.
5-(Ferrocene-carbonyl)-1-methylpyridin-2(1H)-one (3s):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3p** as a yellow solid (25.7 mg, 40%). mp: 170.5-171.2 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.18 (d, J = 2.4 Hz, 1H), 8.02 (dd, J = 9.5, 2.5 Hz, 1H), 6.56

(d, *J* = 9.5 Hz, 1H), 4.83 – 4.78 (m, 2H), 4.59 – 4.53 (m, 2H), 4.19 (s, 5H), 3.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 193.3, 163.0, 142.7, 138.9, 119.4, 119.1, 78.3, 72.6, 71.3, 70.4, 38.6.

HRMS (ESI, m/z): Calcd. for C₁₇H₁₆NO₂Fe: [M+H]⁺, 320.0577. Found: *m/z* 320.0569.

1-methyl-5-octanoylpyridin-2(1H)-one (3t):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3q** as a yellow solid (26.3 mg, 56%). mp: 188.2-189.5 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.16 (s, 1H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.53 – 7.34 (m, 1H), 6.71 (d, *J* = 14.6 Hz, 1H), 6.67 – 6.59 (m, 1H), 6.55 (d, *J* = 9.3 Hz, 1H), 6.35 – 6.23 (m, 1H), 6.23 – 6.10 (m, 1H), 5.99 (dd, *J* = 14.3, 6.9 Hz, 1H), 3.61 (s, 3H), 1.83 (d, *J* = 5.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 163.1, 145.5, 143.6, 143.2, 138.2, 136.7, 131.6, 128.2, 122.3, 119.8, 118.7, 38.7, 18.9.

HRMS (**ESI, m/z**): Calcd. for C₁₄H₁₆NO₂: [M+H]⁺, 230.1181. Found: *m/z* 230.1180.

5-acetyl-1-methylpyridin-2(1H)-one (3u):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3r** as yellow solid (19.9 mg, 66%). mp: 146.9-147.3 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 8.12 (d, *J* = 3.0 Hz, 1H), 7.85 (dd, *J* = 9.7, 2.8 Hz, 1H), 6.54 (d, *J* = 9.8 Hz, 1H), 3.60 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 193.3, 163.0, 143.4, 138.0, 119.8, 117.9, 38.6, 26.0.

HRMS (ESI, m/z): Calcd. for C₈H₁₀NO₂: [M+H]⁺, 152.0712. Found: *m/z* 152.0713.

(3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-10,13-dimethyl-17-(1-methyl-6-oxo-1,6-dihydropyridine-3-carb onyl)-2,3,4,7,8,9,10, 11,12,13,14,15-dodecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate (3v):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3s** as a yellow solid (43.1 mg, 48%). mp: 262.0-263.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 2.1 Hz, 1H), 7.80 (dd, J = 9.5, 2.3 Hz, 1H), 6.55 (d, J = 9.5 Hz, 1H), 6.37 (s, 1H), 5.39 (d, J = 4.5 Hz, 1H), 4.59 (dt, J = 10.4, 5.9 Hz, 1H), 3.59 (s, 3H), 2.45 - 2.29 (m, 3H), 2.22 - 2.03 (m, 3H), 2.03 (s, 3H), 1.86 (d, J = 10.1 Hz, 2H), 1.78 - 1.68 (m, 2H), 1.67 - 1.48 (m, 5H), 1.33 (td, J = 11.9, 6.2 Hz, 1H), 1.20 - 1.11 (m, 1H), 1.08 (d, J = 9.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 189.3, 170.8, 163.2, 153.2, 143.5, 140.5, 139.0, 122.2, 119.7, 119.2, 74.0, 56.5, 50.7, 48.0, 38.6, 38.3, 37.1, 37.0, 34.2, 33.1, 31.8, 30.3, 27.9, 21.7, 20.8, 19.5, 16.4.

HRMS (ESI, m/z): Calcd. for C₂₈H₃₆NO₄: [M+H]⁺, 450.2644. Found: *m/z* 450.2649.

Specific rotation: $[\alpha] = -90.800$

5-benzoyl-1-benzylpyridin-2(1H)-one (3w):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3u** as a yellow solid (35.3 mg, 61%). mp: 131.6-132.2 °C.

¹**H NMR (400 MHz, CDCl₃)** ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 1.7 Hz, 1H), 7.86 (dd, *J* = 9.4, 2.0 Hz, 1H), 7.56 (dd, *J* = 17.2, 7.4 Hz, 3H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.38 – 7.25 (m, 5H), 6.63 (d, *J* = 9.5 Hz, 1H), 5.15 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 191.8, 162.4, 144.4, 139.2, 137.2, 135.5, 132.5, 129.3, 128.7, 128.7, 128.5, 120.3, 117.6, 52.8.

HRMS (ESI, m/z): Calcd. for C₁₉H₁₆NO₂: [M+H]⁺, 290.1181. Found: *m/z* 290.1184.

5-benzoyl-1-(2,2,2-trifluoroethyl)pyridin-2(1H)-one (3x):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3v** as a yellow solid (33.7 mg, 60%). mp: 129.6-130.3 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.92 (q, *J* = 2.5 Hz, 1H), 7.69 (dd, *J* = 7.0, 1.4 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 10.4 Hz, 1H), 4.64 (q, *J* = 8.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 191.5, 161.6, 144.3, 140.1, 137.0, 133.0, 129.4, 129.0, 126.2(d, J = 281.5 Hz), 120.9, 118.3, 48.3(q, J = 35.35 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -64.95.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₁ NO₂F₃: [M+H]⁺, 282.0742. Found: *m/z* 282.0740.

1-allyl-5-benzoylpyridin-2(1H)-one (3y):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3y** as a yellow solid (13.8 mg, 37%).

¹**H NMR (500 MHz, CDCl₃)** δ 7.93 (d, *J* = 2.5 Hz, 1H), 7.82 (dd, *J* = 9.5, 2.6 Hz, 1H), 7.63 (dd, *J* = 8.2, 1.3 Hz, 2H), 7.58 – 7.51 (m, 1H), 7.45 (dd, *J* = 10.7, 4.5 Hz, 2H), 6.56 (d, *J* = 9.5 Hz, 1H), 5.26 (dd, *J* = 10.3, 1.0 Hz, 1H), 5.21 – 5.12 (m, 1H), 4.55 (dt, *J* = 5.9, 1.4 Hz, 1H), 5.26 (dd, *J* = 10.3, 1.0 Hz, 1H), 5.21 – 5.12 (m, 1H), 4.55 (dt, *J* = 5.9, 1.4 Hz), 5.5 (dt, *J* = 5.9, 1.4 Hz), 5.26 (dd, *J* = 10.3, 1.0 Hz), 5.21 – 5.12 (m, 1H), 4.55 (dt, *J* = 5.9, 1.4 Hz), 5.5 (dt, *J* = 5.9, 1.4 Hz), 5.21 – 5.12 (m, 1H), 5.21 – 5.12 (m, 1H), 5.5 (dt, *J* = 5.9, 1.4 Hz), 5.5 (dt, J = 5.9, 1.4 Hz), 5.5 (dt, J

2H).

¹³C NMR (126 MHz, CDCl₃) δ 191.8, 162.0, 144.1, 139.3, 137.3, 132.5, 131.8, 129.2, 128.7, 120.0, 119.6, 117.5, 51.8.

HRMS (ESI, m/z): Calcd. for C₁₅H₁₄NO₂: [M+H]⁺, 240.1019. Found: *m/z* 240.1027.

5-benzoyl-1-phenylpyridin-2(1H)-one (3z):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3t** as a yellow solid (28.6 mg, 52%). mp: 125.5-126.3 $^{\circ}$ C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.03 – 7.93 (m, 2H), 7.73 – 7.68 (m, 2H), 7.57 (t, *J* = 7.4 Hz,

1H), 7.52 – 7.43 (m, 5H), 7.40 – 7.34 (m, 2H), 6.70 (d, *J* = 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 191.9, 162.1, 144.9, 140.2, 139.6, 137.3, 132.6, 129.7, 129.3, 129.2, 128.8, 126.6, 121.0, 117.6.

HRMS (ESI, m/z): Calcd. for C₁₈H₁₄NO₂: [M+H]⁺, 276.1025. Found: *m/z* 276.1024.

5-benzoyl-1-(4-(tert-butyl)phenyl)pyridin-2(1H)-one

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3aa** as a yellow solid (39.1 mg, 59%). mp: 177.1-179.7 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 8.04 – 7.99 (m, 1H), 7.96 (dd, J = 9.6, 2.6 Hz, 1H), 7.71 (d, J

= 7.8 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.48 (ddd, *J* = 15.2, 7.0, 1.7 Hz, 4H), 7.29 (t, *J* = 8.8 Hz,

2H), 6.69 (d, *J* = 9.6 Hz, 1H), 1.33 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 191.9, 162.2, 152.3, 145.1, 139.4, 137.6, 137.4, 132.5, 129.2, 128.8, 126.7, 126.0, 121.0, 117.5, 34.9, 31.4.

HRMS (ESI, m/z): Calcd. for C₁₉H₂₂NO: [M+H]⁺,332.1645. Found: *m/z* 332.1638.

(*R*)-5-benzoyl-1-(1-phenylethyl)pyridin-2(1H)-one (3ab):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the

desired product **3w** as a yellow solid (15.2 mg, 25%). mp: 104.8-105.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 9.5, 2.5 Hz, 1H), 7.78 (d, J = 2.4 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.44 (d, J = 7.1 Hz, 2H), 7.35 (ddd, J = 18.0, 9.0, 6.8 Hz, 7H), 6.64 (d, J = 9.5 Hz, 1H), 6.42 (q, J = 7.0 Hz, 1H), 1.71 (d, J = 7.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 191.7, 162.3, 142.2, 139.5, 138.6, 137.2, 132.5, 129.4, 129.3, 128.7, 128.7, 127.8, 120.1, 117.6, 53.9, 19.2.

HRMS (ESI, m/z): Calcd. for C₂₀H₁₈NO₂: [M+H]⁺,304.1338. Found: *m/z* 304.1335.

Specific rotation: $[\alpha] = +30.300$

5-benzoyl-1,6-dimethylpyridin-2(1H)-one (3ac):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product 3x as a yellow solid (23.6 mg, 52%). mp: 133.2-134.5 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.46 (t, J =

7.6 Hz, 2H), 7.35 (d, *J* = 9.5 Hz, 1H), 6.44 (d, *J* = 9.4 Hz, 1H), 3.62 (s, 3H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.3, 163.1, 151.4, 139.9, 138.2, 133.3, 130.0, 128.8, 117.9, 115.7, 31.7, 18.8.

HRMS (ESI, m/z): Calcd. for C₁₅H₂₁O₄: [M+H]⁺, 228.1025. Found: *m/z*228.1022.

8'-acetyl-3'H-spiro[cyclohexane-1,2'-indolizin]-5'(1'H)-one (3ad):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3y** as a yellow solid (25.0 mg, 51%). mp: 105.6-107.1 °C.

¹**H NMR (400 MHz, CDCl**₃) δ 7.78 (d, *J* = 9.5 Hz, 1H), 6.40 (d, *J* = 9.5 Hz, 1H), 3.92 (s, 2H), 3.34 (s, 2H), 2.44 (s, 3H), 1.60 – 1.43 (m, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 195.2, 162.1, 157.4, 140.3, 116.5, 114.2, 58.9, 47.0, 39.6, 36.5, 28.2, 25.6, 23.2.

HRMS (**ESI, m/z**): Calcd. for C₁₅H₂₀NO₂: [M+H]⁺, 246.1494. Found: *m/z* 246.1496.

1-acetyl-6,7,8,9-tetrahydro-4H-quinolizin-4-one (3ae):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3z** as a yellow solid (16.8 mg, 44%). mp: 98.4-100.1 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 9.6 Hz, 1H), 6.44 (d, J = 9.6 Hz, 1H), 4.13 – 3.93 (m, 2H), 3.31 (t, J = 6.7 Hz, 2H), 2.46 (s, 3H), 1.97 – 1.88 (m, 2H), 1.81 – 1.75 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 196.8, 162.8, 155.8, 139.7, 115.8, 115.2, 43.0, 29.7, 27.6, 21.5, 18.4.

HRMS (**ESI, m/z**): Calcd. for C₁₁H₁₄NO₂: [M+H]⁺, 192.1025. Found: *m/z* 192.1023.

1-acetyl-7,8,9,10-tetrahydropyrido[1,2-a]azepin-4(6H)-one (3af):

Flash chromatography: PE/EA (5:1)

This compound was prepared by the general procedure described above, affording the desired product **3aa** as a yellow solid (12.3 mg, 30%). mp: 103.7-104.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 9.6 Hz, 1H), 6.44 (d, J = 9.6 Hz, 1H), 4.52 –

4.38 (m, 2H), 3.29 (s, 2H), 2.47 (s, 3H), 1.76 (dd, *J* = 10.1, 5.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 198.1, 162.5, 158.3, 139.1, 117.4, 116.5, 43.6, 29.9, 29.5, 29.2, 27.3, 25.7.

HRMS (ESI, m/z): Calcd. for C₁₂H₁₆NO₂: [M+H]⁺, 206.1181. Found: *m/z* 206.1180.

5. Practical utilities of [3+3] annulation into 2-pyridones

Low catalytic loading (0.2 mol%) on 2.0 mmol scale

Typical procedure for [3+3] annulation into 2-pyridones: To a 25 mL Schlenk flask equipped with magnetic stirring bar was added (*Z*)-3-(methylamino)-1-phenylprop-2-en-1-one **1a** (2.0 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mg, 0.004 mmol), AgOAc (2.7 mg, 0.016 mmol, 0.08

equiv), $Cu(OAc)_2$ (726 mg, 4.0 mmol, 2.0 equiv), KOAc (393 mg, 4.0 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that methyl acrylate (**2**, 344 mg, 0.30 mmol, 2.0 equiv) in MeOH (10 mL) was injected into the test tube *via* syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 12 h, during which time a constant checking by TLC was performed. Once the reaction proceeded to a desired degree, the resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to afford the yellow solid **3a** (222mg, 52%).

6. Mechanistic study

6.1 Experiments for enaminones with the reactive sites

To a 10 mL Schlenk flask equipped with magnetic stirring bar was added (E)-3-(dimethylamino)-1-phenylprop-2-en-1-one (**1a'**, 0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol), AgOAc (66.8 mg, 0.4 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that methyl acrylate (**2**, 25.8 mg, 0.30 mmol, 1.5 equiv) in DCE (1.0 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 100 °C for 12 h, during which time a constant checking by TLC was performed.

То а 10 mL Schlenk flask equipped with magnetic stirring bar added was (Z)-3-(methylamino)-1-phenylprop-2-en-1-one (**1a**, 0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol), AgOAc (66.8 mg, 0.4 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N_2 three times. After that methyl acrylate (2, 25.8 mg, 0.30 mmol, 1.5 equiv) in DCE (1.0 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture could stir at 50 °C for 12 h, during which time a constant checking by TLC was performed. Once the reaction proceeded to a desired degree, the resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to afford the yellow solid 3a' (31.9 mg, 65%).

Methyl (2E,4Z)-4-benzoyl-5-(methylamino)penta-2,4-dienoate (3a'):

Flash chromatography: PE/EA (3:1)

Afford the desired product **3a'** as a yellow solid (31.9 mg, 65%). mp: 128.7-129.8 °C.

¹H NMR (400 MHz, CDCl₃) δ 11.01 (s, 1H), 7.62 – 7.55 (m, 2H), 7.47 – 7.44 (m, 2H), 7.44

-7.37 (m, 3H), 5.59 (d, J = 15.7 Hz, 1H), 3.65 (s, 3H), 3.20 (dd, J = 5.1, 0.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.2, 168.5, 157.6, 145.4, 140.4, 130.5, 128.4, 128.1, 105.4,

103.4, 51.4, 36.6.

HRMS (ESI, m/z): Calcd. for C₁₄H₁₆NO₃: [M+H]⁺, 246.1130. Found: *m/z* 246.1128.

6.2 Experiments of intermediate cyclization

To a 10 mL Schlenk flask equipped with magnetic stirring bar was added methyl (2E,4Z)-4-benzoyl-5-(methylamino)penta-2,4-dienoate (**3a'**. 0.2 mmol. 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol), AgOAc (2.7 mg, 0.016 mmol, 0.08 equiv), Cu(OAc)₂ (72.6 mg, 4.0 mmol, 2.0 equiv), KOAc (39.3 mg, 4.0 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that MeOH (1.0 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 12 h, during which time a constant checking by TLC was performed. Once the reaction proceeded to a desired degree, the resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to afford the yellow solid 3a (38.8 mg, 91%).

To a 10 mL Schlenk flask equipped with magnetic stirring bar was added methyl (2E,4Z)-4-benzoyl- 5-(methylamino)penta-2,4-dienoate (**3a'**, 0.2 mmol, 1.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that MeOH (1.0 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 12 h, during which time a constant checking by TLC was performed. Once the reaction proceeded to a desired degree, the resulting reaction mixture was mixed with a small amount of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel with PE/EtOAc as the eluent to afford the yellow solid **3a** (20.5 mg, 48%).

To a 10 mL Schlenk flask equipped with magnetic stir bar was added methyl (2E,4Z)-4-benzoyl-5-(methylamino)penta-2,4-dienoate (**3a''**, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mg, 0.004 mmol), AgOAc (2.7 mg, 0.016 mmol, 0.08 equiv), Cu(OAc)₂ (72.6 mg, 4.0 mmol, 2.0 equiv), KOAc (39.3 mg, 4.0 mmol, 2.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that MeOH (1.0 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 12 h, during which time a constant checking by TLC was performed.

Methyl (Z)-4-benzoyl-5-(methylamino)pent-4-enoate (3a''):

Flash chromatography: PE/EA (5:1)

Afford the desired product **3a''** as a yellow liquid (44.5 mg, 90%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 – 7.84 (m, 2H), 7.77 (s, 1H), 7.47 – 7.35 (m, 3H), 5.73 (d, *J* = 12.5 Hz, 1H), 3.69 (s, 3H), 3.60 (s, 2H), 3.01 (d, *J* = 74.3 Hz, 3H), 2.62 (t, *J* = 6.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 189.0, 171.4, 153.6, 140.4, 131.2, 128.3, 127.6, 93.2, 53.6, 52.2, 35.8, 33.9.

6.3 Deuterated experiments

To a 10 mL Schlenk flask equipped with magnetic stirring bar was added (*Z*)-3-(methylamino) -1-phenylprop-2-en-1-one (**1a**, 0.1 mmol, 1.0 equiv). Then the mixture was evacuated and backfilled with N₂ three times. After that CD₃OD (0.5 mL) was injected into the test tube *via* syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 3 h, the resulting reaction mixture was directly detected by NMR.

To a 10 mL Schlenk flask equipped with magnetic stirring bar was added (*Z*)-3-(methylamino) -1-phenylprop-2-en-1-one (**1a**, 0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (1.2 mg, 0.002 mmol), AgOAc (1.3 mg, 0.008 mmol). Then the mixture was evacuated and backfilled with N₂ three times. After that CD₃OD (0.5 mL) was injected into the test tube via syringe under N₂ atmosphere. The reaction mixture was allowed to stir at 90 °C for 3 h, the

resulting reaction mixture was directly detected by NMR.

Fig. S2 Deuteration experiments of 1a

Deuteration experiments were detected by ¹H NMR in CD₃OD as shown in **Fig. S1**. Enaminone **1a** with *Z* configuration can be converted to one with *E* configuration in CD₃OD at 90 °C for 3h. **Fig. S2** under [Cp*RhCl₂]₂ and AgOAc catalytic system, hydrogen of enaminone **1a** at α -position can be almost completely deuterated.

7. References

- 1. S. Zhou, J. Wang, L. Wang, C. Song, K. Chen and J. Zhu, Angew. Chem. Int. Ed., 2016, 55, 9384-9388.
- 2. A. S. Devi, M. C. Dutta, R. Nongkhlaw and J. N. Vishwakarma, J. Indian. Chem. Soc., 2010, 87, 739-742.
- 3. A. D. N. Brenno, A. M. L. Alexandre, B. B. Alinne and R. Dennis, Tetrahedron., 2009, 65, 2484-2496.
- 4. E. Philipped, B.Aniel, P. C. Jean, L. Gérard, Can. J. Chem., 1991, 69, 1201-1206.
- 5. P. Šimůnek, M. Svobodová, V. Bertolasi, V. Macháček, Synthesis, 2008, 11, 1761-1766.
- 6. B. Pettersson, V. Hasimbegovic, J. Bergman, J. Org. Chem. 2011, 76, 1554-1561.

-3.087 -3.074 -2.825

¹H NMR (400 MHz, CDCl₃)

1													
20	10	0	-10	-30	-50	-70	-90 δ (pp	-110 om)	-130	-150	-170	-190	-210

¹H NMR (400 MHz, CDCl₃)

10.173 10.173 7.856 7.858 7.858 7.858 7.858 7.858 7.858 7.858 7.080 7.080 7.080 7.080 7.080 7.080 7.080 7.000 7.000 7.000 7.000 7.836 7.836 7.836 7.836 7.836 7.856 7.080 7.000

¹H NMR (400 MHz, CDCl₃)

20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
							δ(p	opm)					

¹H NMR (500 MHz, CDCl₃)

-10.291 -10.291 -10.291 -1.977 -7.977 -7.977 -7.977 -7.972 -7.972 -7.528 -7.519 -7.519 -7.519 -7.519 -7.519 -7.519 -7.519 -7.528 -7.528 -7.528 -7.528 -7.558 -7.

¹H NMR (400 MHz, CDCl₃)

3.092

-10.231 7.897 7.895 7.895 7.895 7.895 7.895 7.447 7.446 7.446 7.446 7.446 7.447 7.443 7.743 7.74

---73.510

7.878 7.396 7.396 7.395 7.395 7.378 6.881 6.856 6.868 6.868 6.856 6.868 6.870 6.5719 5.771 5.7719 5.7716 5.7716 5.7719 5.7716 5.7719 5.

¹H NMR (500 MHz, CDCl₃)

-10.327

7.960 7.946 7.946 7.539 7.553 7.550 7.550 7.498 7.498 7.467 7.458 7.467 7.458 7.441 7.458 7.441 7.458 7.441 7.458 7.441 7.458 7.456 7.337 7.065 6.002 6.002 6.002

-1.327

δ (ppm) -1

--3.586

7.961 7.956 7.851 7.847 7.827 7.823 7.525 7.525 7.505

¹H NMR (400 MHz, CDCl₃)

-3.587

¹³C NMR (101 MHz, CDCl₃)

---112.018

20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
							<u>δ</u> (p	pm)					

diffe-	والطالعة تحب	مروفية الفاري والمراجع	أسائل الشاط المشاور الطرية	فستوت أطاسأطيا	فبالطام ويحمل	فالدعما ومقاودا	والاستخاصة	والاستان والمراقة	الدأمذات	and distant	بما طلاسة	أخال سرقاتك	فيتقر أدراقه	وأدائه الال دافقية	سالتسعط	فاقتدم أعلاه	والنواش أرارا	وراقعه والرامل	فاستناط التعاه	الشرقية والاتراكا	وتستعلمه والتقاقط	أرأنا وتشرحه لأرأه	فطارتها الشارحان	الأولاء والدفا لأسطاذ	الدلاصلعناد	الكلار أتتر أحجليك	Lin.
	110117-0	110 12 111			11111		CML . M	11.2.11	UTIT IN T	ULUUL.		IL ALL D				N 17 I I		17 P. UI							in the second	1 21 27	دير
uli il	فليتكلمون	이 아무지 가지 아무				1.000			100.00	110,000	و المعلياء			1.11.11.11.1					NW NY N	وهروا والكفرا	التراجد ليترب		as best in this is a			ورزاد والمحداد	10.00

1		1											· · · · ·
20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
							δ(p	opm)					

7.3990 7.876 7.876 7.853 7.855 7.2855 7.294 7.7394 7.7394 7.7394 7.7399 7.7399 7.7191 7.7191 7.7193 7.7197 7.7193 7.7194 7.7193 7.7194 7.7197

¹H NMR (400 MHz, CDCl₃)

110 δ (ppm) 210 190 170 150 130 90 80 70 60 50 40 30 20 10 0 -1

7.980 7.974 7.974 7.841 7.811 7.811 7.811 7.735 7.735 7.719 7.719 7.719 7.719 7.719 7.719 7.719 7.719 7.719 7.719 7.719 7.717 7.715 7.757 7.715

-3.600

¹⁹F NMR (471 MHz, CDCl₃)

T									· · · ·				
20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 δ(ppm)											-150	-210	

--3.570

8.161 8.157 8.157 8.145 8.145 8.145 8.145 8.145 8.145 8.145 8.145 7.962 7.962 7.962 7.962 7.962 7.851 7.855 7.853 7.7383 7.73837 7.73837 7.719 7.719 7.719 7.719 7.719 7.7102 6.566 6.595 6.556

--3.948 --3.581

¹H NMR (500 MHz, CDCl₃)

--3.585

-1.510

-3.623

¹H NMR (400 MHz, CDCl₃)

--3.605

¹H NMR (400 MHz, CDCl₃)

8.183 8.177 8.177 8.031 8.031 8.007 8.007 6.574 6.551 4.812 4.807 4.802 4.569 4.569 4.192 3.613

¹H NMR (400 MHz, CDCl₃)

-5.153

7.937 7.911 7.911 7.905 7.905 7.697 7.697 7.683 7.683 7.683 7.683 7.683 7.683 7.590 7.590 7.590 7.503 7.550 7.550 7.550 6.652 6.652 6.652 4.669 4.669 4.666

— •												· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
20	10	0	-10	-30	-50	-70	-90 δ (pp	-110 om)	-130	-150	-170	-190	-210

222232444	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, , , , , , , , , , , , , , , , , , ,
		,

8.005 8.001 7.971 7.971 7.952 7.7.952 7.7.952 7.7.955 7.7.955 7.7.955 7.7.955 7.7.955 7.7.495 7.7.495 7.7.495 7.7.495 7.7.495 7.7.495 7.7.495 7.7.495 7.7.495 7.7.706 7.7.706 7.7.705 7.705 7.70

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

-1.332

¹H NMR (400 MHz, CDCl₃)

3.686 3.595 3.102 2.917 2.639 2.639 2.605

