DMSO/SOCl₂-mediated C(sp²)-H amination: switchable synthesis of

3-unsubstituted indole and 3-methylthioindole derivatives

Jingran Zhang,^a Xiaoxian Li,^a Xuemin Li,^a Haofeng Shi,^a Fengxia Sun^b and Yunfei Du^{*a}

^aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China. ^bCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China.

Tel: +86-22-27406121; duyunfeier@tju.edu.cn

Supporting Information

Contents

I	General Information	S2
Π	Details for Optimization of Reaction Conditions	S3-S4
III	Experimental Procedures and Spectroscopic Data	S5-S42
IV	References	S43
V	¹ H and ¹³ C NMR Spectra of Compounds 1a-af , 2a-ac , 2a' , 3a-I and 3'	S44-S193

I. General Information

¹H and ¹³C NMR spectra were recorded on a 400 MHz or 600 MHz spectrometer at 25 °C. Chemical shifts values are given in ppm and referred as the internal standard to TMS: 0.00 ppm. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), q (quadruple), dd (doublet of doublet), m (multiplet), etc. The coupling constants *J*, are reported in Hertz (Hz). High resolution mass spectrometry (HRMS) was obtained on a Q-TOF micro spectrometer. Melting points were determined with a Micromelting point apparatus. TLC plates were visualized by exposure to ultraviolet light.

Reagents and solvents were purchased as reagent grade and were used without further purification. All reactions were performed in standard glassware, heated at 70 °C for 3 h before used. The starting materials **1** were prepared according to literature methods.¹ Flash column chromatography was performed over silica gel (200-300 m) using a mixture of ethyl acetate (EtOAc) and petroleum ether (PE).

II. Details for Optimization of Reaction Conditions

	NHTS 1a	additive solvent, T (°C)	Ts 2a	+	N Ts 3a	>
			T (2 2)		yield (%) ^b	
entry	solvent	additive (equiv)	T (°C)	time (min)	2a	3 a
S1	DMSO	$SOCl_2(3.0)$	rt	30	92	0
S2	DMSO	$SOCl_2(3.5)$	rt	30	86	0
S3	DMSO	$SOCl_2(4.0)$	rt	30	85	0
S4	DMSO	$SOCl_2(3.0)$	70	30	80	10
S5	DMSO	$SOCl_2(3.5)$	70	50	43	35
S 6	DMSO	$SOCl_2(3.8)$	70	50	25	48
S7	DMSO	SOCl ₂ (4.0)	70	40	0	55
S 8	DMSO	$SOCl_2(4.2)$	70	30	0	26
S9	DMSO	$SOCl_2(4.5)$	70	30	0	trace
S10	DMSO	$SOCl_2(4.0)$	80	40	0	39
S11	DMSO	$SOCl_2(4.0)$	90	40	0	26
S12 ^c	DMSO	$SOCl_2(4.0)$	70	40	0	50

Table S1. Optimization of reaction conditions for synthesis of 3a²

^a Reaction conditions: 1a (0.5 mmol), DMSO (1 mL), unless otherwise stated. ^b Isolated yields.

^c Reaction conditions: 1a (0.5 mmol), DMSO (1 mL), reacted at rt for 30 min and then reacted at 70 °C.

The conditions were further optimized to improve the yield of 3methylthioindole 3a, and the results were shown below. When the reaction was carried out at room temperature, the increasing of the dosage of SOCl₂ could not enable the conversion of indole 2a to 3-methylthioindole 3a (Table S1, entries S1-S3). To our delight, when the reaction was run at 70 °C by reacting substrate 1a with 3.0 equiv of SOCl₂, product 3a was obtained in 10% yield, together with 80% yield of 3unsubstituted indole 2a. With the increasing dosage of SOCl₂, the formation of more product **3a** and the depletion of product **2a** were observed. When 4.0 equiv of SOCl₂ was applied, product **3a** was obtained in 55% yield, with no isolation of product **2a** (Table S1, entries S4-S7). However, further increasing the equiv of SOCl₂ led to a lower-yielding of product 3a, due to the formation of some more unidentified byproducts (Table S1, entries S8-S9). Attempts to further improve the outcome by raising and lowering the temperature proved to be futile. Combining all the testing results, the optimized conditions of DMSO/SOCl₂-mediated synthesis of 3-methylthioindole **3a** were concluded to be: 0.5 mmol of **1a** with 4.0 equiv of SOCl₂ in DMSO (1 mL) at 70 °C.

III. Experimental Procedures and Spectroscopic Data

1. Typical procedure for the synthesis of 2-styrylaniline derivatives 1 (1a-z, 1aa-af):

Method A: To a solution of 2-bromoaniline (2.7 g, 15.5 mmol) in Et₃N (15.0 mL, 1.0 M) were added Pd(OAc)₂ (34.8 mg, 0.155 mmol, 1 mol%), P(*o*-Tol)₃ (398.0 mg, 1.241 mmol, 8 mol%), and olefin (18.62 mmol). After being stirred at 125 °C overnight, the reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford the corresponding 2-styrylaniline products.

To a solution of 2-styrylaniline (1.95 g, 10.0 mmol) in pyridine (20 mL) was added *p*-toluenesulfonyl chloride (2.10 g, 11.0 mmol) at 0 °C. After being stirred at 25 °C for 2 hours, the reaction mixture was poured into water and then the product was extracted with CH_2Cl_2 (3 x 30 mL), dried over Na_2SO_4 , and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the corresponding product **1**.

Method B: To a solution of 2-bromoaniline (1.801 mmol, 309.8 mg) in 1,4-dioxane (0.13 M, 14.0 mL) were added Pd(PPh₃)₄ (2 mol%, 0.0360 mmol, 41.6 mg), tributyl(vinyl)tin (2.161 mmol, 0.7 mL). The resulting mixture was heated to 125 °C with stir for 4 hours. When the reaction was completed, the reaction mixture was cooled to room temperature and 10% KF aqueous solution (22 mL) was added. Then the mixture was allowed to stand for 2 h and then filtered with celite. The reaction mixture was extracted with EtOAc (3 x 30 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was

purified by column chromatography on silica gel ($CH_2Cl_2 : n$ -hexane = 1:1) to give 2-vinylaniline (188.0 mg, 83%) as a brown oil.

To a solution of 2-vinylaniline (1.19 g, 10.0 mmol) in Et₃N (10 mL) were added Pd(OAc)₂ (1 mol%), P(*o*-Tol)₃ (8 mol%), and ArBr (1.88 g, 12.0 mmol). After being stirred at 125 °C overnight, the reaction mixture was poured into water and then the product was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford the corresponding 2-styrylaniline product.

To a solution of 2-styrylaniline (1.95 g, 10.0 mmol) in pyridine (20mL) was added *p*-toluenesulfonyl chloride (2.10 g, 11.0 mmol) at 0 °C. After being stirred at 25 °C for 2 hours, the reaction mixture was poured into water and then the product was extracted with CH_2Cl_2 (3 x 30 mL), dried over Na_2SO_4 , and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the corresponding product **1**.

2. Spectroscopic Data of 2-Styrylaniline Derivatives 1 (1a-z, 1aa-af): (*E*)-4-Methyl-*N*-(2-styrylphenyl) benzenesulfonamide (1a)

Following the general procedure **Method A**, **1a** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 79%); m.p. 144-146 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.49 (dd, J = 7.1, 2.1 Hz, 1H), 7.38 (dd, J = 7.6, 1.6 Hz, 1H), 7.35 – 7.31 (m, 4H), 7.30 – 7.26 (m, 1H), 7.26 – 7.20 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.81 (dd, J = 43.4, 16.1 Hz, 2H), 6.68 (s, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 136.7, 136.6, 133.3, 133.3, 132.2, 129.7, 128.6, 128.4, 128.1, 127.2, 127.1, 126.8, 126.7, 126.6, 122.7, 21.5. HRMS (ESI) calcd for C₂₁H₁₉NNaO₂S⁺ [M + Na⁺] 372.1029, found 372.1028.

(E)-N-(5-Fluoro-2-styrylphenyl)-4-methylbenzenesulfonamide (1b)

Following the general procedure **Method A**, **1b** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 71%); m.p. 114-116 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.40 (dd, J = 8.6, 6.2 Hz, 1H), 7.37 – 7.26 (m, 5H), 7.19 (dd, J = 9.7, 2.5 Hz, 3H), 6.90 (td, J = 8.3, 2.6 Hz, 1H), 6.79 – 6.65 (m, 3H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.2 (d, ¹ $J_{C-F} = 247.1$ Hz), 144.3, 136.5,136.4, 134.7 (d, ³ $J_{C-F} = 10.2$ Hz), 132.7 (d, ⁴ $J_{C-F} = 3.8$ Hz), 129.8, 128.7, 128.3, 128.2, 128.1 (d, ⁴ $J_{C-F} = 2.5$ Hz), 127.2, 126.6, 121.6, 113.7 (d, ² $J_{C-F} = 21.4$ Hz), 112.2 (d, ² $J_{C-F} = 24.6$ Hz), 21.5. HRMS (ESI) calcd for C₂₁H₁₈FNNaO₂S⁺ [M + Na⁺] 390.0934, found 390.0936.

(E)-N-(4-Fluoro-2-styrylphenyl)-4-methylbenzenesulfonamide (1c)

Following the general procedure **Method A**, **1c** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 69%); m.p. 151-153 °C. $R_f = 0.57$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.35 – 7.26 (m, 6H), 7.20 (dd, J = 9.6, 2.9 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.95 – 6.89 (m, 1H), 6.78 (dd, J = 48.5, 16.1 Hz, 3H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.7 (d, ¹ $J_{C-F} = 245.4$ Hz), 144.03, 136.5 (d, ³ $J_{C-F} = 8.2$ Hz), 136.35, 136.33, 132.71, 130.1 (d, ³ $J_{C-F} = 8.8$ Hz), 129.71, 129.0 (d, ⁴ $J_{C-F} = 2.4$ Hz), 128.64, 128.37, 127.21, 126.86, 121.96, 115.2 (d, ² $J_{C-F} = 22.8$ Hz), 112.5 (d, ² $J_{C-F} = 23.2$ Hz), 21.42. HRMS (ESI) calcd for C₂₁H₁₈FNNaO₂S⁺ [M + Na⁺] 390.0934, found 390.0936.

(E)-N-(4-Chloro-2-styrylphenyl)-4-methylbenzenesulfonamide (1d)

Following the general procedure **Method A**, **1d** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 79%); m.p. 143-145 °C. $R_f = 0.39$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 2.4 Hz, 1H), 7.30 – 7.20 (m, 6H), 7.13 (dd, J = 8.6, 2.4 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 6.85 (s, 1H), 6.72 (q, J = 16.1 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.1, 136.3, 136.3, 135.1, 133.2, 132.9, 131.8, 129.8, 128.7, 128.43, 128.41, 128.2, 127.2, 126.9, 126.3, 121.5, 21.5. HRMS (ESI) calcd for C₂₁H₁₈ClNNaO₂S⁺ [M + Na⁺] 406.0639, found 406.0638.

(E)-N-(5-Bromo-2-styrylphenyl)-4-methylbenzenesulfonamide (1e)

Following the general procedure **Method A**, **1e** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A pale yellow solid (yield: 78%); m.p. 148-150 °C. $R_f = 0.59$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.56 (s, 1H), 7.37 – 7.27 (m, 7H), 7.18 (d, J = 7.9 Hz, 2H), 6.79 – 6.72 (m, 3H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.3, 136.4, 136.3, 134.4, 132.9, 131.9, 130.0, 129.8, 129.1, 128.7, 128.4, 127.8, 127.2, 126.7, 121.6, 121.5, 21.5. HRMS (ESI) calcd for C₂₁H₁₈BrNNaO₂S⁺ [M + Na⁺] 450.0134, found 450.0136.

Methyl (E)-3-((4-methylphenyl)sulfonamido)-4-styrylbenzoate (1f)

Following the general procedure **Method A**, **1f** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 69%); m.p. 182-

184 °C. $R_f = 0.35$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 1.5 Hz, 1H), 7.88 (dd, J = 8.2, 1.4 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 1H), 7.38 – 7.27 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 6.96 – 6.85 (m, 3H), 3.91 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 144.1, 137.9, 136.4, 136.3, 134.0, 133.4, 129.9, 129.8, 128.7, 128.6, 128.2, 128.1, 127.2, 127.0, 126.4, 121.9, 52.3, 21.4. HRMS (ESI) calcd for C₂₃H₂₁NNaO₄S⁺ [M + Na⁺] 430.1083, found 430.1086.

(E)-4-Methyl-N-(2-styryl-4-(trifluoromethyl)phenyl)benzenesulfonamide (1g)

Following the general procedure **Method A**, **1g** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 78%); m.p. 116-118 °C. $R_f = 0.38$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.72 – 7.65 (m, 3H), 7.54 (d, J = 8.4 Hz, 1H), 7.47 (dd, J = 8.5, 1.7 Hz, 1H), 7.34 (ddd, J = 25.2, 16.7, 7.1 Hz, 5H), 7.19 (d, J = 8.0 Hz, 2H), 7.11 (s, 1H), 6.86 (q, J = 16.1 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.4, 136.6, 136.3, 136.10, 134.4, 132.3, 129.9, 128.8, 128.7, 128.3(q, ² $_{J_{C-F}} = 32.7$ Hz), 127.2, 126.9, 125.0(q, ⁴ $_{J_{C-F}} = 3.6$ Hz), 124.7, 124.0(q, ⁴ $_{J_{C-F}} = 3.7$ Hz), 123.0, 121.2, 21.5. HRMS (ESI) calcd for C₂₂H₁₈F₃NNaO₂S⁺ [M + Na⁺] 440.0903, found 440.0905.

(E)-N-(4-Cyano-2-styrylphenyl)-4-methylbenzenesulfonamide (1h)

Following the general procedure **Method A**, **1h** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 69%); m.p. 164-166 °C. $R_f = 0.45$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.69 (dd, J = 5.0, 3.2 Hz, 3H), 7.54 (d, J = 8.5 Hz, 1H), 7.49 (s, 1H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 7.39 (d, J = 7.1 Hz, 2H), 7.31 (dt, J = 20.8, 7.0 Hz, 3H), 7.20 (d, J = 8.2 Hz,

2H), 6.85 (dd, J = 54.4, 16.0 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.7, 137.7, 136.0, 135.9, 135.2, 132.0, 131.6, 131.0, 130.0, 128.9, 128.8, 127.2, 127.0, 123.6, 120.3, 118.4, 109.3, 21.6. HRMS (ESI) calcd for C₂₂H₁₈N₂NaO₂S⁺ [M + Na⁺] 397.0981, found 397.0981.

(E)-4-Methyl-N-(5-methyl-2-styrylphenyl)benzenesulfonamide (1i)

Following the general procedure **Method A**, **1i** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 75%); m.p. 154-156 °C. $R_f = 0.45$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 7.9 Hz, 1H), 7.33 – 7.22 (m, 5H), 7.21 (s, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 7.9 Hz, 1H), 6.73 (q, J = 16.1 Hz, 2H), 6.63 (s, 1H), 2.32 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 138.6, 136.9, 136.7, 133.1, 131.2, 130.4, 129.6, 128.6, 128.0, 127.9, 127.5, 127.2, 126.6, 126.3, 122.6, 21.4, 21.2. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1185, found 386.1186.

(E)-4-Methyl-N-(4-methyl-2-styrylphenyl)benzenesulfonamide (1j)

Following the general procedure **Method A**, **1j** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 69%); m.p. 117-119 °C. $R_f = 0.30$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.3 Hz, 2H), 7.36 – 7.26 (m, 6H), 7.23 (d, J = 8.1 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.05 (dd, J = 8.1, 1.5 Hz, 1H), 6.77 (s, 2H), 6.43 (s, 1H), 2.34 (s, 3H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 137.1, 136.8, 136.7, 133.5, 131.7, 130.7, 129.6, 129.2, 128.6, 127.9, 127.4, 127.2, 126.9, 126.6, 122.9, 21.4, 21.1. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1185, found 386.1186.

(E)-4-Methyl-N-(3-methyl-2-styrylphenyl)benzenesulfonamide (1k)

Following the general procedure **Method A**, **1k** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A brown solid (yield: 75%); m.p. 128-130 °C. $R_f = 0.65$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.2 Hz, 1H), 7.36 (ddt, J = 21.4, 14.3, 7.2 Hz, 5H), 7.23 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.85 (s, 1H), 6.58 (d, J = 16.8 Hz, 1H), 6.28 (d, J = 16.8 Hz, 1H), 2.41 (s, 3H), 2.21 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 137.5, 136.8, 136.3, 136.1, 134.1, 129.9, 129.7, 128.8, 128.5, 127.8, 127.2, 126.8, 126.5, 122.8, 119.7, 21.6, 20.7. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1185, found 386.1186.

(E)-N-(4-Methoxy-2-styrylphenyl)-4-methylbenzenesulfonamide (11)

Following the general procedure **Method A**, **11** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 77%); m.p. 142-144 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.34 – 7.26 (m, 5H), 7.22 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 2.9 Hz, 1H), 6.81 (d, J = 16.1 Hz, 1H), 6.78 (dd, J = 8.8, 2.9 Hz, 1H), 6.74 (d, J = 16.1 Hz, 1H), 6.51 (s, 1H), 3.83 (s, 3H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 143.7, 136.7, 136.6, 136.0, 131.6, 130.1, 129.6, 128.6, 128.1, 127.3, 126.7, 126.0, 123.0, 114.0, 110.9, 55.5, 21.4. HRMS (ESI) calcd for C₂₂H₂₁NNaO₃S⁺ [M + Na⁺] 402.1134, found 402.1136.

(E)-N-(2-(4-Fluorostyryl)phenyl)-4-methylbenzenesulfonamide (1m)

Following the general procedure **Method B**, **1m** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 85%); m.p. 167-169 °C. $R_f = 0.43$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.48 (dd, J = 6.6, 2.7 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.25 – 7.20 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.00 (t, J = 8.6 Hz, 2H), 6.89 (s, 1H), 6.86 (d, J = 16.1 Hz, 1H), 6.74 (d, J = 16.1 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.6 (d, ¹ $J_{C-F} = 248.0$ Hz), 143.9, 136.6, 133.3, 133.1 (d, ⁴ $J_{C-F} = 3.2$ Hz), 130.7, 129.6, 128.3 (d, ³ $J_{C-F} = 8.0$ Hz), 128.3, 127.2, 127.1, 126.8, 126.4, 122.7, 115.5 (d, ² $J_{C-F} = 21.8$ Hz), 100.0, 21.4. HRMS (ESI) calcd for C₂₁H₁₈FNNaO₂S⁺ [M + Na⁺] 390.0934, found 390.0936.

(E)-N-(2-(4-Chlorostyryl)phenyl)-4-methylbenzenesulfonamide (1n)

Following the general procedure **Method B**, **1n** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 67%); m.p. 195-197 °C. $R_f = 0.39$ (30% EtOAc/petroleum ether); ¹H NMR (600 MHz, DMSO) δ 9.79 (s, 1H), 7.70 – 7.63 (m, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.17 – 7.13 (m, 1H), 7.10 (d, J = 16.3 Hz, 1H), 6.92 (d, J = 16.3 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 142.9, 137.1, 136.0, 133.9, 133.2, 131.9, 129.5, 128.5, 128.2, 128.1, 128.0, 126.9, 126.5, 125.5, 124.4, 20.8. HRMS (ESI) calcd for C₂₁H₁₈ClNNaO₂S⁺ [M + Na⁺] 406.0639, found 406.0638.

(E)-N-(2-(3-Chlorostyryl)phenyl)-4-methylbenzenesulfonamide (10)

Following the general procedure **Method B**, **10** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 83%); m.p. 131-133 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.47 (dd, J = 7.4, 1.8 Hz, 1H), 7.37 (dd, J = 7.7, 1.5 Hz, 1H), 7.29 – 7.20 (m, 5H), 7.20 – 7.16 (m, 3H), 6.74 (dd, J = 52.3, 16.1 Hz, 2H), 6.67 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 138.7, 136.7, 134.6, 133.4, 133.1, 130.5, 129.8, 129.8, 128.8, 127.9, 127.6, 127.3, 127.2, 126.5, 126.3, 125.0, 124.3, 21.4. HRMS (ESI) calcd for C₂₁H₁₈CINNaO₂S⁺ [M + Na⁺] 406.0639, found 406.0638.

(E)-N-(2-(2-Chlorostyryl)phenyl)-4-methylbenzenesulfonamide (1p)

Following the general procedure **Method B**, **1p** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A brown solid (yield: 81%); m.p. 162-164 °C. $R_f = 0.45$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.44 (dd, J = 7.5, 1.8 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 5.6, 3.7 Hz, 1H), 7.26 – 7.18 (m, 5H), 7.14 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 16.1 Hz, 1H), 6.74 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 136.5, 134.9, 133.5, 133.4, 133.3, 129.8, 129.7, 129.0, 128.8, 127.9, 127.3, 127.2, 127.0, 126.9, 126.8, 126.8, 125.4, 21.5. HRMS (ESI) calcd for C₂₁H₁₈CINNaO₂S⁺ [M + Na⁺] 406.0639, found 406.0638.

Ethyl (E)-4-(2-((4-methylphenyl)sulfonamido)styryl)benzoate (1q)

Following the general procedure Method B, 1q was purified by silica gel

chromatography (10% EtOAc/petroleum ether). A white solid (yield: 82%); m.p. 152-153 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.52 (dd, J = 7.2, 2.0 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.26 – 7.22 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 16.1 Hz, 1H), 6.89 (s, 1H), 6.80 (d, J = 16.1 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 2.27 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 144.0, 141.1, 136.5, 133.5, 133.1, 130.7, 129.9, 129.7, 129.6, 128.9, 127.4, 127.3, 127.2, 126.5, 126.5, 125.4, 61.0, 21.5, 14.4. HRMS (ESI) calcd for C₂₄H₂₃NNaO₄S⁺ [M + Na⁺] 444.1240, found 444.1242.

(E)-4-Methyl-N-(2-(4-(trifluoromethyl)styryl)phenyl)benzenesulfonamide (1r)

Following the general procedure **Method B**, **1r** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 79%); m.p. 162-164 °C. $R_f = 0.45$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.58 – 7.51 (m, 3H), 7.43 (d, J = 8.1 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.25 (dd, J = 5.8, 4.0 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 16.2 Hz, 1H), 6.82 (d, J = 16.1 Hz, 1H), 6.77 (s, 1H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 140.3, 136.5, 133.5, 133.0, 130.2, 129.7, 129.6 (q, ² $_{JC-F} = 31.8$ Hz), 129.0, 127.3, 127.3, 127.2, 126.8, 126.6, 125.6, 125.5 (q, ³ $_{JC-F} = 3.8$ Hz), 124.2(q, ¹ $_{JC-F} = 270.1$ Hz), 21.4. HRMS (ESI) calcd for C₂₂H₁₈F₃NNaO₂S⁺ [M + Na⁺] 440.0903, found 440.0905.

(E)-4-Methyl-N-(2-(4-methylstyryl)phenyl)benzenesulfonamide (1s)

Following the general procedure Method B, 1s was purified by silica gel

chromatography (10% EtOAc/petroleum ether). A white solid (yield: 77%); m.p. 159-161 °C. $R_f = 0.33$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.46 (dd, J = 7.3, 1.9 Hz, 1H), 7.38 (dd, J = 7.7, 1.5 Hz, 1H), 7.22 (ddd, J = 16.1, 10.7, 5.0 Hz, 4H), 7.16 (dd, J = 15.2, 8.0 Hz, 4H), 6.80 – 6.67 (m, 2H), 6.50 (s, 1H), 2.37 (s, 3H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 138.2, 136.7, 133.9, 133.2, 133.2, 132.4, 129.7, 129.4, 128.2, 127.2, 127.0, 126.6, 126.6, 126.5, 121.6, 21.5, 21.3. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1185, found 386.1186.

(E)-4-Methyl-N-(2-(3-methylstyryl)phenyl)benzenesulfonamide (1t)

Following the general procedure **Method B**, **1t** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 70%); m.p. 117-119 °C. $R_f = 0.60$ (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.47 (dd, J = 7.2, 2.1 Hz, 1H), 7.39 (dd, J = 7.6, 1.7 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.2 Hz, 3H), 6.74 (d, J = 2.5 Hz, 2H), 6.47 (s, 1H), 2.38 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 138.2, 136.6, 136.6, 133.2, 133.1, 132.6, 129.7, 129.0, 128.6, 128.4, 127.2, 127.2, 127.0, 126.6, 126.6, 123.9, 122.3, 21.5, 21.4. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1191, found 386.1190.

(E)-4-Methyl-N-(2-(2-methylstyryl)phenyl)benzenesulfonamide (1u)

Following the general procedure **Method B**, **1u** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 67%); m.p. 148-149 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.50 (dd, J = 6.5, 2.8 Hz, 1H), 7.43 – 7.36 (m, 1H), 7.28 (dd, J =

7.2, 4.6 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.21 – 7.14 (m, 5H), 7.05 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 16.0 Hz, 1H), 6.68 (s, 1H), 2.34 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 136.7, 135.8, 135.7, 133.4, 133.3, 130.4, 130.1, 129.7, 128.4, 128.1, 127.2, 127.0, 126.8, 126.6, 126.2, 125.5, 123.9, 21.5, 19.9. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1191, found 386.1192.

(E)-N-(2-(4-Methoxystyryl)phenyl)-4-methylbenzenesulfonamide (1v)

Following the general procedure **Method B**, **1v** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 90%); m.p. 122-124 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.40 – 7.32 (m, 1H), 7.29 – 7.22 (m, 2H), 7.23 – 7.16 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.88 – 6.81 (m, 2H), 6.77 (s, 1H), 6.70 (s, 2H), 3.82 (s, 3H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.7, 143.8, 136.7, 133.5, 133.1, 131.7, 129.6, 128.0, 127.2, 126.9, 126.6, 126.4, 120.5, 114.1, 55.4, 21.5. HRMS (ESI) calcd for C₂₂H₂₁NNaO₃S⁺ [M + Na⁺] 402.1134, found 402.1136.

(E)-N-(2-(3-Methoxystyryl)phenyl)-4-methylbenzenesulfonamide (1w)

Following the general procedure **Method B**, **1w** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 90%); m.p. 104-105 °C. $R_f = 0.70$ (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.49 (dd, J = 7.0, 2.3 Hz, 1H), 7.40 (dd, J = 7.3, 2.0 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 7.08 (s, 1H), 6.97 – 6.79 (m, 4H), 6.72 (d, J = 16.1 Hz, 1H), 3.83 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 143.9, 138.2, 136.5, 133.4, 133.3, 131.9, 129.7, 129.6, 128.4, 127.2, 126.5, 123.0,

119.5, 113.8, 111.9, 55.3, 21.5 (2 carbons are missing due to overlapping). HRMS (ESI) calcd for $C_{22}H_{21}NNaO_3S^+$ [M + Na⁺] 402.1140, found 402.1142.

(E)-N-(2-(2-Methoxystyryl)phenyl)-4-methylbenzenesulfonamide (1x)

Following the general procedure **Method B**, **1x** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 67%); m.p. 163-165 °C. $R_f = 0.43$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.50 (dd, J = 7.0, 2.3 Hz, 1H), 7.39 (dd, J = 7.5, 1.8 Hz, 1H), 7.28 (dd, J = 6.6, 2.0 Hz, 1H), 7.25 (s, 1H), 7.24 – 7.18 (m, 2H), 7.16 (dd, J = 12.1, 8.7 Hz, 3H), 6.94 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 16.3 Hz, 1H), 6.51 (s, 1H), 3.87 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 143.9, 136.6, 133.4, 133.2, 129.7, 129.3, 128.2, 127.6, 127.2, 126.9, 126.8, 126.1, 125.7, 123.0, 120.7, 110.9, 55.5, 21.5. HRMS (ESI) calcd for C₂₂H₂₁NNaO₃S⁺ [M + Na⁺] 402.1134, found 402.1136.

(E)-4-(2-((4-Methylphenyl)sulfonamido)styryl)phenyl acetate (1y)

Following the general procedure **Method B**, **1y** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 87%); m.p. 140-141 °C. $R_f = 0.30$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.48 (dd, J = 6.8, 2.5 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.12 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.96 (s, 1H), 6.85 (d, J = 16.1 Hz, 1H), 6.73 (d, J = 16.1 Hz, 1H), 2.31 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 150.3, 143.9, 136.5, 134.6, 133.3, 133.3, 130.7, 129.7, 128.5, 127.7, 127.2, 127.1, 127.1, 126.4, 123.0, 121.8, 21.5, 21.2.

HRMS (ESI) calcd for $C_{23}H_{21}NNaO_4S^+$ [M + Na⁺] 430.1089, found 430.1088.

(E)-4-Methyl-N-(2-(2-(thiophen-2-yl)vinyl)phenyl)benzenesulfonamide (1z)

Following the general procedure **Method B**, **1z** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A yellow solid (yield: 76%); m.p. 117-119 °C. $R_f = 0.55$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.41 (td, J = 7.5, 1.5 Hz, 2H), 7.25 – 7.18 (m, 3H), 7.15 (d, J = 8.0 Hz, 2H), 6.98 (dd, J = 5.5, 2.5 Hz, 2H), 6.87 (d, J = 15.9 Hz, 1H), 6.72 (s, 1H), 6.59 (d, J = 15.9 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 142.3, 136.4, 133.1, 133.0, 129.7, 128.4, 127.6, 127.2, 126.7, 126.3, 125.1, 125.0, 122.1, 21.5. HRMS (ESI) calcd for C₁₉H₁₇NNaO₂S₂⁺ [M + Na⁺] 378.0593, found 378.0596.

(E)-4-Methyl-N-(2-(2-(naphthalen-2-yl)vinyl)phenyl)benzenesulfonamide (1aa)

Following the general procedure **Method B**, **1aa** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 86%); m.p. 138-140 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.77 (m, 2H), 7.75 (d, J = 8.6 Hz, 1H), 7.68 (s, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.49 (dd, J = 8.6, 1.6 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.41 – 7.36 (m, 1H), 7.27 – 7.20 (m, 2H), 7.10 (d, J = 8.3 Hz, 2H), 6.95 (dd, J = 44.2, 16.1 Hz, 2H), 6.85 (s, 1H), 2.19 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 136.6, 134.3, 133.6, 133.4, 133.3, 133.2, 132.1, 129.7, 128.4, 128.3, 128.1, 127.7, 127.2, 127.2, 127.0, 127.0, 126.5, 126.4, 126.2, 123.6, 123.0, 21.4. HRMS (ESI) calcd for C₂₅H₂₁NNaO₂S⁺ [M + Na⁺] 422.1185, found 422.1186.

(E)-N-(2-Styrylphenyl)methanesulfonamide (1ab)

Following the general procedure **Method A** using methanesulfonyl chloride as the sulfonylation reagent, **1ab** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 81%); m.p. 110-112 °C. $R_f = 0.31$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.64 (dd, J = 7.6, 1.2 Hz, 1H), 7.54 (d, J = 7.9 Hz, 2H), 7.50 (dd, J = 7.9, 1.0 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.36 – 7.26 (m, 4H), 7.06 (d, J = 16.1 Hz, 1H), 6.51 (s, 1H), 3.02 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 136.8, 133.5, 132.9, 132.5, 128.8, 128.7, 128.3, 127.0, 126.9, 126.9, 125.1, 122.8, 40.0. HRMS (ESI) calcd for C₁₅H₁₅NNaO₂S⁺ [M + Na⁺] 296.0716, found 296.0718.

Following the general procedure **Method A** using 4-chlorobenzenesulfonyl chloride as the sulfonylation reagent, **1ac** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 80%); m.p. 129-131 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.61 (m, 2H), 7.51 – 7.47 (m, 1H), 7.37 – 7.30 (m, 5H), 7.30 – 7.26 (m, 3H), 7.26 – 7.22 (m, 2H), 6.88 (d, J = 16.1 Hz, 1H), 6.82 (s, 1H), 6.75 (d, J = 16.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 139.6, 137.9, 136.6, 133.6, 132.8, 132.5, 129.3, 128.7, 128.6, 128.5, 128.3, 127.6, 127.0, 126.8, 126.7, 122.6. HRMS (ESI) calcd for C₂₀H₁₆CINNaO₂S⁺ [M + Na⁺] 392.0482, found 392.0483.

tert-butyl (*E*)-(2-styrylphenyl)carbamate (1ad)

Following the general procedure **Method A** using (Boc)₂O in ClCH₂CH₂Cl in place of *p*-TsCl in pyridine, **1ad** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 73%); mp 130-132 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.52 (t, J = 8.5Hz, 3H), 7.39 (t, J = 6.9 Hz, 2H), 7.36 – 7.26 (m, 2H), 7.14 (dd, J = 20.9, 13.2 Hz, 2H), 7.00 (d, J = 16.0 Hz, 1H), 6.45 (s, 1H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.2, 137.2, 135.4, 132.4, 128.8, 128.4, 128.1, 126.9, 126.7, 124.3, 123.6, 122.1, 80.7, 28.4. HRMS (ESI) calcd for C₁₉H₂₁NNaO₂⁺ [M + Na⁺] 318.1465, found 318.1468.

(E)-4-Methyl-N-(5-methyl-2-(4-methylstyryl)phenyl)benzenesulfonamide(1ae)

Following the general procedure **Method B**, **1ae** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 88%); m.p. 158-160 °C. $R_f = 0.70$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.23 (s, 1H), 7.15 (q, J = 8.1 Hz, 6H), 7.03 (d, J = 8.2 Hz, 1H), 6.66 (q, J = 16.1 Hz, 2H), 6.50 (s, 1H), 2.36 (s, 3H), 2.33 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 138.5, 137.9, 136.7, 134.1, 132.9, 131.3, 130.4, 129.6, 129.3, 128.0, 127.3, 127.2, 126.5, 126.3, 121.5, 21.5, 21.3, 21.2. HRMS (ESI) calcd for C₂₃H₂₃NNaO₂S⁺ [M + Na⁺] 400.1347, found 400.1348.

(E)-N-(2-(4-Methoxystyryl)-5-methylphenyl)-4-methylbenzenesulfonamide(1af)

Following the general procedure Method B, 1af was purified by silica gel

chromatography (10% EtOAc/petroleum ether). A white solid (yield: 83%); m.p. 132-134 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 9.1 Hz, 5H), 7.02 (d, J = 7.8Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.67 (d, J = 16.1 Hz, 1H), 6.51 (d, J = 16.1 Hz, 1H), 6.35 (s, 1H), 3.84 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 143.9, 138.3, 136.7, 132.8, 131.0, 130.4, 129.6, 129.6, 127.9, 127.8, 127.2, 127.2, 126.2, 120.3, 114.1, 55.4, 21.5, 21.2. HRMS (ESI) calcd for C₂₃H₂₃NNaO₃S⁺ [M + Na⁺] 416.1291, found 416.1293.

(E)-N-(2-(4-Methoxystyryl)phenyl)methanesulfonamide (1ag)

Following the general procedure **Method B** using methanesulfonyl chloride as the sulfonylation reagent, **1ag** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 81%); m.p. 115-117 °C. $R_f = 0.35$ (30% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.0, 2.3 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.28 (dd, J = 4.0, 2.5 Hz, 1H), 7.21 (d, J = 16.1 Hz, 1H), 7.00 (d, J = 16.0 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.81 (s, 1H), 3.83 (s, 3H), 3.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 133.2, 132.7, 132.5, 129.5, 128.4, 128.2, 126.9, 126.8, 125.0, 120.4, 114.3, 55.4, 40.0. HRMS (ESI) calcd for C₁₆H₁₇NNaO₃S⁺ [M + Na⁺] 326.0827, found 326.0828.

(E)-N-(2-styrylphenyl)acetamide (1ah)

Following the general procedure **Method A** using AcCl in place of *p*-TsCl, **1ah** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 84%); mp 140-141 °C. $R_f = 0.58$ (10% EtOAc/petroleum ether); ¹H NMR (600

MHz, DMSO) δ 9.63 (s, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.49 (d, J = 7.9 Hz, 1H), 7.39 (dd, J = 19.9, 12.0 Hz, 3H), 7.29 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.23 – 7.15 (m, 2H), 2.12 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 168.6, 137.3, 135.6, 130.8, 129.5, 128.7, 127.7, 127.6, 126.6, 126.1, 125.4, 125.2, 124.1, 23.4. HRMS (ESI) calcd for C₁₆H₁₅NNaO⁺ [M + Na⁺] 260.1046, found 260.1048.

4-methyl-N-(2-vinylphenyl)benzenesulfonamide (1ai)

Following the general procedure **Method B**, **1ai** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 76%); mp 114-116 °C. $R_f = 0.20$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.36 (dd, J = 7.6, 1.3 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.20 (dd, J = 13.2, 4.9 Hz, 3H), 7.15 (t, J = 7.4 Hz, 1H), 6.71 (s, 1H), 6.58 (dd, J = 17.4, 11.0 Hz, 1H), 5.50 (d, J = 17.4 Hz, 1H), 5.25 (d, J = 11.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.9, 136.5, 133.2, 132.8, 131.6, 129.6, 128.6, 127.3, 126.9, 126.5, 125.0, 118.1, 21.6. HRMS (ESI) calcd for C₁₅H₁₅NNaO₂S⁺ [M + Na⁺] 296.0716, found 296.0718.

(E)-4-methyl-N-(2-(pent-1-en-1-yl)phenyl)benzenesulfonamide (1aj)

Following the general procedure **Method A**, **1aj** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 68%); mp 76-78 °C. $R_f = 0.43$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 7.9 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.3 Hz, 1H), 6.62 (s, 1H), 6.11 (d, J = 15.7 Hz, 1H), 5.92 (dt, J = 15.6, 6.9 Hz, 1H), 2.37 (s, 3H), 2.13 – 1.93 (m, 2H), 1.51 – 1.31 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.7, 136.6, 135.7,

132.9, 132.7, 129.6, 127.7, 127.2, 127.1, 126.3, 124.7, 124.0, 35.2, 22.2, 21.5, 13.7. HRMS (ESI) calcd for C₁₈H₂₁NNaO₂S⁺ [M + Na⁺] 338.1185, found 338.1187.

(E)-4-methyl-N-(2-(3-phenylprop-1-en-1-yl)phenyl)benzenesulfonamide(1ak)

Following the general procedure **Method A**, **1ak** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (yield: 75%); mp 125-127 °C. $R_f = 0.28$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 4H), 7.25 – 7.20 (m, 2H), 7.18 – 7.12 (m, 4H), 6.57 (s, 1H), 6.28 (d, J = 15.9 Hz, 1H), 6.09 (dt, J = 15.9, 6.4 Hz, 1H), 3.25 (dd, J = 6.3, 1.2 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 136.8, 136.7, 134.9, 132.5, 132.0, 130.5, 129.6, 128.6, 127.7, 127.6, 127.2, 127.1, 126.28, 126.26, 124.3, 35.1, 21.5. HRMS (ESI) calcd for C₂₂H₂₁NNaO₂S⁺ [M + Na⁺] 386.1185, found 386.1188.

(*E*)-N-methyl-2-styrylaniline (1al)

Following the general procedure **Method A** using MeI in place of *p*-TsCl, **1al** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A yellow oil (yield: 45%). $R_f = 0.65$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.8 Hz, 2H), 7.39 (dd, J = 13.5, 7.4 Hz, 3H), 7.29 (d, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.17 (d, J = 16.0 Hz, 1H), 6.98 (d, J = 16.0 Hz, 1H), 6.80 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 4.16 (s, 1H), 2.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 137.7, 130.9, 129.1, 128.7, 127.6, 127.3, 126.5, 124.4, 124.1, 117.6, 110.5, 31.0. HRMS (ESI) calcd for C₁₅H₁₅NNa⁺ [M + Na⁺] 232.1097, found 232.1096.

(*E*)-*N*-benzyl-2-styrylaniline (1am)

Following the general procedure **Method A** using BnCl in place of *p*-TsCl, **1am** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A yellow oil (yield: 48%). $R_f = 0.65$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 7.4 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.26 (t, J = 7.0 Hz, 4H), 7.21 – 7.12 (m, 3H), 7.08 (dd, J = 14.5, 6.5 Hz, 2H), 6.90 (d, J = 16.0 Hz, 1H), 6.70 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 4.31 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 145.4, 139.1, 137.7, 131.1, 129.0, 128.7, 127.62, 127.56, 127.5, 127.3, 126.5, 124.4, 117.9, 111.5, 48.6. HRMS (ESI) calcd for C₂₁H₁₉NNa⁺ [M + Na⁺] 308.1410, found 308.1416.

(E)-2-styrylphenol (1an)

Following the general procedure **Method A** step 1, **1an** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A yellow solid (yield: 82%); mp 140-142 °C. $R_f = 0.55$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.5 Hz, 3H), 7.39 (d, J = 4.7 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.27 (d, J = 13.9 Hz, 1H), 7.18 – 7.08 (m, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 4.96 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 137.6, 130.2, 128.7, 127.7, 127.3, 126.6, 124.7, 123.0, 121.2, 116.0. HRMS (ESI) calcd for C₁₄H₁₂NaO⁺ [M + Na⁺] 219.0780, found 219.0785.

3. General Procedure for the Synthesis of 3-Unsubstituted Indoles Derivatives 2 (2a-2ac):

To a solution of substrate 1 (0.5 mmol) in DMSO (1 mL) was slowly added $SOCl_2$ (1.5 mmol, 179 mg) at 25 °C. The mixture was kept stirring at 25 °C until TLC indicated that total consumption of substrate 1. Then the reaction mixture was

quenched with saturated aq. NaHCO₃ solution (5 mL) and water (20 mL), extracted with EtOAc (3×20 mL), combined the organic phase then evaporated the solvent, purified by flash column chromatography (5% EtOAc/petroleum ether) to afford the desired compound **2**.

4. Spectroscopic Data of 3-Unsubstituted Indoles Derivatives 2 (2a-ac):

2-Phenyl-1-tosyl-1*H*-indole (2a)

Following the general procedure, **2a** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (159 mg, 92%); m.p. 145-147 °C. $R_f = 0.59$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.45 – 7.39 (m, 4H), 7.37 – 7.32 (m, 1H), 7.26 – 7.23 (m, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.53 (s, 1H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.5, 142.2, 138.3, 134.8, 132.5, 130.6, 130.4, 129.2, 128.7, 127.5, 126.8, 124.8, 124.3, 120.7, 116.7, 113.6, 21.5. HRMS (ESI) calcd for C₂₁H₁₇NNaO₂S⁺ [M + Na⁺] 370.0878, found 370.0882.

6-Fluoro-2-phenyl-1-tosyl-1*H*-indole (2b)

Following the general procedure, **2b** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (168 mg, 92%); m.p. 103-105 °C. $R_f = 0.61$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.06 (dd, J = 10.4, 2.1 Hz, 1H), 7.49 – 7.39 (m, 5H), 7.36 (dd, J = 8.5, 5.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 7.02 (td, J = 8.8, 2.3 Hz, 1H), 6.49 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.7, 160.1, 144.8, 142.4(d, ⁴ $J_{C-F} = 4.3$ Hz), 138.6(d, ³ $J_{C-F} = 12.5$ Hz), 134.7, 132.1, 130.4, 129.3, 128.7, 127.5, 126.9, 126.7, 121.3(d, ³ $J_{C-F} = 9.7$ Hz), 112.8, 112.6(d, ² $J_{C-F} = 24.1$ Hz), 104.0(d, ² $J_{C-F} = 28.6$ Hz), 21.5. HRMS (ESI)

calcd for $C_{21}H_{16}FNNaO_2S^+$ [M + Na⁺] 388.0783, found 388.0782.

5-Fluoro-2-phenyl-1-tosyl-1*H*-indole (2c)

Following the general procedure, **2c** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A pale yellow solid (165 mg, 91%); m.p. 113-115 °C. $R_f = 0.57$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.25 (dd, J = 8.9, 4.5 Hz, 1H), 7.51 – 7.39 (m, 5H), 7.24 (d, J = 8.4 Hz, 2H), 7.12 – 7.02 (m, 4H), 6.50 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.2(d, ¹ $J_{C-F} = 239.7$ Hz), 144.7, 144.0, 134.6, 134.5, 132.1, 131.6(d, ³ $J_{C-F} = 10.0$ Hz), 130. 3, 129.3, 128.9, 127.6, 126.8, 117.9(d, ³ $J_{C-F} = 9.2$ Hz), 113.2(d, ⁴ $J_{C-F} = 3.8$ Hz), 112.5(d, ² $J_{C-F} = 25.0$ Hz), 106.3(d, ² $J_{C-F} = 23.8$ Hz), 21.5. HRMS (ESI) calcd for C₂₁H₁₆FNNaO₂S⁺ [M + Na⁺] 388.0783, found 388.0781.

5-Chloro-2-phenyl-1-tosyl-1H-indole (2d)

Following the general procedure, **2d** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (165 mg, 83%); m.p. 142-143 °C. $R_f = 0.61$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.9 Hz, 1H), 7.52 – 7.39 (m, 6H), 7.31 (dd, J = 8.9, 2.1 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 6.48 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 143.6, 136.6, 134.4, 131.9, 131.8, 130.4, 130.0, 129.4, 129.0, 127.6, 126.8, 124.9, 120.3, 117.7, 112.7, 21.6. HRMS (ESI) calcd for C₂₁H₁₆ClNNaO₂S⁺ [M + Na⁺] 404.0488, found 404.0485.

6-Bromo-2-phenyl-1-tosyl-1*H*-indole (2e)

Following the general procedure, **2e** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (186 mg, 87%); m.p. 156-157 °C. $R_f = 0.46$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 7.48 – 7.36 (m, 6H), 7.30 (d, J = 8.3 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.48 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.9, 142.6, 138.9, 134.7, 131.9, 130.4, 129.4, 129.3, 128.9, 127.6, 127.5, 126.9, 121.7, 119.6, 118.3, 112.8, 21.6. HRMS (ESI) calcd for C₂₁H₁₆BrNNaO₂S⁺ [M + Na⁺] 449.9983, found 449.9981.

Methyl 2-phenyl-1-tosyl-1*H*-indole-6-carboxylate (2f)

Following the general procedure, **2f** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (181 mg, 86%); m.p. 165-166 °C. $R_f = 0.21$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 9.01 (s, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.45 (ddd, J = 20.2, 15.4, 7.5 Hz, 6H), 7.30 – 7.21 (m, 2H), 7.04 (d, J = 8.2 Hz, 2H), 6.56 (s, 1H), 3.98 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 145.2, 144.9, 137.7, 134.6, 134.2, 131.8, 130.4, 129.4, 129.1, 127.6, 126.9, 126.5, 125.6, 120.4, 118.3, 113.1, 52.3, 21.6. HRMS (ESI) calcd for C₂₃H₁₉NNaO₄S⁺ [M + Na⁺] 428.0932, found 428.0933.

2-Phenyl-1-tosyl-5-(trifluoromethyl)-1*H*-indole (2g)

Following the general procedure, **2g** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (151 mg, 73%); m.p. 123-125 °C. $R_f = 0.67$

(20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.43 (d, J = 8.8 Hz, 1H), 7.75 (s, 1H), 7.52 – 7.39 (m, 5H), 7.28 (m, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.59 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1, 143.7, 139.7, 134.8, 131.6, 130.6, 130.0, 129.5, 129.1, 127.6, 126.8, 126.5(q, ² $J_{C-F} = 21.4$ Hz), 125.4, 121.4(q, ⁴ $J_{C-F} = 2.4$ Hz), 118.1(q, ⁴ $J_{C-F} = 2.7$ Hz), 116.7, 112.7, 21.5. HRMS (ESI) calcd for C₂₂H₁₆F₃NNaO₂S⁺ [M + Na⁺] 438.0752, found 438.0750.

2-Phenyl-1-tosyl-1*H*-indole-5-carbonitrile (2h)

Following the general procedure, **2h** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (121 mg, 65%); m.p. 118-119 °C. $R_f = 0.25$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 1.1 Hz, 1H), 7.61 (dd, J = 8.7, 1.6 Hz, 1H), 7.51 – 7.40 (m, 5H), 7.24 (d, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.57 (s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 144.1, 139.9, 134.6, 131.2, 130.5, 130.2, 129.5, 129.3, 127.6, 126.8, 125.4, 119.3, 117.1, 112.0, 107.7, 21.6. HRMS (ESI) calcd for C₂₂H₁₆N₂NaO₂S⁺ [M + Na⁺] 395.0830, found 395.0833.

6-Methyl-2-phenyl-1-tosyl-1*H*-indole (2i)

Following the general procedure, **2i** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (176 mg, 98%); m.p. 178-180 °C. $R_f = 0.69$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 7.47 (d, J = 4.6 Hz, 2H), 7.40 (s, 3H), 7.30 (d, J = 7.8 Hz, 1H), 7.24 (t, J = 8.4 Hz, 2H), 7.08 (d, J = 7.7 Hz, 1H), 7.02 (d, J = 7.9 Hz, 2H), 6.47 (s, 1H), 2.51 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.4, 141.5, 138.8, 134.9, 134.8, 132.6, 130.3, 129.2, 128.5, 128.3, 127.5, 126.8, 125.8, 120.3, 116.9, 113.6, 22.1, 21.5. HRMS (ESI) calcd

for $C_{22}H_{19}NNaO_2S^+$ [M + Na⁺] 384.1034, found 384.1038.

5-Methyl-2-phenyl-1-tosyl-1*H*-indole (2j)

Following the general procedure, **2j** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A pale yellow solid (174 mg, 96%); m.p. 111-113 °C. $R_f = 0.50 (10\% \text{ EtOAc/petroleum ether})$; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1H), 7.50 (dd, J = 6.6, 3.1 Hz, 2H), 7.46 – 7.39 (m, 3H), 7.27 (s, 1H), 7.24 (d, J = 12.1 Hz, 2H), 7.17 (dd, J = 8.6, 1.3 Hz, 1H), 7.03 (d, J = 8.1 Hz, 2H), 6.47 (s, 1H), 2.41 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 142.3, 136.5, 134.6, 134.0, 132.5, 130.8, 130.3, 129.2, 128.6, 127.5, 126.8, 126.2, 120.6, 116.4, 113.6, 21.5, 21.3. HRMS (ESI) calcd for C₂₂H₁₉NNaO₂S⁺ [M + Na⁺] 384.1029, found 384.1028.

4-Methyl-2-phenyl-1-tosyl-1*H*-indole (2k)

Following the general procedure, **2k** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (165 mg, 91%); m.p. 163-164 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 6.9, 2.8 Hz, 2H), 7.43 (dd, J = 5.1, 1.9 Hz, 3H), 7.33 – 7.29 (m, 2H), 7.26 (d, J = 15.8 Hz, 1H), 7.06 (t, J = 7.7 Hz, 3H), 6.59 (d, J = 0.7 Hz, 1H), 2.43 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 141.4, 138.0, 134.8, 132.7, 130.4, 130.2, 130.1, 129.2, 128.6, 127.5, 126.8, 124.8, 124.7, 114.1, 112.1, 21.6, 18.4. HRMS (ESI) calcd for C₂₂H₁₉NNaO₂S⁺ [M + Na⁺] 384.1029, found 384.1028.

5-Methoxy-2-phenyl-1-tosyl-1*H*-indole (21)

Following the general procedure, **21** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (143 mg, 76%); m.p. 123-125 °C. $R_f = 0.48$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 9.1 Hz, 1H), 7.51 (dd, J = 6.7, 3.0 Hz, 2H), 7.46 – 7.39 (m, 3H), 7.24 (d, J = 8.3 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.96 (dd, J = 9.1, 2.6 Hz, 1H), 6.88 (d, J = 2.5 Hz, 1H), 6.48 (s, 1H), 3.83 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 144.4, 143.1, 134.4, 132.9, 132.4, 131.8, 130.2, 129.2, 128.7, 127.5, 126.8, 117.8, 113.9, 113.4, 103.2, 55.6, 21.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₃S⁺ [M + Na⁺] 400.0978, found 400.0978.

2-(4-Fluorophenyl)-1-tosyl-1*H*-indole (2m)

Following the general procedure, **2m** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (152 mg, 83%); m.p. 135-137 °C. $R_f = 0.62$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 1H), 7.45 (ddd, J = 8.8, 5.8, 2.8 Hz, 3H), 7.36 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.10 (t, J = 8.7 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.51 (s, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1(d, ¹ $J_{C-F} = 249.5$ Hz), 144.7, 140.9, 138.2, 134.6, 132.1(d, ³ $J_{C-F} = 8.3$ Hz), 130.4, 129.3, 128.4(d, ⁴ $J_{C-F} = 3.4$ Hz), 126.7, 125.0, 124.4, 120.7, 116.7, 114.6 (d, ² $J_{C-F} = 21.6$ Hz), 113.7, 21.6. HRMS (ESI) calcd for C₂₁H₁₆FNNaO₂S⁺ [M + Na⁺] 388.0783, found 388.0782.

2-(4-Chlorophenyl)-1-tosyl-1*H*-indole (2n)

Following the general procedure, **2n** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (178 mg, 94%); m.p. 138-140 °C. $R_f = 0.61$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 7.43 (dd, J = 8.5, 2.4 Hz, 3H), 7.40 – 7.34 (m, 3H), 7.26 (t, J = 8.0 Hz, 3H), 7.03 (d, J = 8.2 Hz, 2H), 6.53 (s, 1H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.7, 140.8, 138.4, 134.8, 134.6, 131.5, 130.9, 130.5, 129.3, 127.9, 126.8, 125.1, 124.5, 120.8, 116.7, 114.0, 21.5. HRMS (ESI) calcd for C₂₁H₁₆ClNNaO₂S⁺ [M + Na⁺] 404.0488, found 404.0489.

2-(3-chlorophenyl)-1-tosyl-1*H*-indole (20)

Following the general procedure, **20** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (152 mg, 79%); m.p. 49-50 °C. $R_f = 0.52$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.32 (t, J = 7.6 Hz, 1H), 7.50 – 7.34 (m, 6H), 7.28 (ddd, J = 6.8, 5.2, 3.0 Hz, 3H), 7.07 (d, J = 8.1 Hz, 2H), 6.57 (s, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.8, 140.4, 138.4, 134.6, 134.2, 133.4, 130.3, 130.0, 129.3, 128.8, 128.7, 126.8, 125.2, 124.5, 120.9, 116.6, 114.2, 21.5. HRMS (ESI) calcd for C₂₁H₁₆ClNNaO₂S⁺ [M + Na⁺] 404.0488, found 404.0488.

2-(2-Chlorophenyl)-1-tosyl-1*H*-indole (2p)

Following the general procedure, **2p** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A colorless oil (130 mg, 68%);. $R_f = 0.48$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 13.8, 7.8 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.42 – 7.31 (m, 4H), 7.28 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 6.63 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 144.7, 137.4, 137.2, 135.3, 135.1, 133.0, 131.6, 130.1, 129.8, 129.43, 129.40, 127.0, 125.8, 125.0, 123.9, 121.0, 115.7, 113.8, 21.5. HRMS (ESI) calcd for C₂₁H₁₆ClNNaO₂S⁺ [M + Na⁺] 404.0488, found 404.0485.

Ethyl 4-(1-tosyl-1*H*-indol-2-yl)benzoate (2q)

Following the general procedure, **2q** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (155 mg, 74%); m.p. 118-119 °C. $R_f = 0.25$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.3 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.04 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 6.61 (s, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 144.8, 141.1, 138.6, 136.8, 134.3, 130.5, 130.4, 130.1, 129.3, 128.8, 126.8, 125.3, 124.6, 121.0, 116.8, 114.9, 61.1, 21.6, 14.4. HRMS (ESI) calcd for C₂₄H₂₁NNaO₄S⁺ [M + Na⁺] 442.1089, found 442.1088.

1-Tosyl-2-(4-(trifluoromethyl)phenyl)-1*H*-indole (2r)

Following the general procedure, **2r** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (141 mg, 68%); m.p. 164-165 °C. $R_f = 0.53$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, J = 8.4, 0.6 Hz, 1H), 7.66 (q, J = 8.3 Hz, 4H), 7.46 (d, J = 7.7 Hz, 1H), 7.39 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 6.61 (s, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 140.5, 138.5, 136.1, 134.3, 130.4, 129.4, 126.7, 125.4, 124.6, 124.5(q, ⁴ $J_{C-F} = 3.7$ Hz), 121.0, 116.7, 115.0, 21.6. HRMS (ESI) calcd for C₂₂H₁₆F₃NNaO₂S⁺ [M + Na⁺] 438.0752, found 438.0756.

2-(*p*-Tolyl)-1-tosyl-1*H*-indole (2s)

Following the general procedure, **2s** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (167 mg, 92%); m.p. 101-103 °C. $R_f = 0.46$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 3H), 7.33 (t, J = 7.2 Hz, 1H), 7.28 (d, J = 8.5 Hz, 3H), 7.22 (s, 1H), 7.03 (d, J = 8.1 Hz, 2H), 6.50 (s, 1H), 2.43 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 142.3, 138.7, 138.2, 134.6, 130.7, 130.2, 129.6, 129.2, 128.3, 126.8, 124.6, 124.3, 120.6, 116.7, 113.3, 21.6, 21.5. HRMS (ESI) calcd for $C_{22}H_{19}NNaO_2S^+$ [M + Na⁺] 384.1034, found 384.1038.

2-(*m*-Tolyl)-1-tosyl-1*H*-indole (2t)

Following the general procedure, **2t** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (141 mg, 78%); m.p. 132-133 °C. $R_f = 0.43$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 9.1 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.38 (ddd, J = 9.7, 5.7, 1.5 Hz, 4H), 7.29 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.11 (dd, J = 8.0, 3.6 Hz, 3H), 6.47 (s, 1H), 2.32 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 140.3, 139.3, 137.3, 135.6, 132.1, 130.9, 130.1, 129.6, 129.4, 129.1, 126.9, 124.7, 124.6, 123.8, 120.7, 115.7, 112.3, 21.6, 20.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₂S⁺ [M + Na⁺] 384.1034, found 384.1036.

2-(*o*-Tolyl)-1-tosyl-1*H*-indole (2u)

Following the general procedure, **2u** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (168 mg, 93%); m.p. 98-100 °C. $R_f = 0.54$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 9.1 Hz, 1H), 7.50 (d, J = 7.3 Hz, 1H), 7.42 – 7.34 (m, 4H), 7.28 (t, J = 7.1 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 8.6 Hz, 3H), 6.47 (s, 1H), 2.32 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.3, 139.4, 137.3, 135.6, 132.1, 130.9, 130.1, 129.6, 129.4, 129.1, 126.9, 124.7, 124.6, 123.8, 120.7, 115.7, 112.3, 21.6, 20.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₂S⁺ [M + Na⁺] 384.1034, found 384.1036.

2-(4-Methoxyphenyl)-1-tosyl-1*H*-indole (2v)

Following the general procedure, **2v** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (170 mg, 90%); m.p. 135-137 °C. $R_f = 0.42$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.9 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.25 – 7.27 (m, 3H), 7.04 (d, J = 8.1 Hz, 1H), 6.95 (d, J = 8.8 Hz, 1H), 6.48 (s, 1H), 3.89 (s, 1H), 2.28 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 144.5, 142.0, 138.2, 134.7, 131.7, 130.6, 129.2, 126.8, 124.7, 124.5, 124.3, 120.5, 116.7, 113.0, 112.9, 55.3, 21.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₃S⁺ [M + Na⁺] 400.0983, found 400.0986.

2-(3-Methoxyphenyl)-1-tosyl-1*H*-indole (2w)

Following the general procedure, **2w** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (162 mg, 86%); m.p. 108-110 °C. $R_f = 0.46$

(10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.33 (m, 5H), 7.09 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 8.0 Hz, 3H), 6.99 (dd, J = 8.3, 2.5 Hz, 1H), 6.56 (s, 1H), 3.86 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 144.6, 142.0, 138.3, 134.6, 133.7, 130.5, 129.2, 128.5, 126.9, 124.8, 124.3, 122.8, 120.7, 116.7, 115.9, 114.5, 113.7, 55.4, 21.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₃S⁺ [M + Na⁺] 400.0983, found 400.0982.

2-(2-Methoxyphenyl)-1-tosyl-1*H*-indole (2x)

Following the general procedure, **2x** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (172 mg, 91%); m.p. 78-80 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.35 – 7.29 (m, 1H), 7.26 – 7.20 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 6.55 (s, 1H), 3.78 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 144.3, 138.0, 137.4, 135.8, 131.8, 130.6, 130.2, 129.3, 126.8, 124.4, 123.6, 121.9, 120.7, 119.6, 115.6, 112.4, 110.5, 55.5, 21.5. HRMS (ESI) calcd for C₂₂H₁₉NNaO₃S⁺ [M + Na⁺] 400.0983, found 400.0981.

4-(1-Tosyl-1*H*-indol-2-yl)phenyl acetate (2y)

Following the general procedure, **2y** was purified by silica gel chromatography (10% EtOAc/petroleum ether). A white solid (180 mg, 89%); m.p. 97-99 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 9.0 Hz, 1H), 7.50 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 7.7 Hz, 1H), 7.36 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H), 7.25-7.29 (m, 3H), 7.16 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 6.54 (s, 1H),

2.35 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 151.0, 144.7, 141.1, 138.3, 134.6, 131.5, 130.4, 130.0, 129.3, 126.8, 124.9, 124.4, 120.8, 120.7, 116.7, 113.8, 21.6, 21.3. HRMS (ESI) calcd for C₂₃H₁₉NnaO₄S⁺ [M + Na⁺] 428.0932, found 428.0932.

2-(Thiophen-2-yl)-1-tosyl-1*H*-indole (2z)

Following the general procedure, **2z** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A pale yellow solid (119 mg, 67%); m.p. 90-91 °C. $R_f = 0.59$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, J = 8.4, 0.7 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.40 (dd, J = 5.1, 1.2 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 7.11 (dd, J = 5.1, 3.6 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 6.63 (s, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 138.3, 134.9, 134.0, 132.4, 130.6, 129.9, 129.4, 127.1, 127.0, 126.8, 125.2, 124.3, 120.8, 116.5, 114.5, 21.6. HRMS (ESI) calcd for C₁₉H₁₅NNaO₂S₂⁺ [M + Na⁺] 376.0442, found 376.0446.

2-(Naphthalen-2-yl)-1-tosyl-1*H*-indole (2aa)

Following the general procedure, **2aa** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (191 mg, 96%); m.p. 152-153 °C. $R_f = 0.52$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 8.3 Hz, 1H), 7.88 (t, J = 10.5 Hz, 4H), 7.69 (d, J = 8.3 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.26 (t, J = 14.4 Hz, 3H), 6.99 (d, J = 8.0 Hz, 2H), 6.62 (s, 1H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.2, 138.5, 134.7, 134.7, 133.3, 132.7, 130.7, 130.2, 129.2, 128.8, 128.6, 128.2, 127.9, 126.9, 126.8, 126.6, 126.4, 124.9, 124.4, 120.8, 116.7, 114.2, 21.5. HRMS (ESI) calcd for C₂₅H₁₉NNaO₂S⁺ [M + Na⁺] 420.1034, found 420.1036.
1-(Methylsulfonyl)-2-phenyl-1*H*-indole (2ab)

Following the general procedure, **2ab** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (126 mg, 92%); m.p. 120-122 °C. $R_f = 0.38$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.3 Hz, 1H), 7.57 – 7.54 (m, 2H), 7.45 – 7.40 (m, 3H), 7.40 – 7.32 (m, 2H), 6.70 (s, 1H), 2.72 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 138.0, 132.0, 130.3, 130.2, 128.9, 127.8, 125.2, 124.6, 121.1, 115.9, 113.1, 39.5. HRMS (ESI) calcd for C₂₁H₁₇NNaO₂S⁺ [M + Na⁺] 370.0878, found 370.0882.

1-((4-Chlorophenyl)sulfonyl)-2-phenyl-1*H*-indole (2ac)

Following the general procedure, **2ac** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (177 mg, 96%); m.p. 186-188 °C. $R_f = 0.59$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 7.53 – 7.39 (m, 6H), 7.35 (t, J = 7.7 Hz, 1H), 7.28 (d, J = 8.7 Hz, 3H), 7.18 (d, J = 8.6 Hz, 2H), 6.55 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 142.1, 140.2, 138.3, 135.9, 132.1, 130.7, 130.3, 128.9, 128.9, 128.2, 127.7, 125.1, 124.7, 121.0, 116.7, 114.2. HRMS (ESI) calcd for C₂₀H₁₄ClNNaO₂S⁺ [M + Na⁺] 390.0331, found 390.0336.

tert-butyl 2-phenyl-1H-indole-1-carboxylate (2ad)

Following the general procedure, **2ad** was purified by silica gel chromatography (2% EtOAc/petroleum ether). A colorless oil (104 mg, 71%). $R_f = 0.69$ (5% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.9 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.36 – 7.23 (m, 6H), 7.17 (dd, J = 7.5, 0.9 Hz, 1H), 6.49 (s, 1H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 140.5, 137.5, 135.0, 129.2, 128.7, 127.8, 127.6, 124.3, 122.9, 120.5, 115.2, 109.9, 83.4, 27.6. HRMS (ESI) calcd for $C_{19}H_{19}NNaO_2^+$ [M + Na⁺] 316.1308, found 316.1306.

5. The Procedure for the Synthesis of Indoline 2a':

To a solution of substrate **1** (0.5 mmol) in DMSO (1 mL) was slowly added SOCl₂ (1.0 mmol, 119 mg) at 25 °C. The reaction mixture was kept stirring at 25 °C until TLC indicated the total consumption of substrate **1**. Then the reaction mixture was quenched with saturated aq. NaHCO₃ solution (5 mL) and water (20 mL), extracted with EtOAc (3×20 mL), combined the organic phase then evaporated the solvent, purified by flash column chromatography (5% EtOAc/petroleum ether) to afford the desired compound **2a** (125 mg, 72%) and compound **2a'** (40 mg, 20%).

6. Spectroscopic data of Indoline 2a':3-(Methylthio)-2-phenyl-1-tosylindoline (2a')

Following the procedure, **2a'** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid; mp: 146-147 °C. $R_f = 0.42$ (10% EtOAc/petroleum ether);¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.35 – 7.25 (m, 6H), 7.18 (d, J = 8.1 Hz, 3H), 7.06 (td, J = 7.5, 0.8 Hz, 1H), 5.20 (d, J = 3.1 Hz, 1H), 4.06 (d, J = 3.0 Hz, 1H), 2.34 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.1, 141.7, 135.1, 129.6, 129.5, 129.4, 128.9, 128.0, 127.5, 126.0, 125.7, 124.4, 115.0, 72.8, 54.6, 21.6, 12.6. HRMS (ESI)

calcd for $C_{22}H_{21}NNaO_2S_2^+$ [M + Na⁺] 418.0911, found 418.0916.

7. General Procedure for the Synthesis of 3-Methylthioindole Derivatives 3 (3a-l):

Method A: To a solution of substrate **1** (0.5 mmol) in DMSO (1 mL) was slowly added SOCl₂ (2.0 mmol, 239 mg) at 25 °C. The mixture was kept stirring at 70 °C until TLC indicated the total consumption of substrate **1**. Then the reaction mixture was quenched with saturated aq. NaHCO₃ solution (5 mL) and water (20 mL), extracted with EtOAc (3 x 20 mL), combined the organic phase then evaporated the solvent, purified by flash column chromatography (3% EtOAc/petroleum ether) to afford the desired 3-methylthioindole derivatives **3**.

Method B: To a solution of substrate **1** (0.5 mmol) in DMSO (1 mL) was slowly added SOCl₂ (1.75 mmol, 209 mg) at 25 °C. The mixture was kept stirring at 70 °C until TLC indicated the total consumption of substrate **1**. Then the reaction mixture was quenched with saturated aq. NaHCO₃ solution (5 mL) and water (20 mL), extracted with EtOAc (3×20 mL), combined the organic phase then evaporated the solvent, purified by flash column chromatography (3% EtOAc/petroleum ether) to afford the desired 3-methylthioindole derivatives **3**.

8. Spectroscopic Data of 3-Methylthioindoles Derivatives 3 (3a-l): 3-(Methylthio)-2-phenyl-1-tosyl-1*H*-indole (3a)

Following the general procedure **Method A**, **3a** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (109 mg, 55%); mp: 104-105 °C. $R_f = 0.45$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.3 Hz, 1H), 7.70 (dd, J = 7.7, 0.7 Hz, 1H), 7.51 – 7.41 (m, 4H), 7.41 – 7.35 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 2.31 (s, 3H), 2.07 (s,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 142.7, 137.0, 135.2, 131.8, 131.2, 130.7, 129.4, 129.1, 127.2, 126.9, 125.5, 124.3, 119.9, 117.4, 116.2, 21.6, 18.3. HRMS (ESI) calcd for C₂₂H₁₉NNaO₂S₂⁺ [M + Na⁺] 416.0749, found 416.0748.

5-Methyl-3-(methylthio)-2-phenyl-1-tosyl-1*H*-indole (3b)

Following the general procedure **Method B**, **3b** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (153 mg, 75%); mp: 119-121°C. $R_f = 0.62$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.5 Hz, 1H), 7.48 (dd, J = 11.7, 4.1 Hz, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.31 (dd, J = 14.4, 7.6 Hz, 3H), 7.07 (d, J = 8.2 Hz, 2H), 2.50 (s, 3H), 2.31 (s, 3H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 142.9, 135.3, 135.1, 134.2, 131.8, 131.5, 130.8, 129.4, 129.0, 127.2, 126.9, 126.9, 119.8, 117.3, 116.0, 21.6, 21.4, 18.4. HRMS (ESI) calcd for C₂₃H₂₁NNaO₂S₂⁺ [M + Na⁺] 430.0906, found 430.0906.

5-Fluoro-3-(methylthio)-2-phenyl-1-tosyl-1*H*-indole (3c)

Following the general procedure **Method A**, **3c** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (105 mg, 51%); mp: 120-121 °C. $R_f = 0.45$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, J = 9.1, 4.4 Hz, 1H), 7.47 (ddd, J = 15.8, 7.7, 2.1 Hz, 3H), 7.39 – 7.35 (m, 2H), 7.33 (dd, J = 8.4, 2.5 Hz, 1H), 7.28 (s, 1H), 7.26 (s, 1H), 7.14 (td, J = 9.0, 2.6 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 2.33 (s, 3H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3(d, ¹ $J_{C-F} = 240.7$ Hz), 145.1, 144.6, 134.9, 133.2, 132.7(d, ³ $J_{C-F} = 10.0$ Hz), 131.7, 130.3, 129.5, 129.3, 127.3, 126.9, 117.6(d, ³ $J_{C-F} = 9.0$ Hz), 117.2(d, ⁴ $J_{C-F} = 3.8$ Hz), 113.4(d, ² $J_{C-F} = 25.0$ Hz), 105.5(d, ² $J_{C-F} = 24.3$ Hz), 21.6, 18.2. HRMS (ESI)

calcd for $C_{22}H_{18}FNNaO_2S_2^+$ [M + Na⁺] 434.0655, found 434.0656.

6-Bromo-3-(methylthio)-2-phenyl-1-tosyl-1*H*-indole (3d)

Following the general procedure **Method A**, **3d** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (125 mg, 53%); mp: 138-139 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 1.4 Hz, 1H), 7.57 – 7.40 (m, 5H), 7.32 (d, J = 6.9 Hz, 2H), 7.28 (s, 1H), 7.25 (s, 1H), 7.10 (d, J = 8.2 Hz, 2H), 2.33 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 143.2, 137.6, 135.0, 131.8, 130.1, 130.0, 129.6, 129.3, 127.6, 127.3, 127.0, 121.0, 119.1, 117.0, 21.6, 18.4. HRMS (ESI) calcd for C₂₂H₁₈BrNNaO₂S₂⁺ [M + Na⁺] 493.9855, found 493.9856.

2-(4-Fluorophenyl)-3-(methylthio)-1-tosyl-1*H*-indole (3e)

Following the general procedure **Method A**, **3e** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (64 mg, 31%); mp: 123-125 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.3 Hz, 1H), 7.69 (dd, J = 7.7, 0.7 Hz, 1H), 7.44 (ddd, J = 8.4, 7.3, 1.4 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.28 (d, J = 8.4 Hz, 2H), 7.19 – 7.11 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2(d, ¹ $J_{C-F} = 247.8$ Hz), 145.0, 141.6, 137.0, 135.1, 133.6(d, ³ $J_{C-F} = 8.4$ Hz), 131.0, 129.5, 126.8, 126.5(d, ⁴ $J_{C-F} = 3.4$ Hz), 125.7, 124.4, 119.9, 117.7, 116.2, 114.5(d, ² $J_{C-F} = 21.6$ Hz), 21.6, 18.3. HRMS (ESI) calcd for C₂₂H₁₈FNNaO₂S₂⁺ [M + Na⁺] 434.0655, found 434.0656.

3-(Methylthio)-2-(p-tolyl)-1-tosyl-1H-indole (3f)

Following the general procedure **Method A**, **3f** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (143 mg, 70%); mp: 131-133 °C. $R_f = 0.45$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.45 – 7.34 (m, 2H), 7.32 – 7.26 (m, 6H), 7.07 (d, J = 8.1 Hz, 2H), 2.47 (s, 3H), 2.31 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 143.0, 139.1, 137.0, 135.1, 131.6, 131.2, 129.4, 128.0, 127.7, 126.9, 125.4, 124.3, 119.8, 117.2, 116.2, 21.6, 21.6, 18.3. HRMS (ESI) calcd for $C_{23}H_{21}NNaO_2S_2^+$ [M + Na⁺] 430.0911, found 430.0913.

2-(4-Methoxyphenyl)-3-(methylthio)-1-tosyl-1*H*-indole (3g)

Following the general procedure **Method B**, **3g** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (173 mg, 82%); mp: 147-148 °C. $R_f = 0.45$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.45 – 7.34 (m, 2H), 7.32 – 7.26 (m, 4H), 7.06 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.90 (s, 4H), 2.31 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 144.8, 142.7, 137.0, 135.2, 133.1, 131.1, 129.3, 126.9, 125.3, 124.3, 122.7, 119.7, 117.0, 116.3, 112.7, 55.3, 21.6, 18.3. HRMS (ESI) calcd for C₂₃H₂₁NNaO₃S₂⁺ [M + Na⁺] 446.0861, found 446.0861.

2-(2-Methoxyphenyl)-3-(methylthio)-1-tosyl-1*H*-indole (3h)

Following the general procedure **Method B**, **3h** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (163 mg, 77%); mp: 154-156 °C. $R_f = 0.42$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 8.4, 1.4 Hz, 1H), 7.70 (dd, J = 8.2, 1.4 Hz, 1H), 7.48 (ddd, J = 8.3, 7.5, 1.8 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.34 (td, J = 7.5, 1.1 Hz, 1H), 7.14 (dd, J = 7.5, 1.8 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 7.04 (td, J = 7.4, 1.0 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.69 (s, 3H), 2.32 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 144.5, 139.4, 136.7, 135.9, 133.0, 131.0, 130.9, 129.3, 127.0, 125.1, 123.7, 120.1, 119.7, 119.5, 116.6, 115.4, 110.5, 55.3, 21.6, 18.3. HRMS (ESI) calcd for C₂₃H₂₁NNaO₃S₂⁺ [M + Na⁺] 446.0861, found 446.0862.

6-Methyl-3-(methylthio)-2-(p-tolyl)-1-tosyl-1H-indole (3i)

Following the general procedure **Method A**, **3i** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (131 mg, 62%); mp: 163-164 °C. $R_f = 0.55$ (10% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 5.5 Hz, 4H), 7.19 (d, J = 7.9 Hz, 1H), 7.08 (d, J = 8.1 Hz, 2H), 2.57 (s, 3H), 2.47 (s, 3H), 2.33 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 142.2, 138.9, 137.4, 135.6, 135.3, 131.6, 129.3, 129.0, 128.0, 127.8, 126.9, 125.7, 119.4, 117.1, 116.4, 22.1, 21.6, 21.6, 18.3. HRMS (ESI) calcd for C₂₄H₂₃NNaO₂S₂⁺ [M + Na⁺] 444.1062, found 444.1063.

2-(4-Methoxyphenyl)-6-methyl-3-(methylthio)-1-tosyl-1*H*-indole (3j)

Following the general procedure Method B, 3j was purified by silica gel

chromatography (3% EtOAc/petroleum ether). A white solid (138 mg, 63%); mp: 131-133 °C. $R_f = 0.50$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.32 – 7.24 (m, 5H), 7.19 (d, J = 8.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H), 2.55 (s, 3H), 2.31 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 144.7, 142.0, 137.4, 135.5, 135.3, 133.1, 129.3, 129.1, 126.8, 125.7, 122.9, 119.3, 117.0, 116.4, 112.7, 55.3, 22.1, 21.6, 18.3. HRMS (ESI) calcd for C₂₄H₂₃NNaO₃S₂⁺ [M + Na⁺] 460.1012, found 460.1013.

3-(Methylthio)-2-(thiophen-2-yl)-1-tosyl-1*H*-indole (3k)

Following the general procedure **Method A**, **3k** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (130 mg, 65%); mp: 80-81 °C. $R_f = 0.40$ (20% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.54 (dd, J = 5.0, 1.3 Hz, 1H), 7.43 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H), 7.39 – 7.32 (m, 3H), 7.16 (ddd, J = 8.6, 4.8, 3.5 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 2.32 (s, 3H), 2.14 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.8, 137.3, 135.3, 135.0, 132.2, 130.8, 130.2, 129.4, 128.6, 126.9, 126.4, 125.9, 124.3, 119.9, 119.7, 116.1, 21.6, 18.6. HRMS (ESI) calcd for C₂₀H₁₇NNaO₂S₃⁺ [M + Na⁺] 422.0314, found 422.0316.

2-(4-Methoxyphenyl)-1-(methylsulfonyl)-3-(methylthio)-1*H*-indole (3l)

Following the general procedure **Method B**, **31** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (127 mg, 73%); mp: 123-125 °C. $R_f = 0.45$ (20% EtOAc/petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ

8.20 – 8.09 (m, 1H), 7.81 – 7.75 (m, 1H), 7.47 – 7.39 (m, 4H), 7.06 – 6.96 (m, 2H), 3.88 (s, 3H), 2.80 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 142.5, 136.7, 132.8, 131.1, 125.6, 124.5, 122.4, 120.0, 116.9, 115.6, 113.1, 55.3, 40.6, 18.4. HRMS (ESI) calcd for C₁₇H₁₇NNaO₃S₂⁺ [M + Na⁺] 370.0542, found 370.0543.

tert-butyl 3-(methylthio)-2-phenyl-1*H*-indole-1-carboxylate (3m)

Following the general procedure **Method A**, **3m** was purified by silica gel chromatography (2% EtOAc/petroleum ether). A colorless oil (102 mg, 60%). $R_f = 0.59$ (5% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.46 – 7.39 (m, 6H), 7.35 (dd, J = 8.6, 5.4 Hz, 1H), 2.18 (s, 3H), 1.24 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 142.1, 136.6, 133.7, 130.3, 130.0, 128.0, 127.7, 125.0, 123.2, 119.5, 115.3, 114.2, 83.6, 27.5, 18.8. HRMS (ESI) calcd for C₂₀H₂₁NNaO₂S⁺ [M + Na⁺] 362.1185, found 362.1188.

1-(3-(methylthio)-2-phenyl-1*H*-indol-1-yl)ethan-1-one (3n)

Following the general procedure **Method A**, **3n** was purified by silica gel chromatography (5% EtOAc/petroleum ether). A white solid (101 mg, 72%); m.p. 135-137 °C. $R_f = 0.52$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 7.3 Hz, 1H), 7.54 – 7.50 (m, 3H), 7.47 (dd, J = 7.7, 1.7 Hz, 2H), 7.40 (dtd, J = 20.3, 7.3, 1.1 Hz, 2H), 2.19 (s, 3H), 1.97 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 141.2, 136.8, 132.7, 130.5, 130.0, 129.2, 128.6, 125.9, 124.0, 119.5, 116.3, 115.9, 27.7, 18.7. HRMS (ESI) calcd for C₁₇H₁₅NNaOS⁺ [M + Na⁺] 304.0767, found 304.0765.

9. General Procedure for the Synthesis of $3-(d_3-Methylthio)$ Indole Derivative 3':

To a solution of substrate **1** (0.5 mmol) in DMSO (1 mL) was slowly added SOCl₂ (1.75 mmol, 209 mg) at 25 °C. The mixture was kept stirring at 70 °C until TLC indicated the total consumption of substrate **1v**. Then the reaction mixture was quenched with saturated aq. NaHCO₃ solution (5 mL) and water (20 mL), extracted with EtOAc (3 x 20 mL), combined the organic phase then evaporated the solvent, purified by flash column chromatography (3% EtOAc/petroleum ether) to afford the desired compound **3'** (165 mg, 78%).

10. Spectroscopic Data of 3-(*d*₃-Methylthio) Indole Derivative 3':

2-(4-Methoxyphenyl)-3-(*d*₃-methylthio)-1-tosyl-1*H*-indole (3')

Following the procedure, **3'** was purified by silica gel chromatography (3% EtOAc/petroleum ether). A white solid (165 mg, 78%); mp: 146-147 °C. $R_f = 0.50$ (10% EtOAc/petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 8.3 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.35 (td, J = 7.7, 0.8 Hz, 1H), 7.28 (dd, J = 11.6, 8.6 Hz, 4H), 7.05 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 3.89 (s, 3H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.2, 144.7, 142.7, 137.0, 135.3, 133.1, 131.3, 129.3, 126.9, 125.3, 124.2, 122.7, 119.7, 116.9, 116.3, 112.7, 55.3, 21.5. HRMS (ESI) calcd for C₂₃H₁₈D₃NNaO₃S₂⁺ [M + Na⁺] 446.0855, found 446.0856.

IV. References:

(1) (a) Y. H. Jang and S. W. Youn, Org. Lett., 2014, 16, 3720-3723; (b) Y. L. Li, J. Li,
A. L. Ma, Y. N. Huang and J. Deng, J. Org. Chem., 2015, 80, 3841-3851; (c) S.
Ortgies and A. Breder, Org. Lett., 2015, 17, 2748-2751.

(2) J. F. Zou, W. S. Huang, L. Li, Z. Xu, Z. J. Zheng, K. F. Yang and L. W. Xu, *RSC Adv.*, 2015, **5**, 30389-30393.

T

00

S57

S97

S99

