Regioselective C(*sp*³)-**H Fluorination of Ketones: From Methyl to Monofluoromethyl Group**

Qiu-Zi Wu, Yang-Jie Mao, Kun Zhou, Hong-Yan Hao, Lei Chen, Shuang Wang, Zhen-Yuan Xu, Shao-Jie Lou,* and Dan-Qian Xu*

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Table of Contents

I.	General	S2
II.	Preparation and characterization of the starting materials	S3
III.	Screening of the fluorination conditions	S17
IV.	Removal of auxiliary and large-scale synthesis	S20
V.	Characterization of fluorination products	S21
VI.	X-Ray data for 4-CH₂F	S33
VII.	References	\$34
VIII.	NMR Spectra	S35

I. General

Unless otherwise stated, all experiments were carried out under air atmosphere. The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker AVANCE III 500 instrument in CDCl₃ using TMS as an internal standard, operating at 500 MHz and 126 MHz, respectively. Chemical shifts (δ) are expressed in ppm and coupling constants *J* are given in Hz. For CDCl₃ solutions, the chemical shifts are reported as parts per million (ppm) to residual protium or carbon of the solvents; CHCl₃ δ H (7.26 ppm) and CDCl₃ δ C (77.03 ppm); ¹⁹F NMR spectra were recorded on a Bruker AVANCE III or Ascend400. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet. GC experiments were carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra (HRMS (ESI-TOF)) were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

II. Preparation and characterization of the starting materials

Substrates used in this paper:

Ketones for substrates 1a, 1q, 1r, 1s, 1t, 1u, 1v, 1w, 1x and Stantoin-DG₅ are commercially available. Ketones for substrates 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1l and 1m were synthesized following the literature procedures.¹ Ketones for substrates 1n, 1o and 1p were synthesized following the literature procedures.² Ketone for substrate 4-DG₅ was synthesized following the literature procedure.³

Scheme S1. Synthetic route for the oxime substrates

Step 1: The alkanone-3-iminooxy-2-acetic acids were prepared according to the literature.¹ Ketone (3.0 mmol, 1.0 equiv.) and aminooxyacetic acid hemihydrochloride (0.50 g, 3.9 mmol, 1.3 equiv.) were weighed into an oven dried 50 mL round bottom flask. Then pyridine (5 mL) was added and the mixture was stirred at 70 °C for 4 h. Upon completion, most pyridine was evaporated under vacuum. The resulting mixture was diluted with EtOAc (50 mL) and washed successively with water (30 mL) for three times and diluted HCl aqueous solution (50 mL, ca. 0.03 M). The organic phase was dried with anhydrous MgSO₄ and the solvent was removed under vacuum. The pure compounds were obtained in good yields for all cases without chromatography and used for next step directly. (Ketones for substrates **1m**, **1q**, **1r**, **1u**, **Stantoin-DG**₅ and **4-DG**₅ were stirred at 100 °C for 8 h)

Step 2: The amidation proceeded the literature.4 process was according to Alkanone-3-iminooxy-2-acetic acid obtained in the previous step was dissolved in CH₂Cl₂ (20 mL) under stirring at 0 °C, oxalyl chloride (0.46 g, 3 mmol, 1.2 equiv.) was added dropwise followed by two drops of DMF. The mixture was allowed to warm to room temperature and stirred for 3 h. Upon completion, the solvent and excess oxalyl chloride were removed under reduced pressure. The residue was dissolved in toluene (20 mL) and amine (3 mmol, 1.0 equiv.) was then added. Then the mixture was stirred under the room temperature for 2 h. After cooled down to room temperature, the mixture was concentrated in *vacuo* and purified by flash column chromatography on silica gel to afford the final oxime ether product (Substrates of DG-2 and DG-3 were stirred and refluxed for 3 h after the toluene was added.)

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-2): Colorless solid; $R_f = 0.57$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 4.68 (s, 2H), 1.94 (s, 3H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 167.9, 143.9-143.5 (m), 142.0-141.5 (m), 140.3-139.8 (m), 139.1-138.7 (m), 136.9-136.6 (m), 112.5-111.3 (m), 72.3, 37.5, 27.5, 11.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₅F₅N₂O₂Na 361.0951, found: 361.0952.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-3): Colorless solid; $R_f = 0.73$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 1.92 (s, 3H), 1.57 (s, 6H), 1.15 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 166.7, 143.9-143.5 (m), 142.0-141.5 (m), 141.8-141.6 (m), 139.1-138.5 (m), 137.0-136.5 (m), 112.5-112.0 (m), 82.7, 37.8, 27.5, 24.4, 10.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₉F₅N₂O₂Na 389.1264, found: 389.1268.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-4): Colorless solid; $R_f = 0.54$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.24 (s, 1H), 7.18-7.09 (m, 2H), 6.57 (tt, *J* = 8.9, 2.3 Hz, 1H), 4.59 (s, 2H), 1.95 (s, 3H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 167.7, 163.2 (dd, *J* = 246.5, 14.6 Hz), 139.5 (t, *J* = 13.3 Hz), 103.0-102.5 (m), 99.6 (t, *J* = 25.6 Hz), 72.6, 37.5, 27.6, 11.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₈F₂N₂O₂Na 307.1234, found: 307.1235.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-5): Colorless solid; $R_f = 0.58$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.47 (s, 1H), 8.03 (s, 2H), 7.63 (s, 1H), 4.64 (s, 2H), 1.98 (s, 3H), 1.17 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 168.0, 138.8, 132.5 (q, *J* = 33.6 Hz), 123.1 (q, *J* = 272.7 Hz), 119.5-119.4 (m), 117.7-117.6 (m), 72.6, 37.6, 27.6, 11.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₈F₆N₂O₂Na 407.1170, found: 407.1168.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-6): Colorless solid; $R_f = 0.47$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.53 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 4.62 (s, 2H), 1.96 (s, 3H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.0, 137.3, 129.0, 124.4, 119.8, 72.8, 37.4, 27.6, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₄H₂₀N₂O₂Na 271.1422, found: 271.1423.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-7): Colorless solid; $R_f = 0.51$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.16 (s, 2H), 6.78 (s, 1H), 4.61 (s, 2H), 2.32 (s, 6H), 1.96 (s, 3H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 166.8, 138.7, 137.1, 126.2, 117.6, 72.8, 37.4, 27.6, 21.3, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₆H₂₄N₂O₂Na 299.1735, found: 299.1737.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3,3-dimethylbutan-2-ylidene)amino)oxy)acetamide (DG-8): Colorless solid; $R_f = 0.60$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 4.62 (s, 2H), 1.96 (s, 3H), 1.32 (s, 9H), 1.16 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 166.8, 147.4, 134.6, 125.8, 119.7, 72.8, 37.4, 34.4, 31.3, 27.6, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₈N₂O₂Na 327.2048, found: 327.2052.

(E) - N-(3,5-bis(trifluoromethyl) phenyl) - 2-(((1-cyclobutyl-3-fluoro-2,2-dimethyl propylidene) amino-2) - 2-((1-cyclobutyl-3-fluoro-2,2-dimethyl propylidene) amino-2) - 2-((1-cyclobutyl-3-fluoro-2,2-dimethyl propylidene) - 2-((1-cyclobutyl-3-fluoro-2,2-fluoro-2,2-dimethyl propylidene) - 2-((1-cyclobutyl-3-fluoro-

)**oxy**)**acetamide** (**DG-9**): Colorless solid; $R_f = 0.32$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (s, 1H), 6.76 (s, 2H), 6.26 (s, 1H), 4.60 (s, 2H), 3.79 (s, 6H), 1.95 (s, 3H), 1.15 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 167.1, 161.1, 139.0, 98.1, 96.7, 72.8, 55.4, 37.4, 27.6, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₆H₂₄N₂O₄Na 331.1634, found: 331.1636.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-10): Colorless solid; $R_f = 0.51$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.69 (s, 1H), 8.46 (dd, J = 8.0, 1.6 Hz, 1H), 7.06 (td, J = 7.9, 1.6 Hz, 1H), 6.98 (td, J = 7.7, 1.1 Hz, 1H), 6.89 (dd, J = 8.1, 1.2 Hz, 1H), 4.65 (s, 2H), 3.85 (s, 3H), 1.99 (s, 3H), 1.15 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 166.2, 147.9, 127.2, 123.7, 121.1, 119.5, 110.0, 73.0, 55.6, 37.3, 27.4, 10.7; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₅H₂₂N₂O₃Na 301.1528, found: 301.1529.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (DG-11): Colorless solid; $R_f = 0.49$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 10.60 (s, 1H), 8.86-8.81 (m, 1H), 8.74 (dd, J = 4.2, 1.6 Hz, 1H), 8.15 (d, J = 9.8 Hz, 1H), 7.57-7.49 (m, 2H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 4.79 (s, 2H), 2.17 (s, 3H), 1.14 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 166.5, 148.0, 138.7, 136.2, 134.1, 128..0, 127.3, 121.7, 121.5, 116.4, 73.2, 37.4, 27.4, 11.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₁N₃O₂Na 322.1531, found: 322.1534.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3,3-dimethyl-4-phenylbutan-2-ylidene)amino)oxy)acetamide (1b): Colorless solid; $R_f = 0.46$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H), 7.23 (t, J = 7.3 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 6.9 Hz, 2H), 4.57 (s, 2H), 2.79 (s, 1H), 2.03 (s, 3H), 1.33 (s, 9H), 1.15 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 165.6, 147.5, 137.8, 134.5, 130.2, 127.9, 126.4, 125.8, 119.9, 72.8, 46.2, 41.7, 34.4, 31.4, 25.4, 11.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₂N₂O₂Na 403.2361, found: 403.2365.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3,3-dimethyl-1-phenylbutan-2-ylidene)amino)oxy)acetamide (1c): Colorless solid; $R_f = 0.59$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.33-7.30 (m, 2H), 7.27-7.23 (m, 3H), 7.20 (d, J = 8.7 Hz, 2H), 4.63 (s, 2H), 3.84 (s, 2H), 1.32 (s, 9H), 1.21 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 167.0, 147.4, 137.1, 134.4, 128.8, 127.9, 126.4, 125.6, 119.9, 73.0, 37.8, 34.4, 32.1, 31.4, 28.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₂N₂O₂Na 403.2361, found: 403.2369.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3,3-dimethyl-1-(naphthalen-2-yl)butan-2-ylidene)amino)oxy)ace tamide (1d): Colorless solid; $R_f = 0.61$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.54 (m, 4H), 7.49-7.42 (m, 3H), 7.40-7.35 (m, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.20-7.15 (m, 2H), 7.12-7.05 (m, 2H), 4.67 (s, 2H), 3.87 (s, 2H), 1.26 (s, 9H), 1.26 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 166.6, 147.3, 140.4, 139.3, 136.2, 134.2, 128.7, 128.4, 127.5, 127.3, 127.0, 125.6, 119.9, 73.2, 37.8, 34.3, 31.8, 31.3, 28.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₈H₃₄N₂O₂Na 497.2674, found: 497.2674.

(E)-N-(4-(tert-butyl)phenyl)-2-(((2,2-dimethyl-1-phenylpropylidene)amino)oxy)acetamide (1e): Colorless solid; $R_f = 0.59$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.66 (s, 1H), 7.54-7.49 (m, 2H), 7.49-7.43 (m, 1H), 7.37 (s, 4H), 7.18-7.12 (m, 2H), 4.61 (s, 2H), 1.34 (s, 9H), 1.22 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 167.7, 147.3, 134.6, 134.1, 128.3, 128.1, 127.0, 125.8, 119.3, 72.9, 37.5, 34.3, 31.3, 28.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₃₀N₂O₂Na 389.2205, found: 389.2205.

(E)-N-(4-(tert-butyl)phenyl)-2-(((1-(4-iodophenyl)-2,2-dimethylpropylidene)amino)oxy)acetamide (1f): Colorless solid; $R_f = 0.70$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 2H), 7.58 (s, 1H), 7.41-7.32 (m, 4H), 6.90 (d, J = 8.3 Hz, 2H), 4.58 (s, 2H), 1.33 (s, 9H), 1.20 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 167.4, 147.5, 137.5, 134.5, 133.4, 128.9, 125.9, 119.4, 94.1, 72.9, 37.5, 34.4, 31.4, 28.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₉IN₂O₂Na 515.1171, found: 515.1175.

(E)-N-(4-(tert-butyl)phenyl)-2-(((1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2,2-dimethylpropyliden e)amino)oxy)acetamide (1g): Colorless solid; $R_f = 0.43$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.42 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.67 (d, *J* = 1.9 Hz, 1H), 6.60 (dd, *J* = 8.2, 2.0 Hz, 1H), 4.61 (s, 2H), 4.33 (s, 4H), 1.33 (s, 9H), 1.19 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 167.9, 147.3, 143.5, 134.7, 126.9, 125.8, 120.1, 119.3, 117.3, 116.1, 72.9, 64.4, 37.7, 34.4, 31.4, 28.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₂N₂O₄Na 447.2260, found: 447.2260.

(E)-N-(4-(tert-butyl)phenyl)-2-(((2,2-dimethyl-1-(thiophen-3-yl)propylidene)amino)oxy)acetamid e (1h): Colorless solid; $R_f = 0.68$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 1H), 7.49 (dd, J = 4.9, 2.9 Hz, 1H), 7.37 (s, 4H), 7.18 (dd, J = 2.9, 1.2 Hz, 1H), 7.00 (dd, J = 4.9, 1.2 Hz, 1H), 4.62 (s, 2H), 1.33 (s, 9H), 1.21 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 165.4, 147.4, 134.5, 132.8, 127.4, 125.8, 125.6, 122.4, 119.4, 72.8, 37.6, 34.3, 31.3, 28.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₈N₂O₂SNa 395.1769, found: 395.1769.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-2,2-dimethylpropylidene)amino)oxy)acetami de (1i): Colorless solid; $R_f = 0.71$ (petroleum ether-EtOAc = 5:1); ¹**H** NMR (500 MHz, CDCl₃) (major isomer) δ 8.55 (d, *J* = 10.1 Hz, 1H), 8.02 (s, 2H), 7.62 (s, 1H), 4.64 (s, 2H), 3.45 (p, *J* = 9.2 Hz, 1H), 2.72 (pd, *J* = 9.5, 2.3 Hz, 2H), 2.28-2.20 (m, 2H), 2.11-1.95 (m, 2H), 1.16 (s, 9H); ¹**H** NMR (500 MHz, CDCl₃) (minor isomer) δ 8.55 (d, *J* = 10.1 Hz, 1H), 8.02 (s, 2H), 7.62 (s, 1H), 4.65 (s, 2H), 3.26 (p, *J* = 8.4 Hz, 1H), 2.72 (pd, *J* = 9.5, 2.3 Hz, 2H), 2.28-2.20 (m, 2H), 2.11-1.95 (m, 2H), 1.32 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 170.9, 169.4, 138.9, 132.5 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 272.8 Hz), 119.4-119.2 (m), 117.7-117.5 (m), 72.8, 38.3, 35.2, 27.8, 27.4, 19.1; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 170.9, 170.1, 138.9, 132.5 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 272.8 Hz), 119.3, 117.7-117.5 (m), 72.9, 38.8, 37.7, 28.0, 27.4, 18.0; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₂F₆N₂O₂Na 447.1483, found: 447.1484.

N-(4-(tert-butyl)phenyl)-2-((((1E,3E)-4,4-dimethyl-1-phenylpent-1-en-3-ylidene)amino)oxy)aceta mide (1j): Colorless solid; $R_f = 0.57$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.47-7.41 (m, 2H), 7.41-7.35 (m, 4H), 7.35-7.32 (m, 2H), 6.71 (d, J =16.8 Hz, 1H), 4.71 (s, 2H), 1.31 (s, 9H), 1.28 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 163.8, 147.5, 139.7, 136.3, 134.6, 129.1, 128.9, 127.0, 125.9, 119.6, 116.6, 73.3, 37.8, 34.4, 31.4, 28.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₂N₂O₂Na 415.2361, found: 415.2367.

ethyl

(E)-3-((2-((3,5-bis(trifluoromethyl)phenyl)amino)-2-oxoethoxy)imino)-4,4-dimethylpentanoate (1k): Colorless solid; $R_f = 0.47$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 9.56 (s, 1H), 8.41 (s, 2H), 7.59 (s, 1H), 4.71 (s, 2H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.51 (s, 2H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 169.7, 161.7, 139.9, 132.1 (q, *J* = 33.1 Hz), 123.3 (q, *J* = 272.7 Hz), 119.6-119.4 (m), 117.1-116.9 (m), 73.2, 62.2, 37.4, 31.4, 27.1, 14.0; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₂F₆N₂O₄Na 479.1381, found: 479.1381.

ethyl (E)-3-((2-((4-(tert-butyl)phenyl)amino)-2-oxoethoxy)imino)-2,2-dimethylbutanoate (11): Colorless solid; $R_f = 0.50$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 4.66 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.95 (s, 3H), 1.41 (s, 6H), 1.32 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 168.2, 161.7, 147.5, 134.6, 125.8, 119.8, 73.0, 61.2, 49.1, 34.4, 31.3, 23.1, 14.1, 12.6; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₃₀N₂O₄Na 385.2103, found: 385.2106.

ethyl

(E)-2-((2-((3,5-bis(trifluoromethyl)phenyl)amino)-2-oxoethoxy)imino)-1-methylcyclohexane-1-car boxylate (1m): Colorless solid; $R_f = 0.50$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.39 (s, 1H), 8.21 (s, 2H), 7.61 (s, 1H), 4.77-4.62 (m, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.34-3.22 (m, 1H), 2.51-2.37 (m, 1H), 2.01-1.99 (m, 1H), 1.82-1.84 (m, 1H), 1.53-1.41 (m, 3H), 1.38 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 169.5, 164.2, 139.0, 132.3 (q, *J* = 33.4 Hz), 123.2 (q, *J* = 272.7 Hz), 119.9-119.7 (m), 117.6-117.3 (m), 72.7, 61.5, 50.1, 37.2, 25.1, 24.1, 22.8, 22.7, 14.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₂F₆N₂O₄Na 491.1381, found: 491.1390.

(E)-5-((2-((4-(tert-butyl)phenyl)amino)-2-oxoethoxy)imino)-6,6-dimethylheptyl acetate (1n): Yellow oil; $R_f = 0.29$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.43 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.60 (s, 2H), 4.13 (t, J = 6.4 Hz, 2H), 2.42-2.34 (m, 2H), 2.02 (s, 3H), 1.75 (p, J = 6.9, 6.3 Hz, 2H), 1.71-1.63 (m, 2H), 1.31 (s, 9H), 1.16 (s, 9H); ¹³C NMR (126 MHz, 2H), 2.42-2.34 (m, 2H), CDCl₃) δ 171.1, 169.6, 168.5, 147.5, 134.6, 125.9, 119.6, 72.9, 63.7, 37.7, 34.3, 31.3, 29.2, 27.7, 26.1, 23.4, 20.9; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₃₆N₂O₄Na 427.2573, found: 427.2577.

(E)-N-(4-(tert-butyl)phenyl)-2-(((7-(1,3-dioxoisoindolin-2-yl)-2,2-dimethylheptan-3-ylidene)amino)oxy)acetamide (10): Colorless solid; $R_f = 0.29$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.79 (dd, J = 5.4, 3.1 Hz, 2H), 7.68 (dd, J = 5.5, 3.0 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.50 (s, 2H), 3.75 (t, J = 7.1 Hz, 2H), 2.47-2.35 (m, 2H), 1.83 (p, J = 7.3 Hz, 2H), 1.69-1.59 (m, 2H), 1.31 (s, 9H), 1.13 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 168.5, 168.4, 147.3, 134.7, 133.9, 131.9, 125.8, 123.1, 119.6, 72.8, 37.6, 37.2, 34.3, 31.3, 28.9, 27.7, 26.1, 23.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₉H₃₇N₃O₄Na 514.2682, found: 514.2681.

(E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (4 - (tert - butyl) phenyl) - 2 - (((7 - chloro - 2, 2 - dimethyl heptan - 3 - ylidene) amino) oxy) acetamide (E) - N - (tert - butyl) - 2 - (tert - buty

(**1p**): Colorless solid; $R_f = 0.53$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 4.61 (s, 2H), 3.61 (t, J = 6.4 Hz, 2H), 2.41-2.35 (m, 2H), 1.90 (p, J = 6.7 Hz, 2H), 1.83-1.73 (m, 2H), 1.32 (s, 9H), 1.17 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 168.5, 147.5, 134.6, 125.9, 119.7, 72.9, 44.4, 37.7, 34.4, 32.9, 31.4, 27.8, 25.7, 24.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₁H₃₃ClN₂O₂Na 403.2128, found: 403.2131.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((1R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ylidene)ami no)oxy)acetamide (1q): Colorless solid; $R_f = 0.64$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.50 (s, 1H), 8.01 (s, 2H), 7.63 (s, 1H), 4.58 (s, 2H), 1.92 (s, 1H), 1.87-1.83 (m, 1H), 1.78 (dd, J = 10.3, 1.9 Hz, 1H), 1.68-1.63 (m, 2H), 1.47-1.41 (m, 2H), 1.40 (s, 3H), 1.37 (s, 3H), 1.24 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 176.8, 169.5, 138.9, 132.5 (q, J = 33.6 Hz), 123.1 (q, J = 272.7 Hz), 119.3-119.1 (m), 117.8-117.6 (m), 72.8, 50.8, 48.6, 45.1, 43.4, 34.4, 25.2, 23.6,

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((1R,4R,E)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)a mino)oxy)acetamide (**1r):** Colorless solid; $R_f = 0.50$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.02 (s, 2H), 7.63 (s, 1H), 4.62 (d, *J* = 3.9 Hz, 2H), 2.64 (dt, *J* = 18.1, 3.8 Hz, 1H), 2.14 (d, *J* = 18.1 Hz, 1H), 2.01 (t, *J* = 4.4 Hz, 1H), 1.96-1.88 (m, 1H), 1.80 (td, *J* = 12.3, 4.1 Hz, 1H), 1.50-1.45 (m, 1H), 1.33-1.28 (m, 1H), 1.03 (s, 3H), 0.97 (s, 3H), 0.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 169.3, 138.8, 132.5 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 272.7 Hz), 119.4-119.3 (m), 117.8-117.6 (m), 72.6, 52.6, 48.4, 43.7, 34.2, 32.8, 27.2, 19.4, 18.4, 11.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₂F₆N₂O₂Na 459.1483, found: 459.1486.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((2,4-dimethylpentan-3-ylidene)amino)oxy)acetamide (1s): Colorless solid; $R_f = 0.64$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.01 (s, 2H), 7.63 (s, 1H), 4.61 (s, 2H), 3.22-3.14 (m, 1H), 2.67-2.58 (m, 1H), 1.25 (d, *J* = 7.1 Hz, 6H), 1.16 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 169.4, 138.8, 132.5 (q, *J* = 33.5 Hz), 123.0 (q, *J* = 272.8 Hz), 119.3-119.2 (m), 117.8-117.6 (m), 72.7, 31.3, 28.7, 21.2, 19.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₀F₆N₂O₂Na 421.1327, found: 421.1328.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((3-methylbutan-2-ylidene)amino)oxy)acetamide (1t): Colorless solid; $R_f = 0.53$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.29 (s, 1H), 7.96 (s, 2H), 7.55 (s, 1H), 4.54 (s, 2H), 2.53-2.44 (m, 1H), 1.88 (s, 3H), 1.06 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 166.3, 138.7, 133.5 (q, J = 34.4 Hz), 123.1 (q, J = 274.2 Hz),

119.5-119.4 (m), 117.8-117.7 (m), 72.5, 34.5, 19.7, 12.1; **HRMS** (ESI-TOF) m/z: $[M+Na]^+$ Calcd. for $C_{15}H_{16}F_6N_2O_2Na$ 393.1014, found: 393.1019.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((2-methylcyclohexylidene)amino)oxy)acetamide (1u): Colorless solid; $R_f = 0.57$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.05 (s, 2H), 7.63 (s, 1H), 4.62 (s, 2H), 3.12-3.00 (m, 1H), 2.43-2.36 (m, 1H), 2.13-2.07 (m, 1H), 1.98-1.89 (m, 1H), 1.88-1.79 (m, 2H), 1.62-1.48 (m, 2H), 1.43-1.31 (m, 1H), 1.13 (d, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 167.3, 138.8, 132.5 (q, J = 33.5 Hz), 123.1 (q, J = 272.6 Hz), 119.5-119.4 (m), 118.0-117.3 (m), 72.5, 37.2, 35.6, 26.3, 24.9, 24.2, 16.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₈F₆N₂O₂Na 419.1170, found: 419.1173.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclohexylethylidene)amino)oxy)acetamide (1v): Colorless solid; $R_f = 0.56$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.41 (s, 1H), 8.04 (s, 2H), 7.63 (s, 1H), 4.62 (s, 2H), 2.26-2.19 (m, 1H), 1.96 (s, 3H), 1.84-1.77 (m, 4H), 1.40-1.26 (m, 5H), 1.26-1.16 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 165.7, 138.8, 132.43 (q, *J* = 33.5 Hz), 123.7 (q, *J* = 272.8 Hz), 119.5-119.4 (m), 117.7-117.6 (m), 72.5, 44.5, 30.1, 25.9, 12.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₀F₆N₂O₂Na 433.1327, found: 433.1327.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((dicyclohexylmethylene)amino)oxy)acetamide (1w): Colorless solid; $R_f = 0.67$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.01 (s, 2H), 7.62 (s, 1H), 4.59 (s, 2H), 2.96 (tt, J = 12.1, 3.4 Hz, 1H), 2.26 (tt, J = 11.5, 2.9 Hz, 1H), 1.87-1.77 (m, 6H), 1.71 (d, J = 12.7 Hz, 3H), 1.65-1.60 (m, 2H), 1.57 (dd, J = 12.5, 3.3 Hz, 1H), 1.41-1.16 (m, 8H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 169.5, 138.9, 132.5 (q, J = 33.5 Hz), 123.1 (q, J = 272.8 Hz), 119.3-119.2 (m), 117.7-117.5 (m), 72.6, 41.2, 39.3, 31.9, 28.9, 26.3, 26.2, 25.9, 25.9; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₈F₆N₂O₂Na 501.1953, found: 501.1956.

2-((((E)-1-((3r,5r,7r)-adamantan-1-yl)ethylidene)amino)oxy)-N-(3,5-bis(trifluoromethyl)phenyl)ac etamide (1x): Colorless solid; $R_f = 0.61$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 8.04 (s, 2H), 7.63 (s, 1H), 4.63 (s, 2H), 2.07 (s, 3H), 1.93 (s, 3H), 1.80 (d, J = 2.7 Hz, 7H), 1.77 (s, 2H), 1.70 (d, J = 12.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 168.1, 138.8, 132.5 (q, J = 33.5 Hz), 123.1 (q, J = 272.7 Hz), 119.5-119.3 (m), 117.7-117.5 (m), 72.6, 39.6, 39.5, 36.6, 28.1, 10.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₄F₆N₂O₂Na 485.1640, found: 485.1640.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((3aS,5aS,9bS,Z)-3,5a,9-trimethyl-2-oxo-2,3,3a,5,5a,9b-hex ahydronaphtho[1,2-b]furan-8(4H)-ylidene)amino)oxy)acetamide (Stantoin-DG₅): Colorless solid; $R_f = 0.41$ (petroleum ether-EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 8.05 (s, 2H), 7.63 (s, 1H), 6.95 (d, J = 10.1 Hz, 1H), 6.22 (d, J = 10.1 Hz, 1H), 4.82 (d, J = 11.0 Hz, 1H), 4.73 (s, 2H), 2.43-2.34 (m, 1H), 2.16 (s, 3H), 2.08-1.96 (m, 1H), 1.87-1.80 (m, 2H), 1.71 (td, J = 12.6, 3.7 Hz, 1H), 1.54 (td, J = 13.2, 4.4 Hz, 1H), 1.31 (s, 3H), 1.28 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.8, 168.9, 153.0, 147.9, 141.2, 138.7, 132.4 (q, J = 33.8 Hz), 125.2 (q, J = 273.8 Hz), 122.2, 119.6-119-5 (m), 117.9-117.5 (m), 112.3, 82.1, 73.2, 53.5, 41.2, 41.0, 38.2, 25.7, 23.6, 12.4, 12.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₄F₆N₂O₄Na 553.1538, found: 553.1547.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((3aS,5aS,9bS,Z)-3,5a,9-trimethyl-2-oxo-2,3,3a,5,5a,9b-hex ahydronaphtho[1,2-b]furan-8(4H)-ylidene)amino)oxy)acetamide (4-DG₅): Colorless solid; $R_f = 0.39$ (petroleum ether-EtOAc = 2:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 8.05 (s, 2H), 7.64 (s, 1H), 4.71 (s, 2H), 4.71-4.67 (m, 1H), 3.12 (dt, J = 17.3, 4.0 Hz, 1H), 2.42-2.30 (m, 2H), 2.10 (d, J = 1.2 Hz, 3H), 2.03-1.96 (m, 1H), 1.94-1.86 (m, 1H), 1.77-1.70 (m, 2H), 1.70-1.63 (m, 2H), 1.50 (td, J = 13.3, 4.3 Hz, 1H), 1.28 (d, J = 6.9 Hz, 3H), 1.26 (s, 3H); ¹³**C** NMR (126 MHz, CDCl₃) δ 178.0, 168.8, 160.2, 143.1, 138.7, 132.5 (q, J = 33.5 Hz), 123.4, 123.1 (q, J = 272.7 Hz), 119.6-119.5 (m), 117.9-117.7 (m), 82.6, 73.1, 52.9, 41.5, 41.1, 37.4, 37.2, 24.6, 24.5, 19.6, 12.8, 12.4; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₆F₆N₂O₄Na 555.1694, found: 555.1685.

III. Screening of the fluorination conditions

A. $C(sp^3)$ -H fluorination of ketone oximes

^a Reaction conditions: **DG-X** (0.05 mmol), $Pd(OAc)_2$ (10 mol%), NFSI = N-fluorobenzenesulfonimide (0.1 mmol) and DCE = 1, 2-dichloroethane (0.5 mL) were added to a test tube, the mixture was stirred at 100 °C for 24 h. ^b₃ h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S2. Screening of reaction temperature^{*a*}

	CH ₃ 1a (DG-8)	Pd(OAc)₂ (10 mol%) <u>NFSI (2.0 equiv.)</u> DCE (0.1 M) T, 24 h	N N Za
Entry		T (°C)	Yield of 2a (%) ^b
1		50	35
2		75	58
3		100	66
4		120	42

^aReaction conditions: **1a** (0.05 mmol), $Pd(OAc)_2$ (10 mol%), NFSI = N-fluorobenzenesulfonimide (0.1 mmol) and DCE (0.5 mL) were added to a test tube, the mixture was stirred at indicated temperature for 24 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S3. Screening of solvents^{*a*}

O N 1a (DG	Pd(OAc) ₂ (10 mol%) NFSI (2.0 equiv.) Solvent (0.1 M) 100 °C, 24 h -8)	ON H CH ₂ F 2a
Entry	Solvent	Yield of 2a (%) ^b
1	DCE	66
2	CHCl ₃	55
3	HFIP	-
4	Toluene	57
5	PhCl	59
6	PhCF ₃	53
7	THF	19
8	1,4-dioxane	36
9	EtOAc	47
10	CH ₃ NO ₂	56
11	CH ₃ CN	4
12	DMF	0
13	Acetone	12

^aReaction conditions: **1a** (0.05 mmol), $Pd(OAc)_2$ (10 mol%), NFSI = N-fluorobenzenesulfonimide (0.1 mmol) and solvent (0.5 mL) were added to a test tube, the mixture was stirred at 100 °C for 24 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S4. Screening of Pd catalysts^a

	O N [Pd] (10 mol%) O N Image: NFSI (2.0 equiv.) O N DCE (0.1 M) O 100 °C, 24 h 1a (DG-8)	ON H CH ₂ F 2a
Entry	[Pd]	Yield of 2a (%) ^b
1	-	5
2	Pd(OAc) ₂	66+13 ^c (61) ^d
3	$PdCl_2$	54
4	Pd(dba) ₂	32
5	Pd(TFA) ₂	45
6	Pd(PPh ₃) ₄	40
7	$[PdCl(C_3H_5)]_2$	$66+3^{c}(64)^{d}$
8	PdCl ₂ (cod)	$61+2^{c}(62)^{d}$
9	Pd(CN)Cl ₂	$55+2^{c}(60)^{d}$
10	PdCl ₂ (C ₆ H ₅ CN) ₂	54 (59) ^d
11	PdCl ₂ (dppf) ₂	51
12	$PdCl_2[P(Cy)_3]_2$	11

^aReaction conditions: **1a** (0.05 mmol), [Pd] (10 mol%), NFSI = N-fluorobenzenesulfonimide (0.1 mmol) and DCE = 1, 2-dichloroethane (0.5 mL) were added to a test tube, the mixture was stirred at 100 °C for 24 h. ^cDi-fluorination products. ^d₃ h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S5. Screening of fluorinating reagents^a

^aReaction conditions: **1a** (0.05 mmol), $Pd(OAc)_2$ (10 mol%), Fluorination agent (0.1 mmol), and DCE = 1, 2-dichloroethane (1.0 mL) were added to a test tube, the mixture was stirred at 100 °C for 24 h. ^c₃ h. Yields were determined by GC-MS analysis using dodecane as an

internal standard.

B. General conditions for the substrate scope research

In a 10 mL test tube equipped with a stir bar, substrate (0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), NFSI (126.0 mg, 0.4 mmol), and DCE (2.0 mL) were added successively. Then the tube was sealed and stirred at the appropriate temperature for specific time. Upon completion, the resulting mixture was cooled to room temperature, diluted with DCM and concentrated under reduced pressure. Then the residue was purified by silica gel chromatography to afford the desired fluorinated products.

IV. Removal of auxiliary and a scale-up reaction

A. Removing the directing group from ketones

literature procedure⁴. Following the А 25 mL Schlenk tube was charged with (E)-N-(4-(tert-butyl)phenyl)-2-(((3-fluoro-2,2-dimethyl-1-phenylpropylidene)amino)oxy)acetamide (2e) (19.25 mg, 0.05 mmol, 1.0 equiv.), Mo(CO)₆ (26.4 mg, 0.1 mmol, 2.0 equiv.), CH₃CN (0.5 mL), H₂O (0.1 mL). The tube was sealed with a Teflon-lined screw cap, refrigerated with liquid nitrogen, evacuated the air and filled with nitrogen by the Schlenk line for 3 times. Then the tube was heated at 100 °C for 48 h under stirring. Then the tube was allowed to cool to room temperature. The solvent was then removed in *vacuo* and the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 10:1) to give the corresponding product **3e** as a colorless oil (7.2 mg, 80% yield).

B. Scale-up synthesis of Stantonin-CH₂F

In a 25 mL test tube equipped with a stir bar, **Stantonin-DG**₅ (0.530 g, 1.0 mmol), Pd(OAc)₂ (22 mg, 0.1 mmol), NFSI (0.630 g, 2.0 mmol), and DCE (4.0 mL) were added successively. Then the tube was sealed and stirred at the appropriate temperature for 3 h. Upon completion, the resulting mixture was cooled to room temperature, diluted with DCM and concentrated under reduced pressure. Then the residue was purified by silica gel chromatography (eluent: petroleum ether/EtOAc = 3:1) to afford the desired fluorinated product **Stantonin-CH**₂**F** as a colorless solid (0.416 g, 76% yield).

V. Characterization of fluorination products

(E)-N-(4-(tert-butyl)phenyl)-2-(((4-fluoro-3,3-dimethylbutan-2-ylidene)amino)oxy)acetamide (2a): Following the general condition, stirred at 100 °C for 3 h, obtained the 2a as a colorless solid (35.4 mg, 55%); $R_f = 0.29$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.46-7.44 (m, 2H), 7.39-7.33 (m, 2H), 4.63 (s, 2H), 4.39 (d, *J* = 47.6 Hz, 2H), 1.99 (s, 3H), 1.32 (s, 9H), 1.19 (d, *J* = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 163.2 (d, *J* = 2.0 Hz), 147.5, 134.6, 125.8, 119.7, 88.7 (d, *J* = 174.8 Hz), 72.9, 41.7 (d, *J* = 17.9 Hz), 34.3, 31.3, 21.8 (d, *J* = 5.1 Hz), 11.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -222.15 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₇FN₂O₂Na 345.1954, found: 345.1954.

(E)-2-(((3-benzyl-4-fluoro-3-methylbutan-2-ylidene)amino)oxy)-N-(4-(tert-butyl)phenyl)acetamid e (2b): Following the general condition, stirred at 100 °C for 3 h, obtained the 2b as a colorless solid (38.2 mg, 48%); $R_f = 0.24$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 9.3 Hz, 2H), 7.25 (t, J = 7.4 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 7.2 Hz, 2H), 4.55 (s, 2H), 4.39 (d, J = 47.5 Hz, 2H), 2.94-2.85 (m, 2H), 2.05 (s, 3H), 1.33 (s, 9H), 1.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 144.9, 136.4, 134.4, 133.2, 130.2, 128.2, 126.8, 125.8, 120.0, 86.2 (d, J = 173.4 Hz), 73.0, 45.9 (d, J = 18.0 Hz), 40.4 (d, J = 3.8 Hz), 34.4, 31.4, 20.1 (d, J = 4.6Hz), 11.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -225.63 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₁FN₂O₂Na 421.2267, found: 421.2268.

N-(4-(tert-butyl)phenyl)-2-(((4-fluoro-3,3-dimethyl-1-phenylbutan-2-ylidene)amino)oxy)acetamid e (2c): Following the general condition, using the $[PdCl(C_3H_5)]_2$ as the catalyst, stirred at 100 °C for 3 h, obtained the 2c as a colorless solid (38.2 mg, 48%); $R_f = 0.29$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.53 (s, 1H), 7.38-7.33 (m, 2H), 7.33-7.30 (m, 2H), 7.28-2.24 (m,

4H), 7.24-7.21 (m, 1H), 4.65 (s, 2H), 4.42 (d, J = 47.6 Hz, 2H), 3.86 (s, 2H), 1.27 (s, 9H), 1.23 (s, 3H), 1.22 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 7.57 (s, 1H), 7.38-7.33 (m, 2H), 7.33-7.30 (m, 2H), 7.28-2.24 (m, 4H), 7.24-7.21 (m, 1H), 4.67 (s, 2H), 4.42 (d, J = 47.6 Hz, 2H), 3.68 (s, 2H), 1.27 (s, 9H), 1.23 (s, 3H), 1.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 167.7, 163.7, 147.5, 136.3, 134.4, 128.9, 127.9, 126.6, 125.7, 119.9, 88.9 (d, J = 175.3 Hz), 73.2, 42.8, 42.1 (d, J = 18.0 Hz), 34.4, 31.4, 24.4, 22.4; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 167.7, 163.7, 147.5, 136.2, 134.4, 128.9, 126.7, 125.7, 119.9, 88.9 (d, J = 175.3 Hz), 73.2, 53.1, 42.8, 42.1 (d, J = 18.0 Hz), 32.2, 31.4, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -221.74 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₄H₃₁FN₂O₂Na 421.2267, found: 421.2271.

(E)-N-(4-(tert-butyl)phenyl)-2-(((4-fluoro-3,3-dimethyl-1-(naphthalen-2-yl)butan-2-ylidene)amino)oxy)acetamide (2d): Following the general condition, stirred at 100 °C for 3 h, obtained the 2d as a colorless solid (47.4 mg, 50%); $R_f = 0.49$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.50 (m, 4H), 7.47-7.41 (m, 3H), 7.39-7.36 (m, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.20-7.16 (m, 2H), 7.14-7.09 (m, 2H), 4.69 (s, 2H), 4.47 (d, J = 47.6 Hz, 2H), 3.89 (s, 2H), 1.28 (d, J = 1.7 Hz, 6H), 1.26 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 163.4, 147.4, 140.4, 139.6, 135.5, 134.2, 128.8, 128.4, 127.6, 127.4, 127.0, 125.7, 120.0, 88.9 (d, J = 175.4 Hz), 73.4, 42.1 (d, J = 18.0 Hz), 34.3, 31.9, 31.3, 22.4 (d, J = 5.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -221.67 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₈H₃₃FN₂O₂Na 497.2580, found: 497.2579.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3-fluoro-2,2-dimethyl-1-phenylpropylidene)amino)oxy)acetamid e (2e): Following the general condition, stirred at 100 °C for 3 h, obtained the 2e as a colorless solid (46.1 mg, 60%); $R_f = 0.35$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.55-7.50 (m, 2H), 7.50-7.44 (m, 1H), 7.37 (s, 4H), 7.19 (d, J = 6.8 Hz, 2H), 4.62 (s, 2H), 4.35 (d, J =47.4 Hz, 2H), 1.33 (s, 9H), 1.24 (d, J = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 165.4, 147.4, 134.5, 132.9, 128.6, 128.6, 127.0, 125.8, 119.4, 88.3 (d, J = 175.5 Hz), 73.1, 42.0 (d, J = 18.3 Hz), 34.4, 31.3, 22.2 (d, J = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -220.06 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₉FN₂O₂Na 407.2111, found: 407.2113.

N-(4-(tert-butyl)phenyl)-2-(((3-fluoro-1-(4-iodophenyl)-2,2-dimethylpropylidene)amino)oxy)aceta mide (2f): Following the general condition, stirred at 100 °C for 3 h, obtained the **2f** as a colorless solid (54.2 mg, 53%); $R_f = 0.58$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.86 (d, J = 8.3 Hz, 2H), 7.55 (s, 1H), 7.42-7.30 (m, 4H), 6.93 (d, J = 8.3 Hz, 2H), 4.60 (s, 2H), 4.32 (d, J = 47.3 Hz, 2H), 1.33 (s, 9H), 1.22 (d, J = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 164.5, 147.5, 137.8, 134.4, 132.2, 128.9, 125.9, 119.5, 94.6, 88.2 (d, *J* = 175.8 Hz), 73.1, 42.0 (d, *J* = 18.4 Hz), 34.4, 31.3, 22.2 (d, *J* = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -219.63 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₈FIN₂O₂Na 533.1077, found: 533.1077.

N-(4-(tert-butyl)phenyl)-2-(((1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-fluoro-2,2-dimethylpropyl idene)amino)oxy)acetamide (2g): Following the general condition, stirred at 100 °C for 3 h, obtained the 2g as a colorless solid (43.0 mg, 51%); R_f = 0.35 (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.72 (s, 1H), 7.44-7.40 (m, 2H), 7.39-7.34 (m, 2H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.71 (d, *J* = 1.9 Hz, 1H), 6.65 (dd, *J* = 8.2, 1.9 Hz, 1H), 4.62 (s, 2H), 4.34 (d, *J* = 47.4 Hz, 2H), 4.33 (s, 4H), 1.33 (s, 9H), 1.21 (d, *J* = 1.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 164.8, 147.4, 143.8 (d, *J* = 16.9 Hz), 134.6, 125.8, 125.6, 120.1, 119.4, 116.1, 88.4 (d, *J* = 175.3 Hz), 73.1, 64.4, 42.2 (d, *J* = 18.3 Hz), 3 4.4, 31.4, 22.3 (d, *J* = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -220.15 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₁FN₂O₄Na 465.2166, found: 465.2170.

(E)-N-(4-(tert-butyl)phenyl)-2-(((3-fluoro-2,2-dimethyl-1-(thiophen-3-yl)propylidene)amino)oxy)a cetamide (2h): Following the general condition, stirred at 100 °C for 3 h, obtained the 2h as a colorless solid (39.8 mg, 52%); $R_f = 0.49$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s,

1H), 7.50 (dd, J = 4.9, 2.9 Hz, 1H), 7.42-7.32 (m, 4H), 7.27-7.23 (m, 1H), 7.04 (d, J = 5.8 Hz, 1H), 4.64 (s, 2H), 4.35 (d, J = 47.4 Hz, 2H), 1.33 (s, 9H), 1.24 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 161.7, 147.4, 134.5, 131.7, 127.2, 126.0, 125.8, 123.1, 119.5, 88.5 (d, J = 175.3 Hz), 73.0, 42.1 (d, J = 18.2 Hz), 34.3, 31.3, 22.2.; ¹⁹F NMR (376 MHz, CDCl₃) δ -220.47 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₇FN₂O₂SNa 413.1675, found: 413.1673.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-cyclobutyl-3-fluoro-2,2-dimethylpropylidene)amino)oxy)acetamide (2i): Following the general condition, stirred at 100 °C for 3 h, obtained the **2i** as a colorless solid (35.4 mg, 40%); $R_f = 0.32$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.56 (s, 1H), 8.06 (s, 2H), 7.62 (s, 1H), 4.66 (s, 2H), 4.40 (d, J = 47.4 Hz, 2H), 3.40 (p, J = 9.2 Hz, 1H), 2.76-2.67 (m, 2H), 2.28-2.21 (m, 2H), 2.03-1.98 (m, 1H), 1.20 (d, J = 1.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.3, 166.8, 139.0, 132.4 (q, J = 33.5 Hz), 123.1 (q, J =272.6 Hz), 119.5-119.4 (m), 117.7-117.5 (m), 88.8 (d, J = 174.3 Hz), 73.1, 42.5 (d, J = 17.5 Hz), 35.1, 27.2, 21.9 (d, J = 5.2 Hz), 19.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31 (s, 6F), -220.00 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₁F₇N₂O₂Na 465.1389, found: 465.1392.

N-(4-(tert-butyl)phenyl)-2-((((1E,3E)-5-fluoro-4,4-dimethyl-1-phenylpent-1-en-3-ylidene)amino)o xy)acetamide (2j): Following the general condition, using the [PdCl(C₃H₅)]₂ as the catalyst, stirred at 100 °C for 4 h, obtained the **2j** as a colorless solid (49.2 mg, 60%); $R_f = 0.32$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.53 (d, J = 7.1 Hz, 2H), 7.48 (d, J = 16.8 Hz, 1H), 7.44-7.39 (m, 5H), 7.36-7.33 (m, 2H), 6.68 (d, J = 16.8 Hz, 1H), 4.73 (s, 2H), 4.47 (d, J = 47.6 Hz, 2H), 1.32 (d, J = 1.7 Hz, 6H), 1.31 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 160.3, 147.5, 140.4, 136.1, 134.6, 129.3, 128.9, 127.1, 125.8, 119.7, 115.9, 89.2 (d, J = 175.2 Hz), 73.6, 42.0 (d, J = 18.1 Hz), 34.4, 31.4, 23.0 (d, J = 5.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -221.46 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₃₁FN₂O₂Na 433.2267, found: 433.2269.

ethyl

(E)-3-((2-((3,5-bis(trifluoromethyl)phenyl)amino)-2-oxoethoxy)imino)-5-fluoro-4,4-dimethylpenta noate (2k): Following the general condition, but Pd(OAc)₂ (9.0 mg, 0.04 mmol), NFSI (189.0 mg, 0.6 mmol) was added and the reaction time was 48 h. 2k was obtained as a colorless solid (26.5 mg, 28%); $R_f = 0.25$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 9.51 (s, 1H), 8.40 (s, 2H), 7.60 (s, 1H), 4.74 (s, 2H), 4.34 (d, *J* = 47.6 Hz, 2H), 4.32-4.24 (dd, *J* = 7.2 Hz, 2H), 3.57 (s, 2H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.19 (d, *J* = 1.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 170.1, 169.3, 158.7, 139.8, 132.1 (q, *J* = 33.3 Hz), 123.3 (q, *J* = 275.0 Hz), 119.6-119.5 (m), 117.2-117.1 (m), 88.9 (d, *J* = 176.1 Hz), 73.4, 62.3, 41.7 (d, *J* = 17.9 Hz), 31.9, 21.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.04 (s, 6F), -224.10 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₁F₇N₂O₄Na 497.1287, found: 497.1281.

ethyl 3-((2-((4-(tert-butyl)phenyl)amino)-2-oxoethoxy)imino)-2-(fluoromethyl)-2-methylbutanoate (2l): Following the general condition, stirred at 100 °C for 3 h, obtained the 2l as a colorless solid (38.8 mg, 51%); $R_f = 0.29$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.82 (s, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.85-4.63 (m, 2H), 4.67 (s, 2H), 4.28-4.21 (m, 2H), 1.99 (s, 3H), 1.50 (d, J = 1.3 Hz, 3H), 1.32 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 7.80 (s, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.67 (s, 2H), 4.08-3.78 (m, 2H), 1.98 (s, 3H), 1.53 (s, 3H), 1.32 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 171.2 (d, J = 5.2 Hz), 158.6, 167.8, 147.7, 134.5, 125.9, 119.8, 85.6 (d, J = 174.5 Hz), 73.2, 61.8, 53.7 (d, J = 19.9 Hz), 48.1, 34.4, 31.3, 18.0, 14.1; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 171.3, 167.8, 158.9, 147.7, 134.5, 125.9, 119.8, 85.6 (d, J = 174.5 Hz), 73.2, 61.8, 53.7 (d, J = 19.9 Hz), 48.1, 34.4, 31.3, 18.0, 14.1; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 171.3, 167.8, 158.9, 147.7, 134.5, 125.9, 119.8, 85.6 (d, J = 174.5 Hz), 73.2, 62.0, 54.4, 48.1, 34.4, 31.3, 19.2, 12.6; ¹⁹F NMR (376 MHz, CDCl₃) (major isomer) δ -226.66 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₉FN₂O₄Na 403.2009, found: 403.2016.

ethyl-((2-((3,5-bis(trifluoromethyl)phenyl)amino)-2-oxoethoxy)imino)-1-(fluoromethyl)cyclohexa ne-1-carboxylate (2m): Following the general condition, stirred at 100 °C for 3 h, obtained the 2m as a colorless solid (48.6 mg, 50%); $R_f = 0.28$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.51 (s, 1H), 8.16 (s, 2H), 7.61 (s, 1H), 4.86-4.54 (m, 2H), 4.70 (d, J = 24.5 Hz, 2H), 4.32-4.23 (m, 2H), 3.36-3.25 (m, 1H), 2.52-2.46 (m, 1H), 2.10-1.99 (m, 1H), 1.96-1.79 (m, 2H), 1.52-1.41 (m, 1H), 1.29 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) & 8.33 (s, 1H), 8.18 (s, 2H), 7.61 (s, 1H), 4.70 (d, J = 24.5 Hz, 2H), 4.32-4.23 (m, 2H), 3.89 (dd, J = 102.0, 11.1 Hz, 2H), 3.36-3.25 (m, 1H), 2.58-2.52 (m, 1H), 2.10-1.99 (m, 1H), 1.96-1.79 (m, 2H), 1.59-1.58 (m, 2H), 1.52-1.41 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 171.2 (d, J = 4.1 Hz), 169.1, 161.0, 139.0, 132.4 (q, J = 5.1 Hz), 123.2 (q, J = 273.2 Hz), 119.7-119.6 (m), 117.6- 117.4 (m), 85.1 (d, J = 177.0 Hz), 73.0, 62.2, 54.6 (d, J = 18.6 Hz), 31.4 (d, J = 4.3 Hz), 24.7, 24.0, 22.0, 14.1; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 171.1 (d, J = 2.7 Hz), 169.0, 161.0, 139.0, 132.4 (q, J = 4.1 Hz), 123.2 (q, J = 273.2 Hz), 119.9-119.8 (m), 117.6-117.4 (m), 85.1 (d, J = 177.0 Hz), 73.0, 62.2, 55.1, 33.5, 24.9, 24.2, 22.2, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08 (s, 6F), -222.27 (s, 1F); **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₁F₇N₂O₄Na 509.1287, found: 509.1289.

(E)-5-((2-((4-(tert-butyl)phenyl)amino)-2-oxoethoxy)imino)-7-fluoro-6,6-dimethylheptyl acetate (2n): Following the general condition, stirred at 100 °C for 3 h, obtained the 2n as a yellow oil (53.2 mg, 63%); $R_f = 0.41$ (petroleum ether-EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.62 (s, 2H), 4.37 (d, J = 5.1 Hz, 2H), 4.13 (t, J = 6.3 Hz, 2H), 2.45- 2.35 (m, 2H), 2.02 (s, 3H), 1.75 (p, J = 6.3 Hz, 2H), 1.72-1.64 (m, 2H), 1.31 (s, 9H), 1.20 (d, J = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 168.2, 166.1, 147.5, 134.6, 125.8, 119.7, 88.7 (d, J = 174.9 Hz), 73.1, 63.6, 42.0 (d, J = 17.9 Hz), 34.4, 31.3, 29.1, 26.0, 23.0, 22.0 (d, J = 5.1 Hz), 20.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -221.08 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₃₅FN₂O₄Na 445.2479, found: 445.2482.

(E)-N-(4-(tert-butyl)phenyl)-2-(((7-(1,3-dioxoisoindolin-2-yl)-1-fluoro-2,2-dimethylheptan-3-ylide ne)amino)oxy)acetamide (2o): Following the general condition, stirred at 100 °C for 3 h, obtained the 2o as a colorless solid (79.5 mg, 78%); $R_f = 0.27$ (petroleum ether-EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.80 (dd, J = 5.4, 3.0 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.54 (s, 2H), 4.36 (d, J = 47.6 Hz, 2H), 3.76 (t, J = 7.0 Hz, 2H), 2.47-2.40 (m, 2H), 1.83 (p, J = 7.2 Hz, 2H), 1.71-1.60 (m, 2H), 1.32 (s, 9H), 1.18 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 168.2, 165.9, 147.4, 134.7, 134.0, 132.0, 125.8, 123.2, 119.7, 88.7 (d, J = 175.0 Hz), 73.1, 42.0 (d, J = 18.1 Hz), 37.1, 34.4, 31.4, 28.8, 26.0, 23.4, 22.0 (d, J = 4.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -220.00 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₉H₃₆FN₃O₄Na 532.2588, found: 532.2591.

N-(4-(tert-butyl)phenyl)-2-(((7-chloro-1-fluoro-2,2-dimethylheptan-3-ylidene)amino)oxy)acetami de (2p): Following the general condition, stirred at 100 °C for 3 h, obtained the 2p as a colorless solid (43.0 mg, 54%); R_f = 0.28 (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 7.92 (s, 1H), 7.45 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.7 Hz, 2H), 4.63 (s, 2H), 4.38 (d, *J* = 47.6 Hz, 2H), 3.61 (t, *J* = 6.5 Hz, 2H), 2.46-2.35 (m, 2H), 1.89 (q, *J* = 6.7 Hz, 2H), 1.83-1.71 (m, 2H), 1.32 (s, 9H), 1.21 (d, *J* = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 168.2, 166.0, 147.5, 134.6, 125.9, 119.7, 88.8 (d, *J* = 175.1 Hz), 73.1, 44.3, 42.0 (d, *J* = 18.0 Hz), 34.4, 32.8, 31.4, 25.6, 23.8, 22.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -221.12 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₁H₃₂CIFN₂O₂Na 421.2034, found: 421.2038.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((1R,4S)-3-(fluoromethyl)-1,3-dimethylbicyclo[2.2.1]hepta

n-2-ylidene)amino)oxy)acetamide (2q): Following the general condition, stirred at 100 °C for 12 h, obtained the **2q** as a colorless solid (41.8 mg, 46%); Other fluorination regioisomers have also been determined by GC-MS (13% and 5%, respectively); $\mathbf{R}_f = 0.21$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.58 (s, 1H), 8.05 (s, 2H), 7.62 (s, 1H), 4.85-4.49 (m, 2H), 4.59 (s, 2H), 2.07-1.98 (m, 2H), 1.94-1.85 (m, 2H), 1.75-1.66 (m, 1H), 1.57-1.54 (m, 1H), 1.46-1.42 (m, 1H), 1.40 (s, 3H), 1.37 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 8.40 (s, 1H), 8.06 (s, 2H), 7.62 (s, 1H), 4.59 (s, 2H), 3.80 (dd, *J* = 118.5, 11.4 Hz, 2H), 2.07-1.98 (m, 2H), 1.84-1.77 (m, 2H), 1.75-1.66 (m, 1H), 1.60-1.57 (m, 1H), 1.51-1.46 (m, 1H), 1.41 (s, 3H), 1.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 173.2, 169.3, 138.9, 132.4 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 4.2 Hz), 119.4-119.3 (m), 117.8-117.5 (m), 82.8 (d, *J* = 167.3 Hz), 73.0, 48.3, 48.0, 45.4 (d, *J* = 28.8 Hz), 38.8 (d, *J* = 1.5 Hz), 31.0, 24.2, 23.2, 22.6; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 172.9, 169.3, 138.8, 132.4 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 4.2 Hz), 119.6-119.5 (m), 117.8-117.5 (m), 82.8 (d, *J* = 167.3 Hz), 73.0, 48.3, 48.0, 45.4 (d, *J* = 167.3 Hz), 73.0, 55.9, 55.0 (d, *J* = 19.5 Hz), 44.9, 39.8, 28.7 (d, *J* = 4.3 Hz), 25.1, 23.1, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.07 (s, 6F), -223.37 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₁F₇N₂O₂Na 477.1389, found: 477.1394.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((1S,4R)-1-(fluoromethyl)-7,7-dimethylbicyclo[2.2.1]hepta n-2-ylidene)amino)oxy)acetamide (2r): Following the general condition, stirred at 100 °C for 18 h, obtained the **2r** as a colorless solid (51.8 mg, 57%); $R_f = 0.28$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.60 (s, 1H), 8.05 (s, 2H), 7.61 (s, 1H), 4.80-4.56 (m, 2H), 4.64 (d, *J* = 20.0 Hz, 2H), 2.72 (dt, *J* = 18.2, 3.3 Hz, 1H), 2.18 (d, *J* = 18.2 Hz, 1H), 2.05-1.93 (m, 3H), 1.51-1.42 (m, 1H), 1.41-1.35 (m, 1H), 1.11 (s, 3H), 1.02 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 8.67 (s, 1H), 8.08 (s, 2H), 7.61 (s, 1H), 4.80-4.56 (m, 2H), 4.68 (d, *J* = 20.0 Hz, 2H), 2.72 (dt, *J* = 18.2, 3.3 Hz, 1H), 2.18 (d, *J* = 20.0 Hz, 2H), 2.72 (dt, *J* = 18.2, 3.3 Hz, 1H), 2.18 (d, *J* = 20.0 Hz, 2H), 2.72 (dt, *J* = 18.2, 3.3 Hz, 1H), 2.18 (d, *J* = 18.2 Hz, 1H), 2.05-1.93 (m, 3H), 1.51-1.42 (m, 1H), 1.41-1.35 (m, 1H), 1.27 (s, 3H), 0.99 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.7, 169.1, 138.9, 132.41 (q, *J* = 33.6 Hz), 123.1 (q, *J* = 272.7 Hz), 119.4-119.3 (m), 117.7-117.4 (m), 81.0 (d, *J* = 168.4 Hz), 72.9, 56.0 (d, *J* = 18.5 Hz), 48.7, 44.6, 34.1, 27.6 (d, *J* = 5.1 Hz), 26.8, 20.4, 19.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.08 (s, 6F), -228.84 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₁F₇N₂O₂Na 477.1389, found: 477.1389.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((1-fluoro-2,4-dimethylpentan-3-ylidene)amino)oxy)acetam ide (2s): Following the general condition, stirred at 100 °C for 2 h, obtained the **2s** as a colorless solid (54.1 mg, 65%); $R_f = 0.49$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.30 (s, 1H), 8.04 (s, 2H), 7.62 (s, 1H), 4.64 (d, *J* = 3.3 Hz, 2H), 4.70-4.34 (m, 2H), 3.40-3.27 (m, *J* = 7.0 Hz, 1H), 2.99-2.87 (m, 1H), 1.22 (dd, *J* = 7.0, 3.7 Hz, 6H), 1.18 (dd, *J* = 7.0, 1.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.2, 169.0 (d, *J* = 2.6 Hz), 138.8, 132.4 (q, *J* = 33.5 Hz), 123.1 (q, *J* = 272.7 Hz), 119.5-119.4 (m), 117.8-117.6 (m), 85.6 (d, *J* = 170.6 Hz), 72.8, 36.1 (d, *J* = 19.4 Hz), 28.2, 18.8 (d, *J* = 18.0 Hz), 15.6 (d, *J* = 7.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) (major isomer) δ -63.10 (s, 6F), -216.67 (s, 1F); ¹⁹F NMR (376 MHz, CDCl₃) (minor isomer) δ -63.10 (s, 6F), -211.90 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₉F₇N₂O₂Na 439.1227, found: 439.1232.

(E)-N-(3,5-bis(trifluoromethyl)phenyl)-2-(((4-fluoro-3-methylbutan-2-ylidene)amino)oxy)acetami de (2t): Following the general condition, stirred at 100 °C for 3 h, obtained the 2t as a colorless solid (41.1 mg, 53%); $R_f = 0.28$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 8.06 (d, J = 1.5 Hz, 2H), 7.63 (s, 1H), 4.67 (s, 2H), 4.62-4.53 (m, 2H), 2.90-2.80 (m, 1H), 2.03 (s, 3H), 1.18 (dd, J = 7.2, 1.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 161.9 (d, J = 2.8 Hz), 138.8, 132.4 (q, J = 34.2 Hz), 122.0 (q, J = 272.4 Hz), 119.6-119.5 (m), 117.8-117.6 (m), 84.6 (d, J = 169.2 Hz), 72.8, 40.5 (d, J = 18.8 Hz), 13.3 (d, J = 7.4 Hz), 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.05 (s, 6F), -219.30 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₅F₇N₂O₂Na 411.0914, found: 411.0920.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(((2-(fluoromethyl)cyclohexylidene)amino)oxy)acetamide

(2u): Following the general condition, stirred at 100 °C for 5 h, using the HFIP as the solvent, obtained the 2u as a colorless solid (48.0 mg, 58%); $R_f = 0.25$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.56 (s, 1H), 8.07 (s, 2H), 7.62 (s, 1H), 4.79-4.46 (m, 2H), 4.63 (s, 2H), 3.14-3.09 (m, 1H), 2.76-2.60 (m, 1H), 2.19-2.03 (m, 2H), 1.95-1.82 (m, 2H), 1.62-1.54 (m, 2H), 1.54-1.47 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.1, 162.8 (d, *J* = 3.3 Hz), 138.9, 132.5 (q, *J* = 18.8 Hz), 123.0 (q, *J* = 272.4 Hz), 119.6-119.5 (m), 117.7-117.6 (m), 83.4 (d, *J* = 167.5 Hz), 72.8, 42.7 (d, *J* = 20.1 Hz), 29.3 (d, *J* = 5.5 Hz), 26.3, 25.8, 24.1; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) 169.3, 161.3, 139.1, 132.2 (q, *J* = 18.8 Hz), 123.5 (q, *J* = 270.0 Hz), 119.4-119.3 (m), 117.5-117.4 (m), 85.0 (d, *J* = 167.3 Hz), 72.7, 34.2 (d, *J* = 17.3 Hz), 28.5, 25.9 (d, *J* = 11.1 Hz), 25.0, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) (major isomer) δ -63.04 (s, 6F), -222.96 (s, 1F); ¹⁹F NMR (376 MHz, CDCl₃) (minor isomer) δ -63.04 (s, 6F), -216.00 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₇F₇N₂O₂Na 437.1076, found: 437.1078.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((E)-1-((2S)-2-fluorocyclohexyl)ethylidene)amino)oxy)acet amide (2v): Following the general condition, stirred at 100 °C for 24 h, obtained the **2v** as a colorless solid (47.1 mg, 55%); $R_f = 0.28$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 8.08 (s, 2H), 7.61 (s, 1H), 4.67 (d, *J* = 1.8 Hz, 2H), 4.70-4.53 (m, 1H), 2.52-2.42 (m, 1H), 2.27-2.20 (m, 1H), 2.03 (s, 3H), 1.92-1.84 (m, 2H), 1.79-1.72 (m, 1H), 1.57-1.47 (m, 1H), 1.45-1.30 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 162.0, 138.9, 132.3 (q, *J* = 33.4 Hz), 123.1 (q, *J* = 272.5 Hz), 119.6-119.5 (m), 117.7-117.5 (m), 92.4 (d, *J* = 175.7 Hz), 72.7, 50.2 (d, *J* = 17.3 Hz), 32.1 (d, *J* = 18.0 Hz), 29.0 (d, *J* = 7.3 Hz), 24.7 (d, *J* = 2.0 Hz), 23.9 (d, *J* = 11.5 Hz), 13.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -163.06 (s, 6F), -171.35 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₉F₇N₂O₂Na 451.1232, found: 451.1233.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((cyclohexyl((2S)-2-fluorocyclohexyl)methylene)amino)oxy) acetamide (2w): Following the general condition, stirred at 100 °C for 3 h, obtained the 2w as a colorless solid (59.5 mg, 60%); $R_f = 0.35$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) (major isomer) δ 8.31 (s, 1H), 8.07 (s, 2H), 7.61 (s, 1H), 4.65 (s, 2H), 4.80-4.57 (m, 2H), 3.13-3.05 (m, 1H), 2.53-2.45 (m, 1H), 2.23-2.15 (m, 1H), 2.03-1.92 (m, 1H), 1.89-1.80 (m, 3H), 1.78-1.68 (m, 4H), 1.58-1.44 (m, 3H), 1.40-1.26 (m, 6H); ¹H NMR (500 MHz, CDCl₃) (minor isomer) δ 8.85 (s, 1H), 8.11 (s, 2H), 7.60 (s, 1H), 5.07-4.89 (m, 1H), 4.64 (s, 2H), 4.80-4.57 (m, 1H), 3.02-2.91 (m, 1H), 2.60-2.53 (m, 1H), 2.23-2.15 (m, 1H), 1.89-1.80 (m, 3H), 1.78-1.68 (m, 4H), 1.58-1.44 (m, 3H), 1.40-1.26 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.6, 168.3, 138.9, 132.4 (q, J = 33.5 Hz), 123.1 (q, J = 271.8 Hz), 119.5-119.4 (m), 117.7 -117.5 (m), 93.9 (d, J = 173.6 Hz), 72.7, 46.2 (d, J = 17.8 Hz), 38.5, 32.4 (d, J = 18.0 Hz), 31.7 (d, J = 7.1 Hz), 28.5 (d, J = 10.0 Hz), 26.0 (d, J = 6.2 Hz), 25.8, 25.1 (d, J = 1.9 Hz), 24.0 (d, J = 11.5 Hz); ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.7, 167.0, 139.2, 132.4 (q, J = 33.7 Hz), 123.2 (q, J = 272.7 Hz), 119.5-119.4 (m), 117.4 -117.3 (m), 89.3 (d, J = 175.1 Hz), 72.9, 44.1 (d, J = 19.0 Hz), 39.5, 31.0 (d, J = 23.3 Hz), 29.7, 28.7 (d, J = 22.6 Hz), 26.2 (d, J = 10.2 Hz), 26.0, 24.5 (d, J = 1.1 Hz), 19.7 (d, J = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.09 (s, 6F), -170.80 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₇F₇N₂O₂Na 519.1858, found: 519.1864.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((1-((1S,2S,3R,5S,7S)-2-fluoroadamantan-1-yl)ethylidene)a mino)oxy)acetamide (2x-1): Following the general condition, stirred at 100 °C for 2 h, obtained the mixture of 2x-1 and 2x-2 as a colorless solid (75.6 mg, 77%); $R_f = 0.35$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 8.10 (s, 2H), 7.61 (s, 1H), 4.90 (dd, J = 49.9, 3.7 Hz, 1H), 4.67 (s, 2H), 2.36-2.11 (m, 3H), 2.09 (s, 3H), 2.08-1.98 (m, 3H), 1.96-1.87 (m, 1H), 1.80-1.67 (m, 4H), 1.64-1.57 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.5, 164.6, 139.0, 132.3 (q, J = 33.2 Hz), 123.1 (q, J = 272.7 Hz), 112.0-119.1 (m), 117.9-117.1 (m), 94.9 (d, J = 182.9 Hz), 72.8, 39.1 (d, J = 5.6 Hz), 36.2, 33.5, 32.7 (d, J = 18.1 Hz), 30.5, 27.1, 10.2; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.5, 164.6, 139.0, 132.3 (q, J = 33.2 Hz), 123.1 (q, J = 272.7 Hz), 112.0-119.1 (m), 117.9-117.1 (m), 94.9 (d, J = 182.9 Hz), 72.8, 39.1 (d, J = 5.6 Hz), 36.2, 33.5, 32.7 (d, J = 18.1 Hz), 30.5, 27.1, 10.2; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.5, 164.6, 139.0, 132.3 (q, J = 33.2 Hz), 123.1 (q, J = 272.7 Hz), 112.0-119.1 (m), 117.9-117.1 (m), 94.9 (d, J = 182.9 Hz), 72.8, 39.1 (d, J = 5.6 Hz), 36.2, 33.1 (d, J = 4.7 Hz), 32.7 (d, J = 18.1 Hz), 30.2, 27.1, 10.2; ¹⁹F NMR (376 MHz, CDCl₃) (major isomer) δ -63.07 (s, 6F), -179.41 (s, 1F); ¹⁹F NMR (376 MHz, CDCl₃) (minor isomer) δ -63.07 (s, 6F), -179.89 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₃F₇N₂O₂Na 503.1545, found: 503.1546.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((1-((1r,2R,3R,5r,7S,8S)-2,8-difluoroadamantan-1-yl)ethylid ene)amino)oxy)acetamide (**2x-2**): Following the general condition, stirred at 100 °C for 2 h, obtained the mixture of **2x-1** and **2x-2** as a colorless solid (75.6 mg, 77%); $R_f = 0.35$ (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.56 (s, 2H), 8.10 (s, 2H), 7.61 (s, 1H), 5.34 (dd, J = 48.7, 3.9 Hz, 1H), 4.83-4.72 (m, 1H), 4.70 (d, J = 4.0 Hz, 2H), 2.36-2.11 (m, 2H), 2.08-1.98 (m, 2H), 1.98 (s, 3H), 1.96-1.87 (m, 1H), 1.80-1.67 (m, 4H), 1.64-1.57 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) (major isomer) δ 169.3, 161.9, 139.0, 132.3 (q, J = 33.2 Hz), 123.1 (q, J = 272.7 Hz), 112.0-119.1 (m), 117.9 -117.1 (m), 91.0 (d, J = 181.2 Hz), 26.3, 11.4 (d, J = 3.1 Hz), 27.08 , 26.32 – 26.13 (m), 10.18 ; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.3, 161.9, 132.3 (d, J = 1.2 Hz), 26.3, 11.4 (d, J = 3.1 Hz), 27.08 , 26.32 – 26.13 (m), 10.18 ; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.3, 161.9, 132.3 (d, J = 1.2 Hz), 26.3, 11.4 (d, J = 3.1 Hz), 27.08 , 26.32 – 26.13 (m), 10.18 ; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.3, 161.9, 139.0, 132.3 (d, J = 1.2 Hz), 26.3, 11.4 (d, J = 3.1 Hz), 27.08 , 26.32 – 26.13 (m), 10.18 ; ¹³C NMR (126 MHz, CDCl₃) (minor isomer) δ 169.3, 161.9, 139.0, 132.3 (d, J = 33.2 Hz), 123.1 (q, J = 272.7 Hz), 112.0-119.1 (m), 117.9 -117.1 (m), 91.0 (d, J = 181.2 Hz), 73.0, 43.6 (d, J = 1.6 Hz), 34.8 (d, J = 8.8 Hz), 32.3 (d, J = 17.7 Hz), 29.1-29.0 (m), 27.2 (d, J = 1.2 Hz), 26.3, 11.4 (d, J = 181.2 Hz), 73.0, 43.6 (d, J = 1.2 Hz), 26.3, 11.4 (d, J = 1.2 Hz), 26.3, 11. J = 3.1 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) (minor isomer) δ -63.07 (s, 6F), -187.35 (s, 2F); ¹⁹**F NMR** (376 MHz, CDCl₃) (major isomer) δ -63.07 (s, 6F), -187.10 (s, 2F); **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₂F₈N₂O₂Na 521.1451, found: 521.1460.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((3aS,5aS,9bS,Z)-9-(fluoromethyl)-3,5a-dimethyl-2-oxo-2,3,3a,5,5a,9b-hexahydronaphtho[1,2-b]furan-8(4H)-ylidene)amino)oxy)acetamide

(Stantonin-CH₂F): Following the general condition, stirred at 100 °C for 3 h, obtained the Stantonin-CH₂F as a colorless solid (82.2 mg, 75%); $R_f = 0.27$ (petroleum ether-EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.09 (s, 2H), 7.58 (s, 1H), 6.94 (d, J = 10.2 Hz, 1H), 6.19 (d, J = 10.2 Hz, 2H), 5.70 (dd, J = 15.8, 9.7 Hz, 1H), 5.61 (dd, J = 15.8, 9.7 Hz, 1H), 4.87 (dd, J = 11.4, 6.3 Hz, 1H), 4.74 (s, 2H), 2.47-2.38 (m, 1H), 2.06 (d, J = 15.4 Hz, 1H), 1.89 (ddd, J = 23.1, 11.7, 3.2 Hz, 2H), 1.73 (qd, J = 12.7, 3.6 Hz, 1H), 1.62 (td, J = 13.1, 4.3 Hz, 1H), 1.35 (s, 3H), 1.28 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.0, 168.8, 150.4, 147.9 (d, J = 6.9 Hz), 147.3, 138.9, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 273.5 Hz), 121.3 (d, J = 14.3 Hz), 119.8-119.7 (m), 117.6-117.4 (m), 112.5, 81.4 (d, J = 2.6 Hz), 75.4 (d, J = 159.7 Hz), 73.4, 53.6, 41.6 (d, J = 1.9 Hz), 40.9, 38.3, 25.9, 23.4, 12.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.98 (s, 6F), -208.74 (s, 1F); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₃F₇N₂O₄Na 571.1444, found: 571.1446.

N-(3,5-bis(trifluoromethyl)phenyl)-2-((((3aS,5aS,9bS,Z)-9-(fluoromethyl)-3,5a-dimethyl-2-oxo-2,3 ,3a,5,5a,6,7,9b-octahydronaphtho[1,2-b]furan-8(4H)-ylidene)amino)oxy)acetamide (4-CH₂F): Following the general condition, stirred at 75 °C for 3 h, obtained the 4-CH₂F as a colorless solid (85.8 mg, 78%); $R_f = 0.34$ (petroleum ether-EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 8.09 (s, 2H), 7.59 (s, 1H), 5.73-5.50 (m, 2H), 4.76 (dd, J = 11.6, 6.4 Hz, 1H), 4.72 (s, 2H), 3.12 (dt, J = 17.3, 3.8 Hz, 1H), 2.43-2.33 (m, 2H), 2.04-1.99 (m, 1H), 1.94 (qd, J = 11.8, 3.2 Hz, 1H), 1.83-1.72 (m, 2H), 1.72-1.63 (m, 2H), 1.56 (td, J = 13.3, 4.0 Hz, 1H), 1.30 (s, 3H), 1.28 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 177.2, 168.9, 157.6, 149.8 (d, J = 6.7 Hz), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.3, 4.0 Hz, 1H), 1.84-100 (s), 139.0, 132.2 (q, J = 33.4 Hz), 123.1 (q, J = 13.4 Hz), 123.1 (q, J = 272.5 Hz), 122.8 (d, J = 14.7 Hz), 119.8-119.7 (m), 117.5 (dt, J = 7.6, 3.7 Hz), 81.9 (d, J = 2.2 Hz), 76.0 (d, J = 159.1 Hz), 73.4, 52.8, 41.1, 41.0, 37.8, 36.7, 24.9 (d, J = 2.8 Hz), 24.4, 19.2, 12.3; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.65 (s, 6F), -220.00 (s, 1F); **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₂₅H₂₅F₇N₂O₄Na 573.1600, found: 573.1597.

3-fluoro-2,2-dimethyl-1-phenylpropan-1-one (3e): Colorless oil (7.2 mg, 80%); $R_f = 0.53$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.65 (m, 2H), 7.52-7.48 (m, 1H), 7.46-7.41 (m, 2H), 4.56 (d, J = 47.3 Hz, 2H), 1.40 (d, J = 1.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 138.3, 131.2, 128.2, 127.5, 88.9 (d, J = 174.4 Hz), 48.6 (d, J = 18.6 Hz), 22.1 (d, J = 5.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -221.88 (s, 1F).

VI. X-Ray data for 4-CH₂F

X-ray for 4-CH₂F

Table S6. Crystal data and structure refinement for mo_dd19398_0m.

Identification code	mo_dd19398_0m	
Empirical formula	C25 H25 F7 N2 O4	
Formula weight	550.47	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.7568(3) Å	α= 90 °.
	b = 16.7646(6) Å	β= 90 °.
	c = 17.6194(6) Å	$\gamma = 90$ °.
Volume	2586.60(16) Å ³	
Z	4	
Density (calculated)	1.414 Mg/m ³	
Absorption coefficient	0.129 mm ⁻¹	

F(000)	1136
Crystal size	0.200 x 0.150 x 0.120 mm ³
Theta range for data collection	2.430 to 25.992 °.
Index ranges	-10<=h<=10, -17<=k<=20, -21<=l<=21
Reflections collected	13082
Independent reflections	5052 [R(int) = 0.0332]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6695
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5052 / 24 / 400
Goodness-of-fit on F ²	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0530, $wR2 = 0.1205$
R indices (all data)	R1 = 0.0798, $wR2 = 0.1419$
Absolute structure parameter	0.0(4)
Extinction coefficient	0.025(4)
Largest diff. peak and hole	0.394 and -0.180 e.Å ⁻³

VII. References

- 1. R.-Y. Zhu, L.-Y. Liu, and J.-Q. Yu, Highly versatile β-C(sp³)-H iodination of ketones using a practical auxiliary. *J. Am. Chem. Soc.* **2017**, *139*, 12394-12397.
- 2. Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang, and T.-S. Mei, Palladium-catalyzed C(sp³)-H oxygenation via electrochemical oxidation. *J. Am. Chem. Soc.* **2017**, *139*, 3293-3298.
- T. Kang, Y. Kim, D. Lee, Z. Wang, and S. Chang, Iridium-catalyzed intermolecular amidation of sp³ C-H bonds: late-stage functionalization of an unactivated methyl group. *J. Am. Chem. Soc.* 2014, *136*, 4141-414.
- 4. Y.-J. Mao, S.-J. Lou, H.-Y. Hao, and D.-Q. Xu, Selective C(sp³)-H and C(sp²)-H fluorination of alcohols using. *Angew. Chem. Int. Ed.* **2018**, *57*, 14085-14089.

S35

S41

 $<^{1.264}_{1.257}$

200530.20025953.fid WQZ20200530003 CDCI3 0530	-4,583		1.334 1.198	
	~			
1987 1987 1987				
- ∧i ⊂i ~i ∧i 8.0 7.5 7.0 6.5	6.0 5.5 5.0 4.5 4.0	3.5 3.0 2.5	್ 2.0 1.5 1.0	0.5 0.0 ppm
84 84 84 84 84 84 84 84 84 84	-128 93 -128 93 -128 97 -117.31 -117.31 -117.31 -117.31	72.91	- 37.47 - 34.38 31.36 	
170 160 150 140 1	30 120 110 100 90	80 70 60	50 40 30 20	10 0 ppm

-4.618

---1.326 ---1.214

ppm

000000000000000000000000000000000000000	$- \sim$
0400-0000000044000N	00
0.0.0.444000000000000000000	IN- (0)
0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	യയ്
	()
	11

--4.706

190710.19104093.fid WQZ20190710002 CDCl3 0710

20 -130 -140 -150 -170 -180 -200 -210 -220 -230 -240 -250 -260 -270 -280 -300 ppm -310 -160 -190 -290

-140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 -250 -255 -260 -265 -270 ppm

KN-20191015- 1910085577-19.10.1.1r

120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 -250 -255 -260 -265 -270 ppm

-125 -130 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 -250 -255 -260 -265 -270 ppm

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 ppm

----220.001

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 ppm

190508.1906403.fid WQZ20190508001 CDCl3 0508

190816.1911905.fid WQZ20190816004 CDCI3 0816

---170.802

190530.19078911.fid WQZ20190530001 CDCI3 0530

-8.82

20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 ppm
7.684 7.682 7.679 7.679 7.579 7.568 7.5515 7.5515 7.5515 7.503 7.503	-7.491 -7.488 -7.486 -7.486 -7.449	7.437 7.434 7.423 7.420 7.418
191227.1918898.fid WQZ20191216001	CDCI3	1227

--4.605 --4.510 $<^{1.406}_{1.402}$

CH₂F

CH₂F

-260 -270 ppm -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250

---221.878