Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Ru-catalysed C(sp²)–H vinylation/annulation of benzoic acids and alkynes: rapid

access to medium-sized lactones

Xiao-Qiang Hu,*a Zi-Kui Liu,* Ye-Xing Hou,* Guodong Zhang*b and Yang Gao*c

^{*a*}Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

E-mail: huxiaoqiang@mail.scuec.edu.cn.

^bYangzhou University College of Chemistry and Chemical Engineering, Siwangting Road 180 Yangzhou, 225002 China. E-mail: guodong.zhang@yzu.edu.cn.

^cSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.

huxiaoqiang@mail.scuec.edu.cn

Table of Contents

1. General Information	3
 Preparation of Substrates	3
	3.2 Spectral data of the products 3aa-sa, 3ab-ag, 3ah, 3dh, 3di
4. Mechanistic studies	12
5. X-Ray structure of 3aa	14
6. NMR Spectra of products 3aa-sa , 3ab-ag , 3ah , 3dh , 3di and 2f	15

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. The solvents used were purified by distillation over the drying agents. All reactions were monitored by thin-layer chromatography (TLC) on silica gel plates using UV light as visualizing agent (if applicable). Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts are reported in delta (δ (ppm)) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm).

2. Preparation of Substrates

CuI (18 mg, 1 mol%), PdCl₂(PPh₃)₂ (36 mg, 5 mol%.) and PPh₃ (18 mg, 7 mol%) were added into a 100 mL flask. Then Et₃N (50 mL), iodobenzene (2.0 g, 10 mmol) and 5-chloro-1-pentyne (1.0 g, 10 mmol) was added into the flask. The resultant mixture was stirred at room temperature until the reaction was completed, as monitored by TLC. Then, H₂O (20 mL) was added and the resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over NaSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography to give the compound **2a** in 82% yield as a yellow oil. Other alkynes (**2b-2g**) were prepared according to the above procedure. The alkynes (**2b-2e, 2g**) are known compounds.

To around-bottom flask were added Phenylacetylene (1.0 g, 10 mmol), 1-Bromo-4-chlorobutane (2.4 g, 14 mmol) and THF (40 mL). The solution was cooled to -78 °C, *n*-BuLi (4.8 mL, 12 mmol) was slowly

added into the reaction mixture. The mixture was heated 80 °C (reflux) for 15 hours. Then, H₂O (20 mL) was added and the resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over NaSO₄, filtered, and the volatiles were removed under reduced pressure. The residue was purified by column chromatography to give the compound **2h** in 65% yield as a yellow oil.

3. General Procedure and Spectral Data of the Products

3.1 General procedure for the synthesis of 3aa-sa, 3ab-3ag, 3dh, 3di

1a (68.0 mg, 0.5 mmol), **2a** (133.6 mg, 0.75 mmol), $[RuI_2(p-cymene)]_2$ (2 mol%), K_2CO_3 (13.7 mg, 0.1 mmol) and guanidine carbonate (27.0 mg, 0.15 mmol) were dissolved in 1-butanol/H₂O (1.0 mL, 9/1). Then, the mixture was stirred at 100 °C for 16 h, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) directly to give the desired product **3aa** in 78% isolated yield as a white solid. Other products **3aa-sa, 3ab-ag, 3ah, 3dh, 3di** were prepared according to the above procedure.

3.2 Spectral data of the products 3aa-sa, 3ab-ag, 3ah, 3dh, 3di

Product 3aa

Yield of 3aa: 108.5 mg, 78% as a yellow solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) =
7.31 - 7.26 (m, 1H), 7.25 - 7.18 (m, 4H), 7.17 - 7.08 (m, 2H), 7.01 (d, J = 3.8 Hz, 1H),
6.41 (s, 1H), 4.18 (t, J = 5.0 Hz, 2H), 2.52 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H), 2.04 - 1.94 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 170.9, 143.8, 140.3, 136.9, 136.2, 130.7,
8. 129.5, 128.6, 128.8, 127.1, 125.2, 68.4, 20.2, 20.2, 10.0 M P; 118.0, 118.5 %C HPMS

130.5, 129.8, 129.5, 128.6, 128.8, 127.1, 125.3, 68.4, 30.2, 29.2, 19.9. M.P.: 118.0 – 118.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₈O₂: 279.1380; found: 279.1378.

Product 3ba

118.0 – 118.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₀O₂: 293.1536; found: 293.1534.

Product 3ca

Ph Q

Yield of **3ca**: 137.8 mg, 81% as a white solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.45 (t, J = 7.6 Hz, 2H), 7.37 – 7.28 (m, 8H), 7.24 – 7.18 (m, 3H), 6.49 (s, 1H), 4.46 (t, J = 4.9 Hz, 2H), 2.61 (t, J = 6.5 Hz, 2H), 2.15 – 2.06 (m, 2H). ¹³C NMR (63 MHz, CDCl₃)

 δ (ppm) = 170.4, 144.1, 141.0, 140.0, 139.9, 136.9, 131.9, 130.9, 129.8, 129.3, 128.6, 128.4, 128.4, 127.8, 127.2, 127.0, 68.3, 30.5, 29.3. M.P.: 201.0 – 201.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀O₂: 341.1536; found: 341.1534.

Product 3da

Yield of **3da**: 124.0 mg, 70% as a yellow oil. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.36 - 7.26 (m, 2H), 7.25 - 7.16 (m, 7H), 7.13 - 7.02 (m, 4H), 6.42 (s, 1H), 4.06 (s, 2H), 3.73 (t, *J* = 4.9 Hz, 2H), 2.46 (t, *J* = 6.6 Hz, 2H), 1.95 - 1.84 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 170.8, 144.1, 140.1, 139.9, 136.9, 130.8, 130.6, 130.2, 129.4, 129.3, 128.5, 128.5, 128.4, 127.1, 126.3, 125.9, 68.1, 39.3, 30.0, 29.3. HRMS (ESI): m/z [M +

H]⁺ calcd for C₂₅H₂₂O₂: 355.1693; found: 355.1695.

Product 3ea

Yield of **3ea**: 69.5 mg, 50% as a yellow solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.31 (m, 2H), 7.26 (d, J = 2.6 Hz, 2H), 7.23 – 7.13 (m, 4H), 6.45 (s, 1H), 4.26 (t, J = 5.1Hz, 2H), 2.57 (t, J = 6.4 Hz, 2H), 2.33 (s, 3H), 2.07 – 1.97 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) =172.5, 141.3, 140.5, 137.7, 137.1, 132.4, 130.6, 130.0, 129.2, 128.6, 128.4, 128.1, 127.8, 69.0, 30.3, 28.8, 20.9. M.P.: 90.0 – 90.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for

C₁₉H₁₈O₂: 279.1380; found: 279.1378.

Product 3fa

(ppm) = 172.4, 143.0, 140.8, 140.4, 139.5, 137.0, 130.9, 130.7, 130.2, 129.0, 128.8, 128.6, 128.5, 127.9, 127.4, 127.2, 127.0, 69.2, 30.3, 28.8. M.P.: 148.0 - 148.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀O₂: 341.1536; found: 341.1538

Product 3ga

Yield of **3ga**: 95.2 mg, 56% as a yellow solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.72 (d, J = 2.0 Hz, 1H), 7.64 (dd, J = 8.0, 2.0 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.43 – 7.29 (m, 4H), 7.29 – 7.13 (m, 5H), 6.51 (s, 1H), 4.29 (t, J = 5.2 Hz, 2H), 2.6 1 (t, J = 6.3 Hz, 2H), 2.09 – 1.95 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 172.4, 143.0,

140.8, 140.4, 139.5, 137.0, 130.9, 130.7, 130.2, 129.0, 128.9, 128.6, 128.5, 128.0, 127.4, 127.2, 127.0, 69.2, 30.3, 28.8. M.P.: 145.5 – 146.0 °C. HRMS (ESI): $m/z [M + H]^+$ calcd for C₂₄H₂₀O₂: 341.1536; found: 341.1535

Product 3ha

Yield of **3ha**: 87.6 mg, 60% as a white solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.33 – 7.27 (m, 2H), 7.26 – 7.20 (m, 3H), 7.19 (M, 1H), 7.02 (s, 1H), 6.43 (s, 1H), 4.25 (t, *J* = 5.1 Hz, 2H), 2.56 (t, *J* = 6.4 Hz, 2H), 2.24 (d, *J* = 5.8 Hz, 6H), 2.00 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 172.6, 141.8, 140.7, 137.2, 136.4, 130.3, 130.0, 129.4, 128.6, 128.4, 127.5, 127.0, 69.0, 30.3, 28.9, 19.9, 19.2. M.P.: 68.0 – 68.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₀O₂: 293.1536; found: 293.1537.

Product 3ia

Br Vield of **3ia**: 112.1 mg, 63% as a white solid. ¹H NMR (250 MHz, CDCl₃)
$$\delta$$
 (ppm) =
7.57 (d, $J = 8.2$ Hz, 1H), 7.30 (dt, $J = 7.1$, 1.3 Hz, 1H), 7.26 – 7.14 (m, 4H), 6.92 (d, $J = 8.6$ Hz, 1H), 6.43 (s, 1H), 4.21 (t, $J = 5.0$ Hz, 2H), 2.52 (t, $J = 6.6$ Hz, 2H), 2.39 (s, Ph

3H), 2.07 – 1.96 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) =170.0, 142.9, 139.2, 136.6, 135.7, 134.6, 131.9, 131.4, 128.5, 128.4, 127.3, 126.9, 125.0, 68.6, 30.2, 29.1, 20.5. M.P.: 80.0 – 80.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇BrO₂: 357.0485; found: 357.0483.

Product 3ja

Yield of **3ja**: 124.2 mg, 85% as a white solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.32 - 7.26 (m, 1H), 7.25 - 7.13 (m, 4H), 6.90 (d, J = 28.0 Hz, 2H), 6.40 (s, 1H), 4.18 (t, J = 4.9 Hz, 2H), 2.53 (t, J = 6.6 Hz, 2H), 2.29 (d, J = 5.5 Hz, 6H), 2.06 - 1.93 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 171.2, 143.9, 140.6, 140.5, 137.0, 136.4, 130.4, 130.3, 128.6, 128.3, 127.0, 127.0, 125.9, 68.4, 30.2, 29.2, 21.3, 19.8. M.P.: 153.0 - 153.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₀O₂: 293.1536; found: 293.1534.

Product 3ka

MeO PhYield of **3ka**: 110.9 mg, 72% as a white solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.33 - 7.27 (m, 1H), 7.25 (d, J = 2.4 Hz, 2H), 7.23 - 7.14 (m, 2H), 6.61 (dd, J = 29.5, 2.4 Hz, 2H), 6.42 (s, 1H), 4.20 (t, J = 5.0 Hz, 2H), 3.77 (s, 3H), 2.55 (t, J = 6.6Hz, 2H), 2.34 (s, 3H), 2.06 - 1.96 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) =

171.0, 160.9, 146.0, 140.6, 139.0, 136.9, 130.4, 128.5, 128.4, 127.1, 122.3, 115.2, 110.7, 68.4, 55.4, 30.2, 29.2, 20.2. M.P.: 165.0 – 165.5 °C. HRMS (ESI): m/z $[M + H]^+$ calcd for $C_{20}H_{20}O_3$: 309.1485; found: 309.1485.

Product 3la

Yield of **3la**: 114.0 mg, 77% as a yellow solid. ¹H NMR (250 MHz, CDCl₃)
$$\delta$$
 (ppm) =
7.32-7.27 (m, 1H), 7.25 (d, $J = 5.7$ Hz, 2H), 7.23 – 7.15 (m, 2H), 6.85 (dd, $J = 9.2, 2.2$
Hz, 1H), 6.76 (dd, $J = 8.9, 2.5$ Hz, 1H), 6.43 (s, 1H), 4.20 (t, $J = 5.0$ Hz, 2H), 2.53 (t, $J = 6.5$ Hz, 2H), 2.34 (s, 3H), 2.06 – 1.96 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm)

= 170.3, 163.3 (d, J = 249.6 Hz), 146.4 (d, J = 8.4 Hz), 139.8 (d, J = 8.7 Hz), 139.4 (d, J = 1.7 Hz), 136.5, 131.1, 128.5, 128.4, 127.34, 126.1 (d, J = 3.0 Hz), 116.5 (d, J = 20.2 Hz), 112.5 (d, J = 21.4 Hz), 68.4, 30.2, 29.0, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -109.84 (s, 1F). M.P.: 65.0 – 65.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇FO2: 297.1285; found: 297.1286.

Product 3ma

Yield of **3ma**: 101.4 mg, 65% as a brown solid. ¹H NMR (250 MHz, CDCl₃)
$$\delta$$
 (ppm)
= 7.33 - 7.25 (m, 2H), 7.24 - 7.18 (m, 3H), 7.10 (ddd, J = 22.4, 2.0, 0.7 Hz, 2H), 6.43
(s, 1H), 4.20 (t, J = 5.0 Hz, 2H), 2.53 (t, J = 6.5 Hz, 2H), 2.32 (s, 3H), 2.06 - 1.97 (m,
2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) =1 70.1, 145.5, 139.1, 138.6, 136.5, 136.1,

131.4, 129.5, 128.5, 128.4, 127.4, 125.6, 68.5, 30.2, 29.0, 19.8. M.P.: 152.0 – 152.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇ClO₂: 313.0990; found: 313.0989.

Product 3na

Br

143.0, 139.2, 136.6, 135.6, 134.6, 131.9, 131.3, 128.5, 128.4, 127.3, 126.9, 125.0, 68.6, 30.2, 29.1, 20.6. M.P.: 82.0 – 82.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇BrO₂: 357.0485; found: 357.0483.

Product 3oa

Yield of **30a**: 68.7 mg, 52% as a yellow solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 7.51 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.43 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.37 – 7.28 (m, 3H), 7.27 – 7.18 (m, 4H), 6.46 (s, 1H), 4.26 (t, *J* = 5.1 Hz, 2H), 2.59 (t, *J* = 6.4 Hz, 2H), 2.04 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 172.2, 144.2, 140.6, 137.0, 131.7, 130.8, 130.2, 128.8,

128.6, 128.4, 128.3, 127.8, 127.2, 69.1, 30.2, 28.9. M.P.: 118.0 – 118.5 °C. HRMS (ESI): $m/z [M + H]^+$ calcd for C₁₈H₁₆O₂: 265.1223; found: 265.1224.

Product 3pa

Yield of **3pa**: 73.8 mg, 47% as a yellow oil. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 8.08 (s, 1H), 7.89 – 7.76 (m, 3H), 7.72 (s, 1H), 7.55 – 7.43 (m, 3H), 7.31 (s, 1H), 7.26 – 7.17 (m, 2H), 6.55 (s, 1H), 4.30 (t, *J* = 5.2 Hz, 2H), 2.70 (t, *J* = 6.4 Hz, 2H), 2.06 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 172.3, 141.2, 141.0, 137.1,

134.7, 132.0, 131.0, 129.6, 129.0, 128.6, 128.5, 128.5, 128.1, 127.8, 127.2, 127.2, 126.8, 69.4, 30.2, 29.8. HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{22}H_{18}O_2$: 315.1380; found: 315.1381

Product 3qa

132.6, 131.3, 131.2, 129.8 128.6, 128.4, 128.2, 127.9, 127.3, 126.6, 126.4, 125.5, 125.5, 68.6, 30.3, 28.5. M.P.: 146.0 – 146.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₁₈O₂: 315.1380; found: 315.1357.

Product 3ra

Yield of **3ra**: 82.6 mg, 48% as a yellow solid. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 8.97 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.57 - 1007.49 (m, 1H), 7.45 – 7.37 (m, 1H), 7.34 – 7.28 (m, 2H), 7.20 – 7.15 (m, 3H), 6.64 (d, J = 8.3 Hz, 1H), 4.45 (t, J = 6.3 Hz, 2H), 3.92 (s, 3H), 2.55 (t, J = 7.0 Hz, 2H), 1.98 -2.09 (m, 2H). ¹³C NMR (63 MHz, CDCl₃) δ (ppm) = 167.2, 159.4, 132.9, 132.3, 131.6, 128.3, 128.2,

127.7, 125.8, 125.7, 125.5, 123.8, 122.3, 118.9, 102.5, 88.9, 81.4, 63.5, 55.8, 28.1, 16.6. M.P.: 43.0 - 43.5 ^oC. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{23}H_{20}O_3$: 345.1485; found: 345.1482.

Product 3sa

Yield of **3**sa: 60.0 mg, 40% as a brown oil. ¹H NMR (250 MHz, CDCl₃) δ (ppm) = 8.05 (d, J = 3.6 Hz, 1H), 7.45 - 7.37 (m, 2H), 7.33 - 7.27 (m, 3H), 6.30 (d, J = 3.6 Hz, 1H), 4.45(t, J = 6.2 Hz, 2H), 3.92 (s, 3H), 2.61 (t, J = 7.0 Hz, 2H), 1.91 - 2.02 (m, 2H).¹³C NMR $(63 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}) = 161.7, 157.7, 133.4, 131.6, 128.2, 127.7, 123.7, 123.4, 98.1,$

88.8, 81.3, 63.2, 58.0, 28.0. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₆O₃S: 301.0893; found: 301.0895.

Product 3ab

Yield of **3ab**: 113.9 mg, 78% as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 7.35 (t, J = 7.6 Hz, 1H), 7.22-7.20 (m, 3H), 7.16 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 7.5 Hz, 1H), 6.46 (s, 1H), 4.27 (t, J = 4.9 Hz, 2H), 2.62 (t, J = 5.0 Hz, 2H), 2.42 (s, 3H), 2.36 (s,

3H), 2.12 - 2.08 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 171.1, 144.0, 139.5, 136.9, 136.2, 134.0, 130.6, 130.5, 129.9, 129.4, 129.1, 128.5, 125.4, 68.5, 30.2, 29.3, 21.3, 19.9. M.P.: 60.0 - 60.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₀O₂: 293.1536; found: 293.1537.

Product 3ac

Yield of **3ac**: 98.3 mg, 63% as a red oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 7.36 (t, J = 7.6 Hz, 1H), 7.34 – 7.31 (m, 2H), 7.25 – 7.22 (m, 3H), 7.09 (d, J = 7.6 Hz, 1H), 6.44 (s, 1H), 4.27 (t, J = 4.9 Hz, 2H), 2.59 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.11 – 2.04 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 170.8, 143.4, 141.0, 136.3, 135.3, 132.9, 130.5, 129.8, 129.6, 129.6, 129.5, 128.5, 125.1, 68.3, 30.07, 29.2, 19.8. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇ClO₂: 313.0990; found: 313.0990.

Product 3ad

Yield of **3ad**: 93.2 mg, 63% as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 7.36 (t, J = 7.6 Hz, 1H), 7.26 – 7.29 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 8.7 Hz, 2H), 6.45 (s, 1H), 4.28 – 4.26 (m, 2H), 2.59 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.11 – 2.07 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 170.9, 161.8 (d, J = 245.3 Hz), 143.5, 140.3, 136.3, 132.9, 132.9, 130.5, 130.2 (d, J = 3.4 Hz),

¹ 129.8, 129.6 (d, J = 2.4 Hz), 125.2, 115.3 (d, J = 21.2 Hz), 68.4, 30.1, 29.2, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -114.80 (s, 1F). M.P.: 66.0 – 66.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₁₇FO₂: 297.1285; found: 297.1283.

Product 3ae

Yield of **3ae**: 95.2 mg, 61% as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 7.36 (t, *J* = 7.6 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.25 – 7.22 (m, 2H), 7.18 (d, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.44 (s, 1H), 4.27 (t, *J* = 4.9 Hz, 2H), 2.60 (t, *J* = 6.3 Hz, 2H), 2.42 (s, 3H), 2.11 – 2.07 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 170.8, 143.3, 141.8, 138.6, 136.4, 134.2, 130.6, 129.7, 129.6, 129.4, 128.5, 127.2, 126.8,

125.2, 68.3, 30.2, 29.2, 19.9. M.P.: 100.0 – 100.5 °C. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{17}ClO_2$: 313.0990; found: 313.0990.

Product 3af

Yield of **3af**: 96.0 mg, 60% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 7.96 (d, J = 6.3 Hz, 2H), 7.41 – 7.39 (m, 2H), 7.38 – 7.35 (m, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 7.5 Hz, 1H), 6.53 (s, 1H), 4.28 (t, J = 3.7 Hz, 2H), 2.64 – 2.60 (m, 5H), 2.43 (s, 3H), 2.12 – 2.08 (m, 2H). ¹³C NMR (150MHz, CDCl₃) δ (ppm) = 197.7, 170.8, 143.4, 142.6, 141.7, 136.5, 135.6, 130.6, 129.8, 129.8, 129.5, 128.7, 128.5, 125.1, 68.3, 30.2, 29.4, 26.7, 19.9. M.P.: 139.0 – 139.5 °C. HRMS (EI): m/z [M + H]⁺

calcd for C₂₁H₂₀O₃: 321.1485; found: 321.1487

Product 3ag

Yield of **3ag**: 107.6 mg, 64% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.03 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.36 (m, 3H), 7.24 (d, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.52 (s, 1H), 4.28 (t, *J* = 4.9 Hz, 2H), 3.93 (s, 3H), 2.62 (t, *J* = 6.6 Hz, 2H), 2.43 (s, 3H), 2.12 – 2.08 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 170.8, 166.9, 143.4, 142.4, 141.5, 136.4, 130.6, 129.9, 129.7, 129.7, 129.6, 128.7, 128.5, 125.1, 68.3, 52.7, 30.2, 29.4, 19.9. M.P.: 106.0 – 106.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₂₀O₄: 337.1434; found: 337.1436.

Product 3ah

Yield of **3ah**: 98.2 mg, 69 % as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) =7.41 (t, J = 7.6 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.26 – 7.23 (m, 1H), 7.15 (dd, J = 7.6, 1.3 Hz, 1H), 7.08 – 7.03 (m, 2H), 6.58 (s, 1H), 4.29 (t, J = 5.6 Hz, 2H), 3.05 (t, J = 4.6 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 170.2, 161.9 (d, J = 246.1 Hz), 140.3, 138.5, 136.8, 132.5 (d, J = 3.3 Hz), 132.3, 131.6, 130.9 (d, J = 1.9 Hz), 130.7, 128.9, 126.3, 115.3 (d, J = 21.4 Hz), 65.3, 33.4, 20.6. M.P.: 152.0 –

153.1 °C. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -113.91 (s, 1F).

Product 3dh

Yield of **3dh**: 93.9 mg, 51% as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.42 (d, *J* = 7.6 Hz, 2H), 7.34 (m, 3H), 7.30 - 7.26 (m, 3H), 7.24 - 7.10 (m, 5H), 6.54 (s, 1H),

4.31 (t, J = 5.3 Hz, 2H), 4.25 (s, 2H), 2.75 (s, 2H), 1.77 – 1.63 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 168.8, 147.6, 144.2, 140.8, 140.7, 138.3, 130.5, 129.6, 129.2, 128.9, 128.8, 128.6, 128.4, 128.3, 128.3, 126.6, 126.1, 66.9, 38.7, 32.8, 26.2, 25.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₆H₂₄O₂: 369.1849; found: 369.1846.

Product 3di

Yield of **3di**: 101.3 mg, 53% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 77.33 - 7.25 (m, 6H), 7.21 (q, *J* = 7.5, 6.9 Hz, 3H), 7.17 - 7.10 (m, 3H), 6.50 (s, 1H), 4.31 (t, *J* = 5.2 Hz, 2H), 4.24 (s, 2H), 2.75 (t, *J* = 5.3 Hz, 2H), 2.36 (s, 3H), 1.76 - 1.67 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 168.9, 147.7, 143.5, 140.8, 140.7, 136.4, 135.4, 130.5, 129.8, 129.6, 129.2, 129.0, 128.8, 128.6, 128.4, 128.3, 126.1, 66.9, 38.7, 32.9, 36.2, 25.2,

21.3. M.P.: 83.0 – 83.5 °C. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₆O₂: 383.2006; found: 383.2002.

Product 2f

Yield of **2f**: 935 mg, 85 % as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 3.51 (t, *J* = 6.4 Hz, 2H), 2.42 (t, *J* = 6.9 Hz, 2H), 2.35 (s, 3H), 1.85 (p, *J* = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 196.8, 135.7, 131.5, 128.3, 128.0, 91.9, 80.9, 43.6, 31.2, 26.3, 16.8.

4. Mechanistic studies

4 (75.0 mg, 0.5 mmol), **2a** (133.6 mg, 0.75 mmol), $[RuI_2(p-cymene)]_2$ (2 mol%), K_2CO_3 (13.7 mg, 0.1 mmol) and guanidine carbonate (27.0 mg, 0.15 mmol) were dissolved in 1-butanol/H₂O (0 mL, 9/1). Then, the mixture was stirred at 100 °C for 16 h, as monitored by TLC and GC analysis.

As a result, 2-methylbenzoate proved to be ineffective for this catalytic system, which demonstrated the importance of the carboxylate group in this reaction.

5 (139.0 mg, 0.5 mmol), $[RuI_2(p-cymene)]_2$ (2 mol%), K_2CO_3 (13.7 mg, 0.1 mmol) and guanidine carbonate (27.0 mg, 0.15 mmol) were dissolved in 1-butanol/H₂O (0 mL, 9/1). Then, the mixture was stirred at 100 °C for 16 h, as monitored by TLC and GC analysis. *No product can be detected, which indicated that compound 5 may not be the intermediate in this reaction.*

b) competitive experiment

1a (13.6 mg, 0.1 mmol), **[D]-1a** (14.3 mg, 0.1 mmol), and **2a** (53.4 mg, 0.3 mmol), $[RuI_2(p-cymene)]_2$ (2 mol%), K_2CO_3 (5.5 mg, 0.04 mmol) and guanidine carbonate (8.1 mg, 0.06 mmol) were dissolved in 1-butanol/H₂O (0.4 mL, 9/1). Then, the mixture was stirred at 100 °C for 16 h. Yields determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard: $k_H/k_D = 2.0$:1.

1a (27.2 mg, 0.2 mmol) or **[D]-1a** (28.6 mg, 0.2 mmol), and **2a** (106.8 mg, 0.6 mmol), $[\text{RuI}_2(p\text{-cymene})]_2$ (2 mol%), $K_2\text{CO}_3$ (10.9 mg, 0.08 mmol) and guanidine carbonate (21.6 mg, 0.12 mmol) were dissolved in 1-butanol/H₂O (0.4 mL, 9/1). Then, the mixture was stirred at 100 °C for 16 h. Yields determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard: $k_H/k_D = 1.5:1$.

The kinetic isotope effects (KIE) in both competitive $(k_H/k_D = 2.0:1)$ and parallel $(k_H/k_D = 1.5:1)$ reactions, indicating the ruthenium-catalyzed C-H bond activation may be the rate-determining step in this transformation.

5. X-Ray structure of 3ka

CCDC number: 2039860

6. NMR Spectra of products 3aa-3sa, 3ab-3ag, 3ah, 3dh, 3di and 2f

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3ba

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3ca

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3da 2.49 2.46 1.94 1.92 1.91 1.91 1.87 1.87 1.87

- 0.00

fl (ppm)

i fl (ppm)

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3ha -0.00 $\underbrace{ \begin{cases} 4.27 \\ 4.25 \\ 4.23 \end{cases} }$ 2.58 2.55 2.55 2.55 2.25 2.25 2.05 2.05 2.01 1.98 1.98 2.08≖ 2.03₫ 6.02≝ 2.06_¶ 1.00-66.1 00.1 99.0 6.0 5.5 5.0 4.5 fl (ppm) 3.0 2.5 2.0 9.5 9.0 8.0 7.5 7.0 6.5 4.0 3.5 1.5 1.0 0.5 0.0 -0.5 -1 10.5 10.0 8.5 HXQ-23/HXQ-23C 141.75 140.74 137.18 136.38 136.38 130.31 129.95 129.35 129.35 128.57 128.57 128.38 127.50 127.00 -172.63-69.04 $< \frac{30.29}{28.88}$ $< \frac{19.86}{19.23}$ Ρh

100 fl (ppm) 70 60 50 40 30 20 10 00 190 180 170 160 150 140 130 120 110 90 80

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3ia

1H NMR (250 MHz, CDCl_3) and ^{13}C NMR (63 MHz, CDCl_3) spectra of product 3ja

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3oa

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3qa

8.8. 8.8. 8.8. 8.8. 9.9.9. 9.9.

¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz, CDCl₃) spectra of product 3ra

HX0-55/HX0-55H HX0-55/HX0-55H

110 100 fl (ppm)

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 3ac

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2: fl (ppm)

fl (ppm)

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 3ag

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 3ah

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3di

