Supporting Information

Assembly of functionalized π-extended indolizine polycycles through dearomative $[3+2]$ cycloaddition/oxidative decarbonylationShaojing Jin, ${ }^{\text {a,\# }}$ Lele Wang, ${ }^{\text {a,\# }}$ Huabin Han, ${ }^{\text {a }}$ Xiongli Liu, ${ }^{\text {b }}$ Zhanwei Bu, ${ }^{a}$ Qilin Wanga, ${ }^{\text { }}$${ }^{\text {a }}$ Institute of Functional Organic Molecular Engineering, College of Chemistry and ChemicalEngineering, Henan University, Kaifeng 475004, China${ }^{\text {b }}$ Guizhou Medicine Edible Plant Resources Research and Development Center, GuizhouUniversity, Guiyang 550025, PR China
\# These authors contribute equally to this work.
E-mail: wangqilin@henu.edu.cn
Table of Contents

1. General methods S2
2. Mechanistic studies S2
3. Experimental data for the formation of 3 S5
4. Experimental data for the formation of 4 S15
5. Unsuccessful trials S16
6. Experimental data for derivations of 3d and 3e. S19
7. Crystal structure of $\mathbf{3 u}$ S21
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. S23

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz (Bruker Avance). ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 2.50 ppm$) .{ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.00 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 39.52 ppm$)$. Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a Thermo Fisher Nicolet Avatar 360 FTIR spectrometer on a KBr beam splitter. All the solvents were used directly without any purification.

2. Mechanistic studies

On the basis of the experimental outcomes, a plausible mechanism was proposed to rationalize the reaction pathway (Scheme S 1 , taking the formation of $\mathbf{3 r}$ as an example). Initially, a [3+2] cycloaddition took place between $\mathbf{1 a}$ and $\mathbf{2 i}$ with the assistance of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to yield intermediate \mathbf{A}, which easily underwent dehydrogenation upon addition of one equivalent of DDQ to generate intermediate \mathbf{B}. Then, the trace amount of water in the reaction system attacked the carbonyl group of intermediate \mathbf{B}, thus delivering intermediate \mathbf{C}. \mathbf{C} was not stable and a ringopening occurred subsequently to give D. Under basic condition, intermediate D could be smoothly converted into intermediate \mathbf{E} through a decarboxylation process. Followed by an oxidation by air or excess DDQ , the desired product $\mathbf{3 r}$ was generated in the end. We considered the decarbonylation step may be caused by the following two factors: 1) the α-carbon of the carboxylic acid was tethered with electron-withdrawing group, which made it more susceptible to undergo decarbonylation under basic conditions; and 2) the decarbonylated intermediate E was easily oxidized into aromatic product and the aromatization process was possibly the other driving force for this cascade.

Scheme S1. Plausible mechanism
To get some evidences, we tried to detect the intermediate of the crude reaction mixture of $\mathbf{1 a}$ and $\mathbf{2 i}$ in the presence of one equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ by HRMS analysis (Scheme S2). As shown in Figure S1, after the reaction proceeded for $5 \mathrm{~h}, \mathbf{2} \mathbf{i}$ was completely consumed and we could obtain the signal peaks of intermediate \mathbf{A}.

Scheme S2. Reaction between 1a and 2i for 5 h

Figure S1. HRMS spectrum of the reaction between $\mathbf{1 a}$ and $\mathbf{2 i}$ for 5 h
After the first [3+2] cycloaddition went completion, we added one equivalent of DDQ to the reaction system (Scheme S3). After the reaction proceeded for 2 h , we could detect the signal peaks of intermediates $\mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E} and the product $\mathbf{3 r}$ (Figure S2).

Scheme S3. Reaction between 1a, 2i and DDQ (the second oxidation step)

Figure S2. HRMS study on the reaction mixture of $\mathbf{1 a}, \mathbf{2 i}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and DDQ (the second oxidation

3. Experimental data for the formation of 3

General procedure: N-Phenacyl quinolinium salts $\mathbf{1}(0.15 \mathrm{mmol})$, methyleneindolinones 2 $(0.10 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.10 \mathrm{mmol})$ and 1.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ were successively added to a 5.0 mL vial. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ till the full consumption of $\mathbf{2}$ as monitored by TLC, and then 0.10 mmol of DDQ was added. After the cycloadduct intermediates went complete conversion, the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products 3 .

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3a)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $37.9 \mathrm{mg}, 73 \%$ yield; $t_{l}=5 \mathrm{~h}, t_{2}=12 \mathrm{~h}$; m. p. $113.4-114.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.06\left(\mathrm{dd}, J_{1}=J_{2}=12.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.70-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.18-7.08 (m, 3H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3$, $164.2,153.0,138.1,137.5,134.0,132.7,132.7,131.9,131.7,129.5,129.2,128.9,128.8,128.4$, 125.7, 125.4, 123.1, 122.8, 120.5, 120.4, 120.4, 117.6, 117.5, 113.5, 80.2, 51.5, 28.2. IR (KBr) v 3425, 2959, 1721, 1248, 1163, $748 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 521.2076$, found: 521.2071.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4-fluorobenzoyl)pyrrolo[1,2-a]quinoline-2carboxylate

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25$:1$15: 1), 38.7 \mathrm{mg}, 72 \%$ yield; $t_{l}=11 \mathrm{~h}, t_{2}=23 \mathrm{~h} ; \mathrm{m}$. p. $110.2-110.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.08(\mathrm{q}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.51(\mathrm{~s}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8,166.2(\mathrm{~d}, J=340.0 \mathrm{~Hz}, 1 \mathrm{C})$, $164.1,153.0,137.5,134.6,134.6,132.6,132.2,132.1,131.9,131.6,129.3,128.8,128.4,128.0$, $125.7,125.5,123.1,122.8,120.4,117.5,116.4,116.1,113.5,80.3,51.6,28.2$. IR (KBr) v 3422, 3297, 2956, 1720, 1234, 1159, $757 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 539.1977, found: 539.1977.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(3-fluorobenzoyl)pyrrolo[1,2-a]quinoline-2carboxylate (3c)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ $15: 1), 51.3 \mathrm{mg}, 95 \%$ yield; $t_{l}=11 \mathrm{~h}, t_{2}=12 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .119 .7-120.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, $3.43(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.3,162.2(\mathrm{~d}, J=405.0 \mathrm{~Hz}, 1 \mathrm{C})$, 153.0, 137.6, $135.5(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{C}), 132.7,131.9,131.6,131.5,129.8,129.2,128.8,128.4$, $126.8,126.7,125.7,125.5,124.6,124.5,123.2,122.7,120.1,117.6,117.4,117.1,116.8,113.5$, 80.2, 51.6, 28.2. IR (KBr) v 3420, 2978, 1721, 1454, 1160, $758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 539.1977, found: 539.1977.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4-chlorobenzoyl)pyrrolo[1,2-a]quinoline-2carboxylate (3d)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ $15: 1), 45.0 \mathrm{mg}, 81 \%$ yield; $t_{l}=5 \mathrm{~h}, t_{2}=12 \mathrm{~h}$; m. p. $145.8-146.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.49$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 190.1,164.1,153.0,140.5,137.5,136.5,132.6,132.0,131.6$, $130.8,129.3,129.3,128.8,128.5,127.9,125.7,125.6,123.2,122.8,122.7,120.5,120.4,117.5$, $113.5,80.3,51.6,28.2$, one carbon missing in the aromatic region. $\mathrm{IR}(\mathrm{KBr}) v 3421,2971,1718$, 1241, 1163, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 555.1681 , found: 555.1683.

methyl 1-(4-bromobenzoyl)-3-(2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3e)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1$ $10: 1), 43.7 \mathrm{mg}, 73 \%$ yield; $t_{l}=4 \mathrm{~h}, t_{2}=12 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .166 .4-167.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{q}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.3,164.1,153.0,137.5,136.9,132.5,132.3,132.0,131.6,130.8,129.4$, $129.3,128.8,128.5,127.8,125.7,125.6,125.6,123.3,122.8,122.7,120.6,120.4,117.5,113.5$, 80.3, 51.7, 28.2. IR (KBr) v 3422, 2973, 1720, 1163, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 599.1176, found: 599.1177.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4-nitrobenzoyl)pyrrolo[1,2-a]quinoline-2carboxylate (3f)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $35.5 \mathrm{mg}, 63 \%$ yield; $t_{l}=4.5 \mathrm{~h}, t_{2}=10 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .186 .8-187.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 189.1,164.1,153.0,150.5,142.7,137.4,132.7$,
$132.4,131.6,130.3,129.5,128.9,128.6,127.1,125.8,125.7,124.1,123.9,122.9,122.5,121.6$, 120.6, 117.4, 117.4, 113.8, 80.4, 51.8, 28.2. IR (KBr) v 3422, 2972, 1715, 1521, 1161, $746 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 566.1922$, found: 566.1923.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4-methylbenzoyl)pyrrolo[1,2-a]quinoline-2carboxylate ($\mathbf{3 g}$)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1$ $15: 1), 16.7 \mathrm{mg}, 31 \%$ yield; $t_{l}=14 \mathrm{~h}, t_{2}=27 \mathrm{~h} ; \mathrm{m}$. p. $169.9-170.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34-$ $7.17(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{q}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.2,164.2,153.0,145.1,137.5,135.6,132.6,131.6,131.5,129.7$, $129.6,129.1,128.7,128.3,125.6,125.3,122.9,122.8,122.7,120.2,119.9,117.5,117.4,113.3$, $80.2,51.5,28.2,21.8$, one carbon missing in the aromatic region. $\operatorname{IR}(\mathrm{KBr}) v 3427,2931,1718$, 1454, 1162, $750 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 535.2227$, found: 535.2227.

methyl 3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4-methoxybenzoyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3h)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1$ $7: 1), 13.3 \mathrm{mg}, 24 \%$ yield; $t_{l}=5 \mathrm{~h}, t_{2}=18 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .145 .6-146.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65\left(\mathrm{dd}, J_{1}=J_{2}=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.44-7.28$ $(\mathrm{m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.3,164.3,153.0,137.5,132.8,131.9,131.7$, $131.4,131.1,129.1,128.9,128.7,128.4,125.7,125.4,123.0,123.0,122.7,122.7,120.2,120.2$, 119.6, 117.5, 114.3, 113.3, 80.3, 55.5, 51.6, 28.2. IR (KBr) v 3422, 2971, 1717, 1255, 1165, 755 cm^{-1}. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 551.2177, found: 551.2172.

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)phenyl)-7-methylpyrrolo[1,2-a]quinoline-2carboxylate (3i)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ 20:1), $39.3 \mathrm{mg}, 74 \%$ yield; $t_{l}=6 \mathrm{~h}, t_{2}=18 \mathrm{~h} ; \mathrm{m}$. p. $189.7-190.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.05 (m, 4H), $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.4,164.2,153.1,138.2,137.5,135.3,133.9,131.7,130.7,129.6,129.5,129.0,128.9$, $128.7,128.2,125.7,123.0,122.8,122.7,120.3,120.2,120.2,117.5,117.4,113.3,80.2,51.5,28.3$, 20.8. IR (KBr) $v 3422,2975,1719,1465,1250,1161,765 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 535.2227$, found: 535.2235.

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)phenyl)-8-methylpyrrolo[1,2-a]quinoline-2carboxylate ($\mathbf{3} \mathbf{j}$)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ 20:1), $40.5 \mathrm{mg}, 76 \%$ yield; $t_{l}=6 \mathrm{~h}, t_{2}=17 \mathrm{~h} ; \mathrm{m}$. p. $102.4-103.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 4 \mathrm{H})$, $7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,164.3$, $153.0,138.9,138.2,137.5,133.8,132.7,132.0,131.7,129.4,128.9,128.7,128.2,126.7,123.3$, $123.0,123.0,122.7,120.6,120.3,120.3,118.0,116.4,113.1,80.2,51.5,28.2,21.9$. $\mathrm{IR}(\mathrm{KBr}) v$ 3422, 2971, 1721, 1161, $757 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 535.2227$, found: 535.2240 .

methyl 1-benzoyl-3-(2-((ethoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3k) Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1$ $10: 1), 31.0 \mathrm{mg}, 63 \%$ yield; $t_{1}=5 \mathrm{~h}, t_{2}=11 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .145 .7-146.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{q}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), $7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 191.1,164.2,153.7,138.0,137.2,134.0,132.6,131.8,131.7,129.4,129.2,128.9,128.9$, $128.4,128.3,125.6,125.4,123.2,123.0,120.4,120.3,120.3,117.6,117.2,113.3,61.0,51.5,14.4$. IR (KBr) v 3286, 2949, 1723, 1217, $753 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 493.1758, found: 493.1757.

methyl 1-benzoyl-3-(2-((4-methylphenyl)sulfonamido)phenyl)pyrrolo[1,2-a]quinoline-2carboxylate (31)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=15: 1-$ $7: 1), 35.6 \mathrm{mg}, 62 \%$ yield; $t_{1}=3 \mathrm{~h}, t_{2}=21 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .170 .4-170.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, 7.47-7.29 (m, 6H), $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66\left(\mathrm{dd}, J_{1}=J_{2}=4.0 \mathrm{~Hz}\right.$, 3H), $3.27(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,165.6,142.5,138.2,137.5$, $135.5,134.1,132.4,132.3,129.2,129.2,129.2,128.9,128.5,128.3,127.7,127.6,126.3,125.6$, $122.9,119.9,117.9,117.3,114.0,51.9,20.6$, four carbons missing in the aromatic region. IR (KBr) v 3427, 2920, 1700, 1633, $750 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 575.1635$, found: 575.1647.

ethyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3m)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ 20:1), $25.0 \mathrm{mg}, 47 \%$ yield; $t_{l}=6 \mathrm{~h}, t_{2}=16 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .70 .1-70.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{q}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), 7.46-7.28 (m, 4H), $7.13(\mathrm{q}, ~ J=16.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$, $0.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.5,163.6,153.0,138.0,137.7,134.1$, 132.7, 131.7, 131.7, 130.2, 129.6, 129.2, 128.9, 128.7, 128.4, 128.3, 125.7, 125.4, 122.9, 122.6, $120.4,119.9,117.6,117.5,113.5,80.2,60.7,28.2,13.2$. IR (KBr) v 3421, 2979, 1722, 1456, 1163, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 535.2227, found: 535.2219.

tert-butyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3n)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $22.1 \mathrm{mg}, 39 \%$ yield; $t_{1}=7 \mathrm{~h}, t_{2}=16 \mathrm{~h}$; m. p. $80.2-80.6^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.17\left(\mathrm{dd}, J_{l}=J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.2,162.8,152.8,138.1,137.7,134.0,132.8,131.7,131.6,130.2,129.9,129.1$, $128.9,128.6,128.3,127.6,127.3,125.7,125.2,122.8,122.7,122.5,117.6,117.5,113.2,81.7$, 80.2, 28.3, 27.4. IR (KBr) v 3421, 2978, 1724, 1247, 1157, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 563.2540$, found: 563.2526.

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)-5-fluorophenyl)pyrrolo[1,2-a]quinoline-2carboxylate (30)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $24.0 \mathrm{mg}, 45 \%$ yield; $t_{1}=6 \mathrm{~h}, t_{2}=20 \mathrm{~h} ; 184.7-185.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.66\left(\mathrm{dd}, J_{1}=J_{2}=12.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.09 (m, 3H), $7.02\left(\mathrm{dd}, J_{1}=J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.4,162.0(\mathrm{~d}, J=207.5 \mathrm{~Hz}, 1 \mathrm{C}), 153.3,138.1,134.2,133.8,133.8$, $132.7,131.8,129.5,129.4,129.1,128.6,128.5,125.7,125.6,123.5,120.1,118.4,118.1,117.7$, $117.2,115.5,115.2,112.5,80.4,51.6,28.3$. IR (KBr) v 3424, 2954, 1719, 1485, 1234, 1160, 884 cm^{-1}. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 539.1977$, found: 539.1982.

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)-5-chlorophenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3p)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $20.0 \mathrm{mg}, 36 \%$ yield; $t_{l}=4.5 \mathrm{~h}, t_{2}=10 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .199 .8-200.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66\left(\mathrm{dd}, J_{I}=J_{2}=12.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.52(\mathrm{t}, J=$ 8.0 Hz, 2H), 7.39-7.31 (m, 3H), $7.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,163.9$, $152.8,137.9,136.4,134.1,132.6,131.7,131.3,129.4,129.3,129.0,128.6,128.6,127.5,125.6$, $124.5,123.5,121.4,120.0,117.6,117.1,111.9,80.6,51.6,28.2$, two carbons missing in the aromatic region. $\mathrm{IR}(\mathrm{KBr}) v 3420,2969,1720,1500,1234,1162,758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 555.1780$, found: 555.1769 .

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)-3-chlorophenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3q)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1$ $10: 1), 20.0 \mathrm{mg}, 36 \%$ yield; $t_{l}=23 \mathrm{~h}, t_{2}=16 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .75 .0-75.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.05$ $(\mathrm{s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,170.3,164.5,138.2$, $134.7,133.8,133.5,133.0,132.5,130.2,129.9,129.5,129.3,129.1,128.9,128.2,128.1,127.2$, $125.6,125.2,122.9,119.9,117.5,117.5,114.7,80.1,51.4,27.9 . \operatorname{IR}(\mathrm{KBr}) v 3410,2965,1717$, $1254,1165,752 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 555.1681$, found: 555.1677.

methyl 1-benzoyl-3-(5-bromo-2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3r)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $31.8 \mathrm{mg}, 53 \%$ yield; $t_{l}=4 \mathrm{~h}, t_{2}=17 \mathrm{~h}$; m. p. $235.4-236.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.66\left(\mathrm{dd}, J_{l}=J_{2}=12.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.52(\mathrm{t}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.4,163.9,152.8,137.9,136.9,134.1,134.1,132.6,131.7$, $131.6,129.4,129.3,129.0,128.7,128.6,125.6,125.6,124.8,123.5,121.6,119.9,117.6,117.1$, 115.0, 111.8, 80.7, 51.6, 28.2. IR (KBr) v 3419, 2969, 1719, 1501, 1227, 1161, $757 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 599.1176$, found: 599.1176 .

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)-5-methylphenyl)pyrrolo[1,2-a]quinoline-2carboxylate (3s)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1-$ 20:1), $31.6 \mathrm{mg}, 59 \%$ yield; $t_{l}=6 \mathrm{~h}, t_{2}=18 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .196 .8-197.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.13 (m, 5H), $7.09(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.2,164.3,153.2,138.2,135.0,133.9,132.7,132.3,132.1,131.9,129.5$, $129.4,129.2,128.9,128.3,128.2,125.7,125.4,123.1,123.0,120.8,120.6,117.7,117.6,113.8$, 80.0, 51.5, 28.3, 20.8. IR (KBr) v 3424, 2969, 1750, 1456, 1230, $758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 535.2227$, found: 535.2235.

methyl 1-(4-bromobenzoyl)-3-(2-((tert-butoxycarbonyl)amino)-5-methylphenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3t)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ 20:1), $41.0 \mathrm{mg}, 67 \%$ yield; $t_{1}=5 \mathrm{~h}, t_{2}=12 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .86 .5-87.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.91(\mathrm{t}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,164.2,153.2,137.0$, $134.9,132.6,132.3,132.1,132.0,130.8,129.5,129.3,129.3,129.0,128.4,127.6,125.7,125.6$, $123.2,123.0,120.8,120.7,117.6,117.5,113.9,80.1,51.7,28.3,20.8$. IR (KBr) v 3422, 2976, 1721, 1230, 1161, $733 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 613.1333, found: 613.1321.

methyl 1-benzoyl-3-(2-((tert-butoxycarbonyl)amino)-3,5-dimethylphenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3u)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1-$ $15: 1), 50.3 \mathrm{mg}, 92 \%$ yield; $t_{l}=11 \mathrm{~h}, t_{2}=55 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .172 .6-173.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{q}$, $J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 190.7,165.0,153.9,138.5,136.4,135.8,133.7,133.2,132.6$, $132.2,131.4,130.7,129.7,129.4,129.0,128.9,128.0,127.1,125.7,125.2,122.7,120.7,118.0$, 117.7, 116.0, 79.1, 51.4, 28.0, 20.9, 18.4. IR (KBr) v 3321, 2971, 1712, 1486, 1223, 1165, $760 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 549.2384$, found: 549.2380.

4. Experimental data for the formation of 4

General procedure: N-Phenacyl pyridinium salts $\mathbf{1 k}$ or $\mathbf{1 l}$ (0.15 mmol$)$, methyleneindolinone 2a $(0.10 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.10 \mathrm{mmol})$ and 1.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ were successively added to a 5.0 mL vial. The resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ till the full consumption of $\mathbf{2 a}$ as monitored by TLC, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products 4 .

1'-(tert-butyl) 3-methyl 2-benzoyl-2'-oxospiro[cyclopropane-1,3'-indoline]-1',3-dicarboxylate (4)
Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1$ -

10:1); m. p. 115.7-116.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.8,170.4,166.2,148.6,140.0,136.2$, 133.9, 128.7, 128.6, 128.5, 124.4, 122.9, 122.0, 114.9, 84.8, 52.7, 40.3, 39.7, 35.7, 28.0. IR (KBr) v 3456, 2985, 1739, 1300, 1217, 1158, $759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 422.1598, found: 422.1590 .

5. Unsuccessful trials

1) Benzoyl substituted 3-alkenyl oxindole 2 m as substrate

3"

$3^{\prime \prime \prime}$
detectable by HRMS not obtained

Figure S3. HRMS spectrum of the dearomative [3+2]/decarbonylation cascade process
To further examine the substrate scope, we also attempted the benzoyl-substituted 3-alkenyl oxindole $\mathbf{2 m}$. The first dearomative [3+2] cycloaddition proceeded smoothly to deliver $\mathbf{3}^{\prime}$ ' in 45% yield. However, upon oxidation by DDQ , the reaction system became very complex, and the oxidative decarbonylation product could only be detected by HRMS, but not obtained.

tert-butyl 1',2'-dibenzoyl-2-oxo-1',2'-dihydro-3a'H-spiro[indoline-3,3'-pyrrolo[1,2-a]quinoline]-1carboxylate ($\mathbf{3}^{\prime}$)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=25: 1$ to20:1), $27.1 \mathrm{mg}, 45 \%$ yield; reaction time $=1.5 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .97 .1-97.6^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{q}, J=8.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13\left(\mathrm{dd}, J_{l}=J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.84\left(\mathrm{dd}, J_{l}=J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8,195.7,173.5,148.1,141.9$, $139.1,136.5,134.6,134.0,133.0,129.7,129.1,128.9,128.7,128.3,128.2,127.7,127.5,126.0$, $125.6,124.5,120.0,118.1,117.7,114.1,109.4,84.4,71.1,61.9,60.7,59.7,28.0$. IR (KBr) v 3432, 2924, 1669, 1625, 1342, $838 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 597.2384$, found: 597.2374.

2) Isoquinolinium salt 1 m as substrate

We also explored the reactivity of isoquinolinium salt $\mathbf{1 m}$. By reacting with 3-alkenyl oxindole 2 h under basic conditions, the first [3+2] cycloaddition could occur smoothly and product \mathbf{A} through the $[3+2]$ cycloaddition and sequential dehydrogenation process could be detected by HRMS. After oxidation by DDQ, we could also detect the presence of trace of decarbonylated product \mathbf{B} by HRMS. It should be noted that we failed to separate \mathbf{A} and \mathbf{B} from the reaction systems by silica gel column chromatography due to their high instability.

Figure S4. HRMS spectrum of the reaction between $\mathbf{1 m}$ and $\mathbf{2 h}$ for 11 h

Figure S5. HRMS spectrum of the dearomative [3+2]/decarbonylation cascade process

6. Experimental data for derivations of 3 d and 3 e

General procedure for the formation of 5: To a solution of $\mathbf{3 d}(173.3 \mathrm{mg}, 0.31 \mathrm{mmol})$ in 2.0 mL DCM, m-CPBA ($269.4 \mathrm{mg}, 1.56 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{HPO} 4(132.0 \mathrm{mg}, 0.93 \mathrm{mmol})$ were successively added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 11 h , and then purified by silica gel column chromatography (petroleum ether/ ethyl acetate $=35: 1$) to afford $\mathbf{5}$ as a white solid in 31% yield.

tert-butyl (2-(quinoline-2-carbonyl)phenyl)carbamate (5)
White solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=35: 1$), $33.8 \mathrm{mg}, 31 \%$ yield; reaction time $=11 \mathrm{~h} ; \mathrm{m} . \mathrm{p} .118 .2-118.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.54(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{t}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.79(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1,155.7,152.9,146.6$, $142.7,137.1,135.2,134.9,130.3,130.2,128.5,128.3,127.6,120.9,120.6,119.4,80.5,28.2$, one carbon missing in the aromatic region. IR $(\mathrm{KBr}) v 3323,2977,1735,1519,1154,759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 349.1547$, found: 349.1547 .

General procedure for the formation of 6: Under nitrogen atmosphere, compound 3e (95.9 $\mathrm{mg}, 0.16 \mathrm{mmol}$), 4-chlorophenyl boronic acid ($37.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (104.3 mg ,
$0.32 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv) and butyl di-1-adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by addition of 2.0 mL DME. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h , and then the reaction mixture was directly subjected to silica gel column chromatography (petroleum ether/ ethyl acetate as eluent) to afford the corresponding product 6 as a yellow solid in 86% yield.

methyl
3-(2-((tert-butoxycarbonyl)amino)phenyl)-1-(4'-chloro-[1,1'-biphenyl]-4-carbonyl)pyrrolo[1,2-a]quinoline-2-carboxylate (6)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=30: 1$ 20:1), $87.0 \mathrm{mg}, 86 \%$ yield; reaction time $=10 \mathrm{~h} ; \mathrm{m}$. p. 106.7-107.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.15$ $(\mathrm{m}, 7 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.8,164.2,153.0,145.2,138.0,137.5,137.1,134.6,132.7,131.8,131.6,130.1,129.2$, 129.1, 128.7, 128.5, 128.4, 127.4, 125.7, 125.5, 125.5, 123.0, 122.9, 122.7, 120.4, 120.3, 117.6, 117.5, 113.4, 80.2, 51.5, 28.2. IR (KBr) v 3420, 2960, 1723, 1162, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 631.1994$, found: 631.1985 .

General procedure for the formation of 7: Under nitrogen atmosphere, compound 3e (95.9 $\mathrm{mg}, 0.16 \mathrm{mmol}$), 2-indolylboronic acid ($37.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($104.3 \mathrm{mg}, 0.32$ mmol, 2.0 equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv) and butyl di-1-adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by addition of 2.0 mL DME. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h , and then the reaction mixture was directly subjected to silica gel column chromatography (petroleum ether/ ethyl acetate as eluent) to afford the corresponding product 7 as a yellow solid in 84% yield.

methyl
1-(4-(1-(tert-butoxycarbonyl)-1H-indol-2-yl)benzoyl)-3-(2-((tert-butoxycarbonyl)amino)phenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (7)

Yellow solid obtained by silica gel column chromatography (petroleum ether/ethyl acetate $=20: 1-$ $15: 1), 99.0 \mathrm{mg}, 84 \%$ yield; reaction time $=6 \mathrm{~h}$; m. p. $99.6-100.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.06-6.98(\mathrm{~m}$, $3 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.1,164.0,152.9,149.8,146.1,140.5,138.9,137.7,137.5,136.7,132.6,131.6,130.1$, $129.2,129.0,128.9,128.7,128.5,128.3,127.3,125.6,125.4,124.9,123.1,122.8,122.7,120.7$, $120.3,119.8,117.5,117.4,115.2,113.3,111.4,83.8,80.2,51.5,28.2,27.5 . \operatorname{IR}(\mathrm{KBr}) v 3421$, 2977, 1729, 1323, 1229, 1163, $752 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 736.3017$, found: 736.3004 .

7. Crystal structure of 3u

	Calculated	Reported
Volume	$2992.81(13)$	$2992.81(12)$
Space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 121 / \mathrm{n} \mathrm{1}$
Hall group	-P 2 yn	-P 2 yn
Moiety formula	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$
Sum formula	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$
Mr	548.62	548.61
$\mathrm{Dx}, \mathrm{g} \mathrm{cm}-3$	1.218	1.218
Z	4	4

Mu (mm-1)	0.661	0.661
F000	1160.0	1160.0
F000'	1163.53	
h,k,lmax	$16,16,20$	$16,16,20$
Nref	5348	5348
Tmin,Tmax	$0.847,0.936$	$0.973,1.000$
Tmin'	0.719	

Correction method= \# Reported T Limits: Tmin=0.973 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness $=1.000$
R(reflections) $=0.0456$ (4274)
$\mathrm{S}=1.028$
Npar $=381$

Theta $(\max)=67.079$
$w R 2$ (reflections) $=0.1291$ (5348)

8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

 / ind,

3a
 Cuninn \qquad

j $5 \mathrm{j}-158$ 数㳻
$\stackrel{\stackrel{N}{5}}{\stackrel{1}{5}}$

$\stackrel{9}{\stackrel{8}{i}}$
$\stackrel{\sim}{\sim}$

3a

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	10

3b
JSJ-175

3b
\qquad

3d

 め ONNNNNNNNNNNNNNO

3 e

＇フ＇
T T

| 0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2 |
| :--- |

JSJ－174稼䜤

$\stackrel{\varrho}{i}$
$\stackrel{\sim}{\sim}$

$3 e$

$3 f$

| 1 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2 |
| :--- |

JSJ-172

$\underset{i}{\stackrel{\sim}{i}}$

JSJ-176

$\stackrel{\infty}{\stackrel{\infty}{i}}$
-28.19
-21.80

$3 g$
JSJ-179

N
$\stackrel{\text { N }}{\substack{\infty \\ \sim \\ 1}}$

3h

$3 i$

JSJ-160

folder

3j

JSJ- 160

3 j

jsj-166
$\stackrel{ㅇ ㅡ ㄷ ㅜ ㄷ ~}{\stackrel{-}{1}}$

$\stackrel{\pi}{\dot{J}}$

$3 k$

$j s j-161$

$\stackrel{\infty}{\stackrel{\infty}{0}}$

31
\qquad

3m

$j s j-165$

$3 m$
JSJ-162
JSJ-162

OOOOOONNNNNNNNNNNNNNNNNNNO
OOOOOONNNNNNNNNNNNNNNNNNNO
$\stackrel{\text { E }}{\stackrel{\circ}{1}}$
$(\underbrace{1}$

| .0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2 |
| :--- |

JSJ-162

 f Jj/l,

30

$\stackrel{\text { 8 }}{\stackrel{5}{0}}$
$\stackrel{\sim}{\infty}$

dllues

3p
JSJ-171

$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}}$

SJ-180登徣

$3 q$

JSJ-155的樽
$\stackrel{\infty}{\stackrel{\infty}{i}}$
$\stackrel{n}{\infty}$
$\underset{\sim}{\infty}$
$\stackrel{\sim}{\sim}$
$\stackrel{\sim}{1}$

JSJ-190碇谱

$\stackrel{8}{\square}$
$\stackrel{\varrho}{1} \stackrel{0}{1}$

js j 体系三核酸数据 $\stackrel{\otimes}{\circ}$
 $\stackrel{\infty}{\stackrel{\infty}{i}}$
↔ু
Nत्र
N

$3 u$

3^{\prime}

TLL-203

 $\stackrel{\text { N }}{\stackrel{\text { J }}{\sim}}$

$$
00: 82-
$$

ISJ-183 (

JSJ-183

N	~ั ¢	
-	$\stackrel{\text { ¢ }}{\bigcirc}$	¢
I	¢	¢-

JSJ- 195 - C
$\stackrel{m}{\stackrel{\varrho}{\leftrightarrows}}$

గ్ల్లిం®
○人
$\stackrel{\text { ® }}{\sim}$

5

js j-192

$\stackrel{0}{\infty}$

