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Materials and Methods

Cobalt(Il) nitrate hexahydrate (Co(NOs),:-6H,0, 99.99%), Iron(Il) chloride tetrahydrate (FeCl,-4H,0,
99.95%), Zinc(Il) nitrate hexahydrate (Zn(NOs),-6H,0, 99%), 1,3,5-benzenetricarboxylic acid
(C¢H3(CO,H);, 98%), Sodium hydroxide (NaOH, 96%), Potassium hydroxide (KOH, 95%), Deionized
(DI) water from a Millipore system (18.2 MQ cm) was used for solution. Ni foam with a thickness of
0.3 mm was used. All chemical reagents used in this work were analytical grade (AR) with no further
processing.

Synthesis of BTC-Co/NF.

The Ni foam (NF) (3 x 3 x 0.1 cm?) was rinsed with ethanol to remove surface impurities, and then
immersed in the hydrochloric acid (3 M HCI) solution to remove oxided nickel on surface, the obtained
NF was washed repeatedly with distilled water. 80 mg of 1,3,5-Benzenetricarboxylic acid (H;BTC) and
45 mg of NaOH were dissolved in 15 mL of deionized water to obtain a colorless solution (A solution),
0.8 mmol of Co(NO;),-6H,0 was dissolved in other 10 mL of deionized water to obtain a pink solution
(B solution). And then, A solution was added in B solution under continuous stirring to obtain a
homogeneous solution. The above mixture solution and a piece of preprocessed NF were transferred to a

Teflon-lined stainless-steel autoclave and maintained at 180 °C for 6 h. The purple BTC-Co on Ni foam



(named as BTC-Co/NF) was gained and washed with ethanol and distilled water for several times, dried
at 60 °C.

Synthesis of BTC-CoZn/NF.

The preparation method is the same as the BTC-Co/NF procedure, except for replace 0.8 mmol of
Co(NO3),-6H,0 with 0.6 mmol of Co(NOs3), 6H,0 and 0.2 mmol of Zn(NOs), 6H,0.

Synthesis of BTC-CoZnFeNi/NF.

The preparation method is the same as the BTC-Co/NF procedure, except for replace 0.8 mmol of
Co(NO3), 6H,0 with 0.4 mmol of Co(NOs),-6H,0, 0.2 mmol of Zn(NOs3),-6H,0 and 0.2 mmol of
FeCl,-4H,0. Due to the acidity of FeCl, solution, under hydrothermal conditions, nickel foam was
corroded resulting in Ni dissolution and doping into the product.

Synthesis of Co-H NAs/NF.

An electrochemical method was used to remove the ligand. The cyclic voltammetry (CV) mode with a
fixed potential window of 0.925~1.475 V (vs. RHE) was performed in 1.0 M KOH, the scan rate is 10
mV s™!. The BTC-CoZn/NF as precursor, after continuous CV cycle (10, 30, 50, and 100 cycles), the
BTC-CoZn evolved into cobalt hydroxide. After 100 cycles, the final product was collected and labelled
as Co-H NAs/NF.

Synthesis of Nij gsFe(,/Co-H NAs/NF.

The preparation method is the same as the Co-H/NF procedure, except for replace the precursor BTC-
CoZn/NF with BTC-CoZnFeNi/NF, the final product was collected and labelled as Nij gFeq,/Co-H

NASs/NF, the ICP-AES data shows the molar ratio of NiFe is 0.8:0.2.

Characterizations

X-ray dilIraction (PXRD) patterns were recorded on a Rigaku D/Max 2550 X-ray dilractometer with a



Cu Ka radiation (40 kV-40 mA). The surface morphologies of the products were characterized by Zeiss
Sigma field emission scanning electron microscope (FE-SEM, Quanta 400FEG). The inner structures
were characterized by transmission electron microscope (TEM, JEM-2010HR). The High-resolution
TEM and Energy-dispersive X-ray spectroscopy (EDX) analysis were carried out on JEM-3010HR.
Atomic force microscopy (AFM) images were performed by a SHIMDZU SPM-9500J3 device. The
valence state analysis of the products was obtained by X-Ray photoelectron spectroscopy (XPS) using
an ESCALAB 250 X-Ray photoelectron spectrometer, and all the XPS spectra peaks were corrected by
C 1s line at 284.8 eV as standard. Molecular groups analysis of samples was determined by Fourier
transform infrared (FTIR) spectra (Renishaw inVia). The inductively coupled plasma-atomic emission

spectrometry (ICP-AES) was carried out on TJA IRIS (HR) spectrometer.

Electrochemical Measurements

All electrocatalysts measurements were acquired in a typical three-electrode configuration in the O,-
saturated solution at room temperature on a CHI 660D Electrochemical Workstation. In all
electrochemical measurements, the as-prepared catalysts on NF were used as the working electrode (the
area in the submerged electrolyte is 0.2 cm x 0.5 cm x 2), carbon rod as the counter electrode, and a
Hg/HgO (1.0 M KOH) electrode as reference electrode. All potentials measured were converted to the
reversible hydrogen electrode (RHE) adopting the following equation: Erpg (V) = Engngo (V) +0.098 V
+ 0.059 pH. The overpotential (1) was calculated from the formula: 1 = Egyg — 1.23 V. The linear sweep
voltammetry (LSV) was performed at a scan rate of 1 mV s7! in 1.0 M KOH (pH 14) solution (the
deionized water was used as solvent). All polarization curves were corrected with 95% iR-compensation.
Electrochemical impedance spectroscopy (EIS) measurements were carried out at 1.524V (vs.RHE) in

the frequency range of 100kHz~0.01Hz with 5 mV sinusoidal perturbations. Chronopotentiostatic



curves were recorded at a constant current density of 10 mA ¢cm™. The double-layer capacitance (Cq) via
cyclic voltammograms (CV) at different scan rates of 10-50 mV s! were measured to estimate

electrochemically active surface area (ECSA).

Fig. S1 (a,b) SEM images and (c,d) TEM images of BTC-Co/NF.
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Fig. S2 XRD patterns of (a) BTC-Co/NF, (b) BTC-CoZn/NF, and (¢) BTC-CoNiFeZn/NF before and
after different CV treatments with a fixed potential window of 0.925~1.475 V (vs. RHE) in 1.0 M KOH.
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Fig. S3 (a,b) SEM images and (c,d) TEM images of BTC-CoZn/NF.

Fig. S4 (a,b) SEM images and (c,d) TEM images of Co-H NAs/NF.
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Fig. S5 SEM and TEM images of BTC-CoZnFeNi/NF.
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Fig. S6 EDXS spectrum of Nij gFe,,/Co-H NAs/NF separated from Ni foam.

Fig. S7 EDX element mapping images and energy spectrum of BTC-CoNiFeZn/NF.
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Fig. S8 FTIR of (a) BTC-CoZn and Co-H NAs/NF, (b) BTC-CoNiFeZn and NijgFe,,/Co-H NAs/NF.
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Fig. S9 XRD patterns of (a) BTC-CoZn, Co-H NAs, and (b) BTC-CoNiFeZn, NiggFey,/Co-H NAs that
were collected from the surface of NF by ultrasound.
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Fig. S10 High-resolution XPS spectra of Ni 2p, Co 2p, Fe 2p and O 1s of NijgFeq,/Co-H NAs/NF.
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Fig. S11 High-resolution (a) Co 2p and (b) O1s XPS spectra of Co-H NAs/NF.

Fig.S12 SEM images of Nij gFe(,/Co-H NAs/NF after 135 h OER test in 1.0 M KOH solution.
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Fig. S13 XRD pattern of NiggFe(,/Co-H NAs/NF after 135 h OER test in 1.0 M KOH solution.
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Fig. S14 In-situ Raman spectra of (a) Co-H NAs/NF and (b) NiygFe(,/Co-H NAs/NF. The data were
obtained in 0.1 M KOH used custom made teflon electrolyzer at applied potential from 1.13 to 1.63 V.
The relative strength (I445/1537) increases with the increasing of OER voltage, indicating the formation of

oxy-hydroxide during OER tests, which is considered to be the formation of active site of Co, Ni-based

catalysts.S!1S2
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Fig. S15 CV curves of Co-H NAs/NF, Ni/Co-H/NF and NijgFe,/Co-H NAs/NF in IM KOH at 10
mV/s. Ni/Co-H/NF: the preparation method is the same as Co-H NAs/NF except that Ni(NOs),+

Co(NOs3), (1:1) replaces Co(NOs3),.

The CV curves show that the redox peak of M (Co, Ni) shifts anodically after Fe dopants, and this

phenomenon indicates a strong electronic interaction between M and Fe, which will further promote

OER performance.5>54



Table S1. The summary of transition based electrocatalysts for OER.

1] xmaema  Tafel slope  Refs

MOFs types Substrate Electrolyte

/mV /mV deg!
Co-H NAs NF 1.0 M KOH 29350 58.1 This work
NiggFeg,/Co-H NAs NF 1.0 M KOH 247 50 34.2 This work

23110
FeCo-oxyhydroxides NF 1.0 M KOH 331,10 42 [S5]
Co-Fe PBAs-250 GCE 1.0 M KOH 2370 59.7 [S6]
CoFe-MOF-OH GCE 1.0 M KOH 26510 44 [S7]
NiCo-UMOFNs GCE 1.0 M KOH 25010 42 [S8]
Cr-CoFe LDHs NF 1.0 M KOH 23810 107 [S9]
Nig 7sFeq25(OH)x GCE 1.0 M KOH 310,10 68 [S10]
(Ni,Coy) 0.925F€0.075-MOF NF 1.0 M KOH 25710 41.3 [S11]
MIL-53(FeNi) NF 1.0 M KOH 233, 314 [S12]
CoFe(OH), GCE 1.0 M KOH 293 67.4 [S13]
Fe/Ni-BTC NF 0.1 M KOH 2700 47 [S14]
aMOF-NC GCE 1.0 M KOH 249,10 39.5 [S15]
LS-6%-NiFe-MOFs GCE 1.0 M KOH 230, 86.6 [S16]
CoysFeysOOH NF 1.0 M KOH 220,19 38.2 [S17]
2D NiFe-MOF NF 0.1 M KOH 24010 34 [S18]
Co-MOF NF 1.0 M KOH 31150 77 [S19]
Fey33C006,00H CFC 1.0 M KOH 266,10 30 [S20]
NisFe LDH NF 1.0 M KOH 220,10 59 [S21]

GCE: Glassy carbon electrode; NF: Nickel foam; CFC: Carbon fiber cloth.
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