Selective Detection of Chemical Warfare Agents VX and Sarin by Short Wavelength Inner Filter Technique (SWIFT)

Supporting Information

Orit Redy Keisar, ^a Alexander Pevzner, ^b Abhishek Baheti, ^c Arkadi Vigalok*^c and Nissan Ashkenazi*^a

- ^a Department of Organic Chemistry, IIBR-Israel Institute for Biological Research, P.O.Box 19, Ness Ziona, 7410001, Israel. E-Mail: <u>Nissan.ashkenazi@iibr.gov.il</u>
- ^b Department of Physical Chemistry, IIBR-Israel Institute for Biological Research, P.O.Box 19, Ness Ziona, 7410001, Israel.
- ° School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv 69978, Israel. E-mail: avigal@tauex.tau.ac.il

Chemicals

VX, Me-VX and GB and were synthesized locally at IIBR (>99% purity).

Warning!! These chemicals are extremely toxic and should be handled only by qualified personal using the adequate protecting gear.

BODIPY dye (1), Ellman's reagent (2), 2-diisopropyl-aminothane thiol, thiophenol and 2-methoxythiophenol were purchased from Sigma Aldrich and used without further purification.

Silylated *p*-nitrophenol (4) was synthesized as reported previously (A. Baheti and A. Vigalok *J. Am. Chem. Soc.* 2019, *141*, 12224.).

NMR spectroscopy

 $^{13}C{^{1}H}$ and $^{31}P{^{1}H}$ spectra were obtained at 125 and 202 MHz, respectively, at room temperature on a 11.7 T (500 MHz) Bruker spectrometer (Avance III HD). Chemical shifts were calibrated to TMS (for ^{13}C) and trimethyl phosphate (for ^{31}P) as 0 ppm. The spectra were recorded using the standard parameters of the TopSpin NMR software (version 3.5).

<u>NMR Experiments</u>: **GB** (2 mg, 14 mmol) and **4** (10 mg, 27 mmol) were dissolved in 99.8% CD₃OD (0.5 ml) containing 0.02% water. The solution was kept at rt and the ³¹P and ¹⁹F spectra were recorded at t=0 and 60 min. Only a small (4%>) decomposition of **GB** to *i*-propyl methylphosphonic acid could be observed (Fig. S15-S16 bellow).

Absorbance and emission measurements

UV-Vis spectra of all compounds were acquired using a Shimadzu UV-2401 dualbeam spectrophotometer equipped with halogen and deuterium lamps (190 nm–900 nm range), with a resolution of 0.1 nm.

The fluorescence spectra were collected by JASCO FP-8300 spectrofluorometer equipped with a Xenon arc lamp as the source of UV radiation and 1.0 cm path length cuvette (4 ml in volume). The excitation and emission slit widths was set at 5 nm.

Visualization of the compounds was performed with 365nm LED lamp (pE-100-365nm, CoolLED, Andover, UK).

Absorption and emission spectra

Figure S1. Absorption spectra of **1** (20 μ M) with **2** (80 μ M) and VX (80/800 μ M) or different thiols (80 μ M) recorded in EtOH:H₂O (1:1).

Figure S2. Emission spectra of **1** (0.1 μ M) with **2** (15 μ M) and VX (50/10/200 μ M) or different thiols (50 μ M) recorded in EtOH:H₂O (1:1), λ ex=415nm.

Figure S3. Emission spectra of **1** (0.1 μ M) with **2** (15 μ M) and VX or different thiols (50 μ M) recorded in EtOH:H₂O (1:1), λ ex=480nm.

Figure S4. Emission spectra of **1** (0.1 μ M) with **2** (80 μ M), KF (80mM) and VX or Me-VX (5 μ M) recorded in EtOH:H₂O (1:1), t=30 min, λ ex=415nm.

Figure S5. Emission spectra of **1** (0.1 μ M) with **2** (80 μ M), KF (80mM) and VX or Me-VX (5 μ M) recorded in EtOH:H₂O (1:1), t=30 min, λ ex=470nm.

Figure S6. Absorption spectra of **1** (20 μ M) with **2** (80 μ M), KF (80mM) and VX (80 μ M) recorded in EtOH:H₂O (1:1).

Figure S7. Absorption spectra of 1 (20 μ M) with 2 (80 μ M), KF (80mM) and Me-VX (80 μ M) recorded in EtOH:H₂O (1:1).

Figure S8. Absorption spectra of **1** (10 μ M) with **4** (250 μ M), Et₃N (250 μ M), KF (10 μ M) and GB (10 μ M) recorded in MeOH:H₂O (9:1).

Figure S9. Emission spectra of 1 (1 μ M) with 4 (500 μ M), and GB (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=390nm.

Figure S10. Emission spectra of **1** (1 μ M) with **4** (500 μ M), and KF (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=390nm.

Figure S11. Emission spectra of **1** (1 μ M) with **4** (500 μ M), Et₃N (500 μ M), and GB (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=390nm.

Figure S12. Emission spectra of **1** (1 μ M) with **4** (500 μ M), Et₃N (500 μ M), and GB (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=470nm.

Figure S13. Emission spectra of 1 (1 μ M) with 4 (500 μ M), Et₃N (500 μ M), GB (100 μ M), KF (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=390nm.

Figure S14. Emission spectra of **1** (1 μ M) with **4** (500 μ M), Et₃N (500 μ M), GB (100 μ M), KF (100 μ M) recorded in MeOH:H₂O (9:1), λ ex=470nm.

Figure S15. ³¹P NMR spectra of GB, 4 and H₂O in CD₃OD

Figure S16. ¹⁹F NMR spectra of GB, 4 and H_2O in CD_3OD