## Electronic Supplementary Information (ESI)

High Power Density of Paper-Based Zinc-Air Battery with Hollow Channel Structure

Haoran Zhang<sup>a,b</sup>, Biao Zhang<sup>a,b</sup>, Yang Yang<sup>a,b\*</sup>, Dingding Ye<sup>a,b\*</sup>, Rong Chen<sup>a,b</sup>, Qiang

Liao<sup>a,b</sup>, Xun Zhu<sup>a,b\*</sup>

 <sup>a</sup> Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Chongqing 400030, China
<sup>b</sup> Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China

§ Yang Yang, Ph.D., Corresponding author

E-mail: <u>yang\_yang@nwpu.edu.cn</u>

Address: Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China

Tel/Tax: +86-23-6510-2474

## **Materials and Method**

**Hollow Channel Fabrication**. The chromatographic paper is commercially available and purchased from Whatman (Type: CAT.No.3001-887). Hollow channel layers were fabricated using a previously reported wax patterning method. The devices were designed using CorelDrawX6 software. Patterns were printed on Whatman chromatographic paper using a Xerox Colorqube8570 inkjet wax printer. The paper was then placed in an oven at 150 °C for 15 minutes and cool at room temperature. Until it was cooled, it was cut into 45 mm in length, 35 mm in width, cut with a hollow structure of size of 35 mm in length, 4 mm in width in the middle serving as the hollow channel.

**Electrode Reaction**. The electrochemical reactions at the anode and cathode sides in alkaline solution were showed as following (*Eq.* S1-*Eq.* S4). Anode side:

$$Zn + 40H^{-} \rightarrow Zn(0H)^{2-}_{4} + 2e^{-}$$
 (S1)

$$Zn(0H)_{4}^{2} \rightarrow Zn0 + H_{2}0 + 20H^{-}$$
 (S2)

Cathode side:

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
 (S3)

Overall reaction:

$$2Zn + O_2 \rightarrow 2ZnO \tag{S4}$$

**ECSA Calculation.** The ECSA can be estimated from  $C_{dl}$  resulting from the linear relationship, as showed in the following equation (*Eq.* S5):  $ECSA = C_{dl} of \ catalyst \ (mF)/A \ (mF \ cm^{-2})$ (S5)

A means the specific capacitance of 1 cm<sup>-2</sup> flat surface area, and a constant value determined by the material property (typically is 40  $\mu$ F cm<sup>-2</sup>).

## **Supplementary Figures**

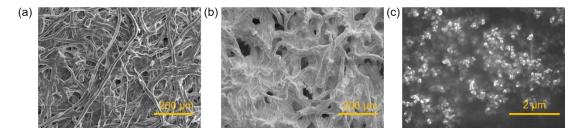



Fig.S1 Microscopic morphologies: (a) pristine filter paper; (b) KOH-saturated filter paper; (c) Pt/C air-cathode.

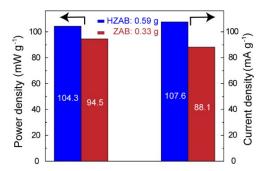



Fig.S2 Comparation of ZAB and HZAB in maximum power density and current density per unit weight.

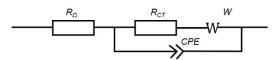



Fig.S3 Schematic of equivalent circuit to fit the Nyquist plots. Abbreviations:  $R_{\Omega}$ -ohmic resistance; CPE-constant phase element associated to the double layer at the surface of electrode;  $R_{CT}$ -charge transfer resistance; *W*-Warburg resistance.

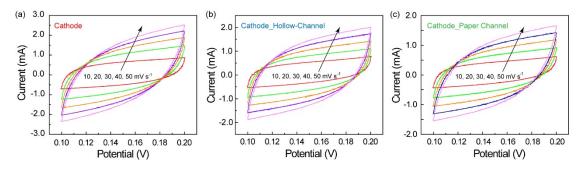



Fig.S4 CV curves: (a) Cathode, (b) Cathode\_Hollow-Channel and (c) Cathode\_Paper Channel collected at different scan rates over a potential range of 0.1 to 0.2 V.

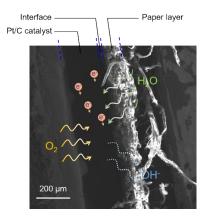



Fig.S5 Schematic illustration of the interface between the catalytic layer and paper fibers.

## **Supplementary Tables**

|      | $R_{\Omega}$ | $R_{CT}$ | W-R  | W-T  | W-P  | CPE-T  | CPE-P |
|------|--------------|----------|------|------|------|--------|-------|
| ZAB  | 3.57         | 1.1      | 62.0 | 4.68 | 0.57 | 0.0024 | 0.78  |
| HZAB | 4.06         | 0.8      | 33.0 | 1.71 | 0.57 | 0.0002 | 0.91  |

Table S1 Fitted parameters of some elements in the equivalent circuit.