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Experimental Section 

Preparation of Zn@KGM Anode 

The bare Zn foil was polished by using abrasive paper for removing surface 

passivation layer. The KGM powder (1g) was dissolved in 50 mL deionized water to 

obtain a homogeneous solution at 80 °C and kept at 80 °C for 15 minutes. Then, the 

0.2 g Na2CO3 powder was dissolved in another 5 mL deionized water. Subsequently, 

the later solution was quickly added to the former solution and resulting solution 

began to gelatinous. After stirring intensely for 2 minutes, formed KGM gel was 

homogeneously coated on the fresh Zn foil, which was further freeze-dried to prepare 

Zn@KGM anode. 

Materials characterization 

The structures of the obtained specimens were analyzed by X-ray diffractometer 

(XRD, Rigaku) with a Cu-Ka radiation of 0.15418 nm (V=30 kV, I = 25 mA). The 

scanning electron microscopy (SEM, Hitachi S-4800) was carried out to evaluate the 

surface morphologies of bare Zn and Zn@KGM anodes before and after Zn 

striping/plating. The detailed compositions were determined by using an X-ray 

photoelectron spectroscopy analyzer (XPS) (VG Multi Lab 2000 system) and Fourier 

transform infrared spectrometer (FTIR) (Bruker Equinox 55 spectrometer). Wetting 

angles of 5 μL water droplets on the bare Zn and Zn@KGM anodes were measured 

with a Dataphysics OCA20 contact angle meter at ambient atmosphere. 

Electrochemical measurements 

Activated carbon (AC) cathodes were acquired by mixing 80 wt% active materials, 10 

wt% binder polyvinylidene fluoride (PVDF), and 10 wt% conductive carbon (Super P) 

dissolved in N-methyl pyrrolidinone (NMP). Then, the resulting slurries were coated 

on a stainless-steel foil and the as-prepared electrodes were dried under vacuum at 

80 °C for 10 h. The bare Zn and Zn@KGM foils were first cut into disc-shaped 

electrodes. Symmetric batteries were directly used two pieces of bare Zn and 

Zn@KGM foils as electrodes. The electrochemical performance of AC electrodes was 
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characterized by employing a two-electrode system with bare Zn and Zn@KGM as 

counter electrode. The electrolyte is 2 M ZnSO4 solution without any additives 

throughout the whole work while the separator is a Whatman GF/C glass fiber 

membrane. All the electrochemical measurements were carried out at room 

temperature.  

For symmetric batteries, galvanostatic charging-discharging (GCD) cycling at a 

current density of 0.2-2.0 mA cm-2 and a total capacity of 0.2-2.0 mA cm-2 was on a 

LANDCT2001A battery-testing instrument. Tafel plots were recorded in 

three-electrode system with an Ag/AgCl and a platinum foil as reference and counter 

electrodes, respectively. Electrochemical impedance spectra (EIS) were measured by a 

MULTI AUTOLAB M204 (MAC90086) 

For Zn-ion supercapacitors (ZICs) with the AC cathode, cyclic voltammetry (CV) 

curves with different scan rates and EIS were measured by a MULTI AUTOLAB 

M204 (MAC90086). Galvanostatic charge/discharge (GCD) surveys were collected 

on an Arbin BT2000 instrument at different current densities within an appropriate 

voltage window. Cycle-life tests were recorded on a Land CT2001A model battery 

system.  

The specific capacitance (C, F g-1), energy density (E, W h kg-1), and power density 

(P, W kg-1) of ZICs, based on the GCD measurements, can be calculated according to 

the following equations. 

           C = It/ΔVm eqn (1) 

 E = C(Vmax
2- Vmin

2) /2×3.6 eqn (2)  

 P = E×3600/t eqn (3) 

Where I (A) represents the discharge current, t (s) represents the discharge time, Vmax 

(V) and Vmin (V) are the initial and final discharge potentials, ΔV (V) is the potential 

change, and m (g) is the total mass of active material. 
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Supplementary Figures 

 
Figure S1 The XRD patterns of Zn@KGM anodes in the selected range. 
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Figure S2 SEM images of (a) bare Zn and (b) Zn@KGM with the insets of optical 

photographs. (c) Cross-section SEM image of Zn@KGM. 
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Figure S3 Contact angle measurements of (a) bare Zn and (b) Zn@KGM anodes. 
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Figure S4 Detailed voltage profiles of bare Zn and Zn@KGM symmetric cells at 

specific cycling times of 324-329 h at 0.2 mA cm-2 for 0.2 mAh cm-2. 
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Figure S5 XRD patterns of bare Zn and Zn@KGM anodes after cycling in symmetric 

cells. 
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Figure S6 SEM images of (a) bare Zn and (b) Zn@KGM anodes in symmetric cells 

after the first plating process at 0.2 mA cm-2 for 0.2 mAh cm-2.  



10 
 

 

Figure S7 SEM images of (a-c) bare Zn and (d-f) Zn@KGM anodes in symmetric 

cells after the first plating at different current densities for 1h. 
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Figure S8 Nyquist plots of (a, b) bare Zn and (c, d) Zn@KGM anodes before and 

after cycling in symmetric cells. 
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Figure S9 Tafel plots of corrosion behaviors for bare Zn and Zn@KGM anodes.  
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Figure S10 Thickness change of the bare Zn and Zn@KGM symmetric cells before 

and after cycling at 0.2 mA cm-2. 
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Figure S11 High-resolution (a) Zn 2p spectra, (b) O 1s spectra and (c) S 2p spectra of 

bare Zn anodes before and after cycling in symmetric cells. 
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Figure S12 Possible mechanism for stabilized Zn anode triggered by rich oxygen 

functional groups. 
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Figure S13 SEM images of AC.   
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Figure S14 (a) N2 adsorption-desorption isotherms and (b) pore size distributions of 

AC. 



18 
 

 
 

 

 

 

 
Figure S15 (a) CV curves and (b) GCD profiles of Zn//AC ZIC. 
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Figure S16 Ragone plot of Zn//AC and Zn@KGM//AC ZICs. 
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Figure S17 Nyquist plots of (a) Zn//AC and (b) Zn@KGM//AC ZICs before and after 

cycling. 
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Figure S18 SEM images of (d, e) bare Zn and (f, g) Zn@KGM anodes in ZICs after 

100 cycles at 1 A g-1. 
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Table S1. The fitting Rct values of bare Zn and Zn@KGM anodes before and after 

cycling in symmetric cells. 
 

Sample Rct 
 

Bare Zn anode before cycling 1150 
Zn@KGM anode before cycling ~10000 
Bare Zn anode after cycling 750 
Zn@KGM anode after cycling 850 

 

 

 

Table S2. The fitting Rct values of Zn//AC and Zn@KGM//AC ZICs before and after 

cycling. 

 

Sample Rct 
 

Zn//AC ZIC before cycling 140 
Zn@KGM//AC ZIC before cycling 130 
Zn//AC ZIC after cycling 330 
Zn@KGM//AC ZIC after cycling 250 
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