Construction of Indeno[1,2-*b*]pyrroles *via* Chemoselective N-Acylation/Cyclization/Wittig Reaction Sequence

Athukuri Edukondalu,^{a,‡} Sandip Sambhaji Vagh,^{a,‡} Ting-Han Lin^{a,} and Wenwei Lin^{a,*}

- a Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C.
- [‡] These authors contributed equally.

Table of Contents

I. General information			
II. Reaction optimization			
III. Contro	ol experiments	S7-S9	
IV. Exper	imental procedures		
a.	Typical procedure (TP-1) for the preparation of indenone-benzohydrazide	;	
	derivatives 1	S9-S9	
b.	Typical procedure (TP-2) for the preparation of phosphorus zwitterion		
	derivatives 3	S9-S10	
c.	Typical procedure (TP-3) for the preparation of indeno[1,2- <i>b</i>]pyrrole		
	derivatives 6/7	S10-S10	
d.	d. Typical procedure (TP-4) for the preparation of spiro-indene-1,2'-[1,3,4]ox		
	derivatives 8	S10-S11	
V. Analytical data for all new compounds			
VI. References			
VII. X-ra	y crystallographic data for selected compounds	S46-S54	
VIII. ¹ H N	MR, ¹³ C NMR, ³¹ P NMR and ¹⁹ F NMR spectra of all new compounds	S55-S149	
IX. Scann	ed copies of EI Mass Spectra for selected compounds 6/7	S150-S160	

I. General information

All reactions were carried out under argon atmosphere in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were used as purchased from commercial suppliers without further purification. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under argon atmosphere. Yields refer to isolated yields of compounds estimated to be >95% pure as determined by ¹H NMR. Analytical thin layer chromatography (TLC) was performed on pre coated alumina-backed silica gel plates (Merck 60 F254, 0.2 mm thickness) which were developed using UV irradiation at 254 nm. Flash column chromatography was performed using silica gel (SiliCycle SiliaFlash P60, 230-400 mesh). Melting points were measured on a hostage melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer 500 spectrometer and only selected peaks are mentioned. ¹H NMR spectra were recorded on either an Oxford JEOL 400 MHz spectrometer or a Bruker Ascend 400 MHz spectrometer. ¹³C NMR spectra at 100 MHz, ³¹P NMR at 162 MHz and ¹⁹F NMR at 376 MHz. Chemical shifts are reported in δ ppm referenced to an internal TMS standard ($\delta = 0.0$ ppm) for ¹H NMR, CDCl3 ($\delta = 77.0$ ppm) for ¹³C NMR, DMSO-d₆ (δ 2.50 ppm for ¹H NMR and 39.52 ppm for ¹³C NMR), H₃PO₄ ($\delta = 0.0$ ppm) for ³¹P NMR, and C_6H_5F ($\delta = -113.15$ ppm) for ¹⁹F NMR. The following abbreviations (or combinations thereof) were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, dd = doublet of doublet, dt = doublet of triplet, td = triplet of doublet, tt = triplet of triplet, qd = quartet of doublet, br = broad, p = pseudo. High resolution mass spectra were recorded on Waters XeVo G2-S QTof using ESI (TOF analyzer). The X-ray diffraction measurements were carried out at 200 K on either a Bruker D8 Venture or a Bruker KAPPA APEX II CCD area detector system equipped with a graphite monochromator and a Mo-Ka fine-focus sealed tube (k = 0.71073 Å).

II. Reaction optimization for 6aa:

a) Optimization of reaction conditions for the synthesis of zwitterion $3/4^a$

HN HN O 1a	+ $\stackrel{O}{\underset{Br}{\mapsto}} H$ + PR_3 2a	PhCO ₂ H/pyrrolidine	Ph Θ_N Ph Θ_N PR_3 PR_3 Br 3a
entry	phosphine	<i>t</i> (h)	3/4 ^b
1	PBu ₃	5	90
2	PPh ₃	16	nr
3	PPh ₂ Et 12		trace
4	PEt ₂ Ph	12	trace
5	PPh ₂ Me	6	75

^{*a*} The reactions were carried out with compound **1a** (0.3 mmol), 4-BrPhCHO (**2a**) (1.1 equiv), PhCO₂H (0.1 equiv), PR₃ (1.2 equiv) and pyrrolidine (0.1 equiv) in anhydrous THF (3 mL) under argon at 30 °C. ^{*b*} Yield of the zwitterion **3a/4a** was determined by NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. nr = no reaction.

It is noteworthy that the phosphorus zwitterions **3** are very stable and easily isolable and confirmed by the NMR, HRMS and X-ray analysis, further utilized for the desired indeno[1,2-b]pyrrole derivatives **6**/**7**. Unfortunately, the phosphorus zwitterions **4** were not able to isolate in pure form but crude reaction mixture was used for the one step reaction of spiro-indene-1,2'-[1,3,4]oxadiazol derivatives **8**. The phosphorus zwitterion **4a** from the crude reaction mixture was confirmed by the ³¹PNMR and HRMS analysis.

³¹P NMR Spectrum of **4a** from the crude reaction mixture (CDCl₃, 162 MHz)

ESI-HRMS Spectrum of 4a from the crude reaction mixture

	Br Bu ₃ Pl sc	<mark>hCOCI (5a), base</mark> olvent, 30 °C, time		Ph NH Ph aa Br
entry	base	solvent	<i>t</i> (h)	6aa ^b
1	Et ₃ N	THF	12	85
2	DIPEA	THF	18	60
3	DBU	THF	10	75
4	TMG	THF	10	51
5	TBD	THF	12	84
6	MTBD	THF	12	85
7	Et ₃ N	CH ₂ Cl ₂	24	25
8	Et ₃ N	CH ₃ CN	24	50
9	Et ₃ N	toluene	48	47
10	Et ₃ N	Et ₂ O	24	65
11^c	Et ₃ N	THF	4	85
12^d	Et ₃ N	THF	4	90
13 ^{<i>d</i>,<i>e</i>}	Et ₃ N	THF	4	76

b) Optimization of reaction conditions for the synthesis of compound 6^a

^{*a*} The reactions were carried out with compound **3a** (0.1 mmol), PhCOCl (**5a**) (1.1 equiv) and base (1.5 equiv) in dry solvent (1 mL.) under argon at 30 °C. ^{*b*} Yield of the product **6aa** was determined by NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} at 40 °C. ^{*d*} at 50 °C. ^{*e*} Addition sequence: compound **3a** (0.1 mmol), Et₃N (1.5 equiv) and PhCOCl (**5a**) (1.1 equiv) in dry solvent (1 mL.) under argon at 50 °C.

III. Control experiments:

Scheme S1.

To investigate the mechanism, we have performed control experiments by using different spiro-indene-1,2'-[1,3,4]oxadiazol derivatives, PBu₃ and Et₃N at 50 °C. First, we examined the reaction between **8aa**, PBu₃ (1.1 equiv) in the presence of Et₃N (1.5 equiv) in THF at 50 °C. Interestingly, we have observed the **6aa** in 75% yield within 4 h (Scheme S1a). It could be understood that the spiro-indene-1,2'-[1,3,4]oxadiazol derivative is the key intermediate for the formation of indeno[1,2-*b*]pyrrole in our protocol. Similarly, we have carried out the reactions of *para-* and *ortho*-chloro substituted spiro-indene-1,2'-[1,3,4]oxadiazol derivatives such as **8ac** and **8ai** and PBu₃ (1.1 equiv) in the presence of Et₃N (1.5 equiv) in THF at 50 °C to afford the desired indeno[1,2-*b*]pyrrole derivatives **6ac** and **6ai** in 69% and 63% yields, respectively (Scheme 1b,

and 1c). We have further confirmed the products 6ac and 6ai by using EI mass analysis.

Accordingly, pivaloyl group substituted compound **8ak** was also reacted with PBu₃ (1.1 equiv) in the presence of Et₃N (1.5 equiv) in THF at 50 °C, and the rearranged indeno[1,2-*b*]pyrrole **7ak** was obtained in 50 % yield instead of **6ak** in 10 h (Scheme 1d). Further, X-ray and EI mass analysis unambiguously confirmed that the product is rearranged indeno[1,2-*b*]pyrrole **7ak**.

Scheme S2. Plausible Mechanism.

Based on the results and control experiments, a plausible mechanism is depicted in Scheme S2. Initially, a chemoselective tandem three-component reaction of indane-1,3-dione hydrazone 1,

aldehyde **2**, and phosphine furnished the phosphorus zwitterion **3/4** which could be interchangeable with another possible zwitterion **I**. The chemoselective *N*-acylation of the zwitterion **I** with acyl chloride **5** would generate phosphonium salt **II** that can easily cyclize to give the spiro compound **8** via the allylic substitution with elimination of PR₃. When eliminated PR₃ has less nucleophilic nature such as PPh₂Me, only the spiro compound **8** would be provided. Instead, a more nucleophilic PR₃, such as PBu₃, would further react with **8** to generate the phosphonium salt **IIa** (Path a). The deprotonation of **IIa** by Et₃N generates ylide **III**, and subsequent chemoselective intramolecular Wittig reaction upon **III** would lead to the indeno[1,2-*b*]pyrrole **6** via the formation of a crucial betaine **IV**. On the other hand, the less reactive and hindered pivaloyl group present on the spiro compound **8** would facilitate the intramolecular acyl group exchange to generate the phosphonium salt **IIb** via the sequence of allylic substitution/elimination of PBu₃ and rearrangement reaction with the formation of the intermediates **VII–IX** (Path b). Further, deprotonation of **IIb** would provide ylide **V** in the presence of Et₃N, and subsequent chemoselective intramolecular Wittig reaction upon ylide **V** would result in the rearranged indeno[1,2-*b*]pyrrole **7**.

IV. Experimental Procedures:

a) Typical procedure (TP-1) for the preparation of indenone-benzohydrazide derivatives 1

A 100 mL round bottom flask equipped with a magnetic stir bar and a septum was sequentially charged with 1,3-indandione (5 mmol), benzhydrazide derivative (1.05 equiv) in MeOH (50 mL) and Conc. HCl (2-3 drops) at 30 °C and the reaction mixture was stirred for 12 hours. After completion of reaction, filtered the solid by using Bukner funnel. Then washed with cold MeOH (10 mL), and purified by flash chromatography (MeOH/DCM: 1/100) to furnish the desired products **1** as solid in almost quantitative yields.

b) Typical procedure (TP-2) for the preparation of phosphorus zwitterion derivatives 3¹

A flame dried and nitrogen-flushed 25-mL round bottom flask equipped with a magnetic stir bar and a septum was sequentially charged with **1** (0.5 mmol), **2** (1.1 equiv), PhCO₂H (0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PBu₃ (1.2 equiv) and pyrrolidine (0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo*. Purification by flash chromatography (EtOAc/hexanes: 1/3 then MeOH/DCM: 1/100) furnished the desired products **3** in almost quantitative yields.

Note: ¹H, ¹³C spectra of compounds **1a**, **1i**, **1j** and ¹H, ¹³C, ³¹P NMR spectra of compounds **3a-3j** showed intense broadening and considerable complexity due to their tautomeric and rotameric equilibria.²

c) Typical procedure (TP-3) for the preparation of indeno[1,2-b]pyrrole derivatives 6/7:

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **3** (0.3 mmol), anhydrous THF (3 mL), acyl chloride **5** (1.1 equiv) and Et₃N (1.5 equiv). The reaction mixture was stirred for 1-8 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography on silica gel to obtain the product **6**/**7**.

d) Typical procedure (TP-4) for the preparation of spiro-indene-1,2'-[1,3,4]oxadiazol derivatives 8:

A flame dried and nitrogen-flushed 25-mL round bottom flask equipped with a magnetic stir bar and a septum was sequentially charged with **1** (0.5 mmol), **2** (1.1 equiv), PhCO₂H (0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (1.2 equiv) and pyrrolidine (0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent with excess volatile substrates were removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), acyl chloride **5** (1.5 equiv) and Et₃N (2.0 equiv). The reaction mixture was stirred for 1-4 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography on silica gel to obtain the product **8**.

V. Analytical data for all new compounds:

(Z)-N'-(3-Oxo-2,3-dihydro-1*H*-inden-1-ylidene)benzohydrazide (1a)

Prepared according to TP-1 from 1,3-Indandione (730.8 mg, 5.0 mmol), benzhydrazide (714.8 mg, 1.05 equiv), in MeOH (50 mL) followed by addition of Conc. HCl (3 drops) at 30 °C for 12 h. Thereafter, filtration of the reaction mixture and washed with cold MeOH (10 mL). Futher, purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **1a** as green solid (1.21 g, 92%).

 $R_f = 0.51$ (MeOH/DCM: 5/95), mp.: 213.8-214.7 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 10.91 (s, 1H), 8.13 – 7.98 (m, 1H), 7.99 (d, *J* = 8.1 Hz, 2H), 7.83 (t, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.60 (t, *J* =

7.3 Hz, 1H), 7.53 (pt, *J* = 7.5 Hz, 2H), 3.69 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 198.4, 164.1, 152.0, 146.4, 138.4, 135.5, 133.7,

131.7, 131.3, 128.6, 128.3, 128.1, 127.5, 122.9, 121.9, 38.7.

IR (KBr) \tilde{v} (cm⁻¹): 3075, 1725, 1698, 1526, 1375, 790.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃N₂O₂ 265.0977; found: 265.0975.

(Z)-4-Chloro-N'-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)benzohydrazide (1i)

Prepared according to TP-1 from 1,3-Indandione (292.3 mg, 2.0 mmol), 4-chloro benzhydrazide (358.2 mg, 1.05 equiv), in MeOH (20 mL) followed by addition of Conc. HCl (1 drop) at 30 °C for 12 h. Thereafter, filtration of the reaction mixture and washed with cold MeOH (5 mL). Futher, purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **1i** as white solid (507.8 mg, 85%).

R_f = 0.48 (MeOH/DCM: 5/95), mp.: 254.6-255.7 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 10.96 (s, 1H), 8.07 – 7.97 (m, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.83 (t, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.66 (t, *J* = 7.1 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 2H), 3.68 (s, 2H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 198.3, 163.1, 152.5, 146.3, 138.5, 136.5, 135.5, 132.4, 131.4, 130.0, 128.4, 122.9, 121.9, 38.8.

IR (KBr) \tilde{v} (cm⁻¹): 3070, 1724, 1672, 1510, 1370, 750.

HRMS (ESI) m/z: [M-H]⁺ Calcd for C₁₆H₁₀N₂O₂³⁵Cl 297.0431; found: 297.0434; [M-H]⁺ Calcd for C₁₆H₁₀N₂O₂³⁷Cl 299.0401; found: 299.0408.

(Z)-4-Methyl-N'-(3-oxo-2,3-dihydro-1*H*-inden-1-ylidene)benzohydrazide (1j)

Prepared according to TP-1 from 1,3-Indandione (292.3 mg, 2.0 mmol), 4-methyl benzhydrazide (300.4 mg, 1.05 equiv), in MeOH (20 mL) followed by addition of Conc. HCl (1 drop) at 30 °C for 12 h. Thereafter, filtration of the reaction mixture and washed with cold MeOH (10 mL). Futher, purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **1j** as white solid (489.8 mg, 88%).

 $R_f = 0.45$ (MeOH/DCM: 5/95), mp.: 218.3-219.3 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 10.81 (s, 1H), 8.01 (brs, 1H), 7.86 – 7.80 (m, 3H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 3.68 (s, 2H), 2.38 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 198.4, 163.9, 151.7, 146.5, 141.7, 138.4, 135.5, 131.3, 130.8, 129.1, 128.8, 128.1, 127.5, 122.9, 121.8, 38.7, 21.0.

IR (KBr) \tilde{v} (cm⁻¹): 3080, 1735, 1680, 1530, 1372, 760.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₅N₂O₂ 279.1134; found: 279.1133.

1-Benzoyl-2-(2-((4-bromophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)hydrazin-1-ide (3a)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol), 4-bromo benzaldehyde **2a** (203.5 mg, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 µL (94% purity) 1.2 equiv), 1.2 equiv) and

pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3a** as an orange solid (570.2 mg, 90%).

 $R_f = 0.33$ (MeOH/DCM: 20/100), mp.: 136.6-140.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.18 (brs, 1H), 8.12 (dd, *J* = 6.9, 3.1 Hz, 2H), 7.58 (dd, *J* = 8.6, 1.8 Hz, 2H), 7.47 (pt, *J* = 7.7 Hz, 4H), 7.44 – 7.39 (m, 4H), 7.36 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.33 (td, *J* = 7.4, 1.9 Hz, 1H), 2.41 – 2.10 (m, 6H), 1.54 – 1.30 (m, 12H), 0.82 (t, J = 7.1 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.5, 168.1, 151.1, 137.9, 136.4, 135.7, 135.1, 132.3, 131.52, 131.48, 129.8, 129.5, 129.3, 127.6, 127.1, 122.35, 122.32, 119.6, 117.2, 94.7, 35.9, 35.5, 24.1, 23.91, 23.85, 20.4, 19.9, 13.1.

³¹**P** NMR (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.8.

IR (KBr) \tilde{v} (cm⁻¹): 3450, 2962, 1730, 1644, 1579, 1526, 1379.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₅H₄₃⁷⁹BrN₂O₂P 633.2246; found: 633.2245; . $[M+H]^+$ Calcd for C₃₅H₄₃⁸¹BrN₂O₂P 635.2225; found: 635.2234.

1-Benzoyl-2-(2-((4-chlorophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3yl)hydrazin-1-ide (3b)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol),4-chloro benzaldehyde 2b (154.6 mg, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 4 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3b** as an orange solid (538.6 mg, 85%).

Rf = 0.3 (MeOH/DCM: 20/100), mp.: 123.4-123.8 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.24 (brs, 1H), 8.13 (dd, *J* = 6.8, 2.4 Hz, 2H), 7.64

(dd, *J* = 8.7, 2.2 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.44 – 7.39 (m, 3H), 7.37 (t, *J* = 7.3 Hz, 2H), 7.34 – 7.30 (m, 3H), 2.45 – 2.10 (m, 6H), 1.55 – 1.30 (m, 12H), 0.82 (t, *J* = 7.1 Hz, 9H). ¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.4, 168.1, 150.9, 138.0, 136.4, 135.7, 134.6, 134.18, 134.15, 131.20, 131.16, 129.8, 129.4, 129.3, 129.2, 127.6, 127.1, 119.6, 117.0, 94.7, 35.9, 35.4, 24.0, 23.89, 23.83, 20.4, 19.9, 13.1.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.4.

IR (KBr) \tilde{v} (cm⁻¹): 3441, 3230, 2958, 1666, 1576, 1379, 1294.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₅H₄₃³⁵ClN₂O₂P 589.2751; found: 589.2750; [M+H]⁺ Calcd for C₃₅H₄₃³⁷ClN₂O₂P 591.2721; found: 591.2740.

1-Benzoyl-2-(2-((4-nitrophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)hydrazin-1-ide (3c)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol), 4-nitro benzaldehyde 2c (166.2 mg, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 µL (94% purity), 1.2 equiv) and pyrrolidine (8.2 µL, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 6 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product 3c as an orange solid (533.7 mg, 89%).

 $R_f = 0.23$ (MeOH/DCM: =20/100), mp.: 124.6-125 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.22 (brs, 1H), 8.16 (d, *J* = 8.7 Hz, 2H), 8.08 (d, *J* = 7.4 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 7.3 Hz, 2H), 7.45 (d, *J* = 7.4 Hz, 1H), 7.43 – 7.36 (m, 4H), 7.31 (pt, *J* = 7.3 Hz, 1H), 2.46 – 2.30 (m, 3H), 2.30 – 2.14 (m, 3H), 1.52 – 1.32 (m, 12H), 0.81 (t, *J* = 6.8 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.4, 168.0, 151.1, 147.2, 143.6, 137.5, 136.0, 135.3, 130.72, 130.68, 129.9, 129.5, 129.4, 127.6, 126.9, 124.1, 119.7, 117.2, 93.8, 36.3, 35.9, 23.9, 23.76, 23.71, 20.3, 19.9, 13.0.

³¹P NMR (161 MHz, CDCl₃, 25 °C) δ/ppm: 35.6.
IR (KBr) ν̃ (cm⁻¹): 3441, 2092, 1638, 1549, 1524, 1346.
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₅H₄₃N₃O₄P 600.2991; found: 600.2994.
1-Benzoyl-2-(2-((4-methoxyphenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)hydrazin-1-ide (3d)

Prepared according to TP-2 from **1** (264.3 mg, 1.0 mmol), 4-methoxy benzaldehyde **2d** (133.8 μ L, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 4.5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3d** as orange solid (538.0 mg, 92%).

R_f = 0.18 (MeOH/DCM: 20/100), mp.: 145.5-145.9 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.15 (brs, 1H), 8.15 (d, *J* = 3.6 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.46 (pt, *J* = 6.9 Hz, 2H), 7.42 – 7.37 (m, 3H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 2.30 (s, 3H), 2.29 – 2.13 (m, 6H), 1.48 – 1.30 (m, 12H), 0.80 (t, *J* = 6.9 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.6, 167.9, 151.2, 138.0, 136.6, 135.9, 132.8, 129.84, 129.82, 129.69, 129.65, 129.3, 129.1, 127.6, 127.2, 119.4, 117.0, 95.5, 35.9, 35.5, 24.1, 23.9, 23.8, 21.0, 20.4, 19.9, 13.1.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.6.

IR (KBr) \tilde{v} (cm⁻¹): 3217, 2962, 1650, 1579, 1526, 1381, 1292.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₆H₄₆N₂O₃P 585.3246; found: 585.3245.

1-Benzoyl-2-(1-oxo-2-(phenyl(tributylphosphonio)methyl)-1*H*-inden-3-yl)hydrazin-1-ide (3e)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol), benzaldehyde 2e (111.8 μ L, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product 3e as an orange solid (471.5 mg, 85%).

R_f = 0.28 (MeOH/DCM: 20/100), mp.: 113.6-114 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.24 (brs, 1H), 8.15 (d, *J* = 7.3 Hz, 2H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.47 (d, *J* = 7.1 Hz, 1H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.42 – 7.38 (m, 3H), 7.33 (t, *J* = 7.2 Hz, 4H), 7.30 – 7.24 (m, 2H), 2.42 – 2.05 (m, 6H), 1.48 – 1.22 (m, 12H), 0.78 (t, *J* = 6.8 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.7, 167.9, 151.4, 137.8, 136.4, 135.9, 129.72, 129.67, 129.3, 129.13, 129.11, 128.1, 127.5, 127.1, 119.5, 117.0, 95.3, 36.3, 35.8, 23.96, 23.81, 23.77, 23.72, 20.3, 19.8, 13.0.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.9.

IR (KBr) \tilde{v} (cm⁻¹): 3441, 2962, 1642, 1572, 1524, 1381.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₅H₄₄N₂O₂P 555.3140; found: 555.3141.

1-Benzoyl-2-(2-((3-chlorophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)hydrazin-1-ide (3f)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol), 3-chloro benzaldehyde 2f (124.6 μ L, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3f** as an orange solid (494.9 mg, 84%).

R_f = 0.23 (MeOH/DCM: 20/100), mp.: 110.4-110.8 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.16 (brs, 1H), 8.11 (d, *J* = 6.7 Hz, 2H), 7.69 (s, 1H), 7.58 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.44 (d, *J* = 7.0 Hz, 1H), 7.42 – 7.30 (m, 6H), 7.28 – 7.26 (m, 2H), 2.35 – 2.10 (m, 6H), 1.47 – 1.26 (m, 12H), 0.78 (t, *J* = 6.8 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.7, 168.1, 151.3, 138.0, 137.8, 136.2, 135.7, 134.86, 134.84, 130.40, 130.38, 129.8, 129.5, 129.2, 128.3, 128.02, 127.98, 127.6, 127.1, 119.6, 117.1, 94.5, 36.0, 35.6, 23.9, 23.79, 23.74, 20.3, 19.8, 13.0.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 35.3.

IR (KBr) \tilde{v} (cm⁻¹): 3432, 2087, 1640, 1520, 1471, 1384.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₅H₄₃³⁵ClN₂O₂P 589.2751; found: 589.2748; [M+H]⁺ Calcd for C₃₅H₄₃³⁷ClN₂O₂P 591.2721; found: 591.2740.

1-Benzoyl-2-(2-((2-chlorophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)hydrazin-1-ide (3g)

Prepared according to TP-2 from **1** (264.3 mg, 1.0 mmol), 2-chloro benzaldehyde **2g** (123.70 μ L, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5.5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3g** as an orange solid (471.3 mg, 80%).

 $R_f = 0.18$ (MeOH/DCM: 20/100), mp.: 136.8-137.2 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.50 (brs, 1H), 8.42 (d, *J* = 8.3 Hz, 1H), 8.21 (d, *J* =

7.7 Hz, 2H), 7.74 (d, *J* = 18.1 Hz, 1H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.42 – 7.30 (m, 6H), 7.26 (pt, *J* = 7.8 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 2.45 – 2.25 (m, 6H), 1.50 – 1.30 (m, 12H), 0.79 (t, *J* = 6.7 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.7, 168.7, 150.4, 137.8, 136.3, 135.8, 134.2, 133.5, 132.78, 132.72, 129.9, 129.7, 129.3, 129.1, 127.6, 127.3, 119.5, 116.9, 94.2, 33.2, 32.8, 24.0, 23.9, 23.77, 23.73, 20.6, 20.2, 13.1.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 37.9.

IR (KBr) \tilde{v} (cm⁻¹): 3446, 2070, 1633, 1576, 1465, 1377.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₅H₄₃³⁵ClN₂O₂P 589.2751; found: 589.2748; [M+H]⁺ Calcd for C₃₅H₄₃³⁷ClN₂O₂P 591.2721; found: 591.2733

1-Benzoyl-2-(2-((2-methoxyphenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3yl)hydrazin-1-ide (3h)

Prepared according to TP-2 from 1 (264.3 mg, 1.0 mmol), 2-methoxy benzaldehyde **2h** (132.9 μ L, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 6 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3h** as an orange solid (479.5 mg, 82%).

 $R_f = 0.18$ (MeOH/DCM: 20/100), mp.: 145.5-145.9 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 11.26 (brs, 1H), 8.25 (d, *J* = 7.5 Hz, 2H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.77 (d, *J* = 19.2 Hz, 1H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.40 – 7.34 (m, 4H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 3.81 (s, 3H), 2.38 – 2.10 (m, 6H), 1.45 – 1.25 (m, 12H), 0.76 (t, J = 7.0 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.3, 167.8, 155.72, 155.67, 150.8, 137.9, 136.4, 136.0, 132.72, 132.69, 129.5, 129.19, 129.14, 129.11, 128.98, 127.38, 127.30, 124.0, 121.63, 121.60, 119.3, 116.8, 110.5, 95.5, 55.3, 28.9, 28.4, 34.06, 23.92, 23.73, 23.68, 20.7, 20.3, 13.1.

³¹P NMR (161 MHz, CDCl₃, 25 °C) δ/ppm: 36.5.
IR (KBr) ν̃ (cm⁻¹): 3428, 2307, 1640, 1580, 1555, 1388.
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₆H₄₆N₂O₃P 585.3246; found: 585.3245.
2-(2-((4-Bromophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)-1-(4-chlorobenzoyl)hydrazin-1-ide (3i)

Prepared according to TP-2 from **1b** (298.7 mg, 1.0 mmol), 4-bromo benzaldehyde **2i** (203.5 mg, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3i** as an orange solid (574.5 mg, 86%).

R_f = 0.28 (MeOH/DCM: 20/100), mp.: 116.8-117.2 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 10.99 (brs, 1H), 8.04 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.37 (d, *J* = 8.1 Hz, 4H), 7.23 (d, *J* = 17.9 Hz, 1H), 2.38 – 2.13 (m, 6H), 1.50 – 1.35 (m, 12H), 0.83 (t, *J* = 6.8 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.8, 167.2, 151.3, 136.6, 136.3, 135.7, 135.0, 132.4, 131.45, 131.41, 130.0, 129.7, 128.5, 127.8, 122.49, 122.46, 119.7, 117.2, 94.7, 36.0, 35.6, 24.12, 23.97, 23.92, 20.4, 20.0, 13.2.

³¹**P NMR** (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.8.

IR (KBr) \tilde{v} (cm⁻¹): 3432, 2962, 2360, 1649, 1574, 1458, 1320.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₅H₄₂⁷⁹Br³⁵ClN₂O₂P 667.1856; found: 667.1857; $[M+H]^+$ Calcd for C₃₅H₄₂⁷⁹Br³⁷ClN₂O₂P 669.1835; found: 668.1842; $[M+H]^+$ Calcd for C₃₅H₄₂⁸¹Br³⁵ClN₂O₂P 669.1835; found: 688.1842 $[M+H]^+$ Calcd for C₃₅H₄₂⁸¹Br³⁷ClN₂O₂P 671.1806; found: 671.1829.

2-(2-((4-Bromophenyl)(tributylphosphonio)methyl)-1-oxo-1*H*-inden-3-yl)-1-(4methylbenzoyl)hydrazin-1-ide (3j)

Prepared according to TP-2 from 1c (278.3 mg, 1.0 mmol), 4-bromo benzaldehyde 2j (203.5 mg, 1.1 equiv), PhCO₂H (12.2 mg, 0.1 equiv), PBu₃ (318.8 μ L (94% purity), 1.2 equiv) and pyrrolidine (8.2 μ L, 0.1 equiv) in anhydrous THF (10 mL) at 30 °C for 5 h. Purification by flash chromatography (SiO₂, EtOAc/hexanes: 1/2 and then MeOH/DCM: 1/100) furnished the desired product **3j** as an orange solid (582.6 mg, 90%).

R_f = 0.15 (MeOH/DCM: 20/100), mp.: 139.4-139.8 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.01 (d, *J* = 7.9 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 4H), 7.39 – 7.30 (m, 3H), 7.20 (d, *J* = 7.9 Hz, 2H), 2.40 (s, 3H), 2.36 – 2.13 (m, 6H), 1.50 – 1.30 (m, 12H), 0.82 (t, *J* = 6.8 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.4, 168.2, 150.9, 139.3, 136.5, 135.7, 135.2, 132.3, 131.58, 131.54, 129.8, 129.5, 128.4, 127.1, 122.4, 119.6, 117.9, 94.7, 36.1, 35.6, 24.1, 23.95, 23.90, 21.4, 20.4, 19.9, 13.2.

³¹**P** NMR (161 MHz, CDCl₃, 25 °C) δ/ppm: 34.7.

IR (KBr) \tilde{v} (cm⁻¹): 3424, 2958, 2325, 1614, 1574 1465.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₆H₄₅⁷⁹BrN₂O₂P 647.2402; found: 647.2404; $[M+H]^+$ Calcd for C₃₆H₄₅⁸¹BrN₂O₂P 649.2382; found: 649.2393.

N-(3-(4-Bromophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6aa)

Following the TP-3, **6aa** was obtained from **3a** (190.2 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (137.1 mg, 88% yield). R_f= 0.53 (EtOAc:Hexanes =1:2); mp = 220.3-221.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.23 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.31 (td, *J* = 7.1, 2.3 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.25 – 7.24 (m, 1H), 7.23 (d, *J* = 2.5 Hz, 4H), 7.22 – 7.19 (m, 3H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.65 (d, *J* = 7.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.3, 166.6, 151.4, 139.0, 136.3, 134.0, 133.2, 132.8, 131.2, 131.1, 130.7, 130.5, 130.3, 129.1, 128.9, 128.4, 127.3, 123.4, 120.8, 119.4, 119.2, 117.1.
IR (KBr) ν̃ (cm⁻¹): 3239, 2923, 1721, 1699, 1675, 1493, 1278, 1072, 893, 755.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₀⁷⁹BrN₂O₂ 519.0708; found: 519.0706; [M+H]⁺ Calcd for C₃₀H₂₀⁸¹BrN₂O₂ 521.0688; found: 521.0690.

General procedure for the gram-scale preparation of indenopyrrole derivative 6aa:

A dry and argon-flushed 100 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **3a** (1.267 g, 2 mmol), anhydrous THF (20 mL), benzoyl chloride **5a** (256 μ L, 1.1 equiv) and Et₃N (400 μ L, 1.5 equiv). The reaction mixture was stirred for 4 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give the product **6aa** in 87% yield (0.903 g).

General procedure for the preparation of indenopyrrole derivative 6aa from spiro-indene-1,2'-[1,3,4]oxadiazol 8aa:

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **8aa** (107.1 mg, 0.2 mmol), anhydrous THF (2 mL), PBu₃ (54.3 μ L, 1.1 equiv) and Et₃N (40.0 μ L, 1.5 equiv). The reaction mixture was stirred for 4 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give the product **6aa** in 75% yield (78.0 mg).

N-(3-(4-Chlorophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ba)

Following the TP-3, **6ba** was obtained from **3b** (176.7 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (133.9 mg, 94% yield). R_f= 0.55 (EtOAc:Hexanes =1:2); mp = 145.9-146.5 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.79 (s, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 2H), 7.30-7.14 (m, 7H), 7.09 (d, *J* = 7.0 Hz, 1H), 7.0 (d, *J* = 8.6 Hz, 2H), 6.97-6.82 (m, 2H), 6.55 (d, *J* = 6.80 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.4, 166.8, 151.3, 138.9, 136.4, 133.9, 133.1, 132.7, 132.5, 130.7, 130.6, 130.4, 130.0, 129.1, 129.0, 128.8, 128.3, 128.1, 127.3, 123.3, 119.3, 119.1, 117.0.

IR (KBr) \tilde{v} (cm⁻¹): 3243, 2914, 1730, 1701, 1670, 1607, 1493, 1092, 850, 740.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₀³⁵ClN₂O₂ 475.1213; found: 475.1213; [M+H]⁺ Calcd for C₃₀H₂₀³⁷ClN₂O₂ 477.1184; found: 477.1197.

N-(3-(4-Nitrophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ca)

Following the TP-3, **6ca** was obtained from **3c** (179.9 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 82:18) to give as an orange solid (126.7 mg, 87% yield). R_f= 0.43 (EtOAc:Hexanes =1:2); mp = 161.4-161.9 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.24 (s, 1H), 8.13 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.65 (d, *J* = 8.8 Hz, 3H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.48-7.40 (m, 4H), 7.40-7.32 (m, 3H), 7.24 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 184.9, 166.1, 151.3, 145.8, 139.3, 138.4, 138.1, 133.7, 133.5, 133.0, 130.8, 130.2, 129.4, 129.1, 128.9, 128.4, 127.5, 123.5, 118.0, 117.6, 117.1.

IR (KBr) \tilde{v} (cm⁻¹): 2914, 2848, 1735, 1682, 1596, 1342, 1285, 1008, 890, 750.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₀N₃O₄ 486.1454; found: 486.1454

N-(3-(4-Methoxyphenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6da)

Following the TP-3, **6da** was obtained from **3d** (175.5 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 88:12) to give as an orange solid (90.3 mg, 64% yield).

 $R_f = 0.60$ (EtOAc:Hexanes =1:2); mp = 157.6-160.0 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.11 (brs. 1H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.54 (pt, *J* = 7.6 Hz, 2H), 7.42 – 7.34 (m, 4H), 7.34 – 7.26 (m, 5H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.90 (d, *J* = 7.3 Hz, 1H), 2.26 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 185.0, 166.1, 150.3, 138.5, 136.18, 136.11, 133.8,

133.3, 132.7, 130.3, 129.4, 128.8, 128.7, 128.5, 128.3, 127.5, 123.1, 119.2, 118.0, 117.2, 20.7.

IR (KBr) \tilde{v} (cm⁻¹): 3314, 2914, 2848, 1734, 1665, 1471, 1178, 880, 750.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₁H₂₃N₂O₃ 471.1709; found: 471.1707.

N-(4-Oxo-2,3-diphenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ea)

Following the TP-3, **6ea** was obtained from **3e** (166.2 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (71.4 mg, 54% yield). R_f= 0.53 (EtOAc:Hexanes =1:2); mp = 268.2-268.6 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.12 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 1.7 Hz, 1H), 7.41-7.36 (m, 5H), 7.36-7.30 (m, 3H), 7.26 (tt, *J* = 7.5, 1.6 Hz, 2H), 7.20 (t, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 7.2 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 185.0, 166.0, 150.5, 138.4, 136.5, 133.8, 133.4, 132.8, 132.2, 130.9, 130.3, 129.2, 128.9, 128.8, 128.64, 128.57, 128.3, 128.1, 127.5, 126.9, 123.2, 119.2, 118.0, 117.2.

IR (KBr) \tilde{v} (cm⁻¹): 3340, 2914, 1734, 1699, 1660, 1469, 1053, 890, 740.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₁N₂O₂ 441.1603; found: 441.1600.

N-(3-(3-Chlorophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6fa)

Following the TP-3, **6fa** was obtained from **3f** (176.7 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give as an orange solid (67.0 mg, 47% yield). R_f= 0.56 (EtOAc:Hexanes =2:8); mp = 125.9-126.5 °C.

¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.16 (s, 1H), 7.79 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.65 (tt, *J* = 7.6, 1.5 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 1.4 Hz, 2H), 7.42 (td, *J* = 6.8, 2.0 Hz, 4H), 7.38 – 7.32 (m, 3H), 7.31 – 7.25 (m, 3H), 7.23 (t, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 7.3 Hz, 1H).
¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 185.0, 166.0, 150.7, 138.2, 137.2, 134.4, 133.6, 133.5, 132.9, 130.8, 130.3, 129.9, 129.2, 128.9, 128.84, 128.77, 127.9, 127.5, 126.7, 126.6, 123.4, 117.8, 117.6, 117.4.

IR (KBr) \tilde{v} (cm⁻¹): 3230, 2914, 2848, 1720, 1701, 1665, 1598, 1465, 1280, 1050, 850, 760. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₀³⁵ClN₂O₂ 475.1213; found: 475.1210; [M+H]⁺ Calcd for C₃₀H₂₀³⁷ClN₂O₂ 477.1184; found: 477.1197.

N-(3-(4-Bromophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)-4-chlorobenzamide (6ia)

Following the TP-3, **6ia** was obtained from **3i** (200.4 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (137.9 mg, 83% yield). R_f= 0.55 (EtOAc:Hexanes =1:2); mp = 173.2-173.8 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.83 (brs, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 3H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.17 – 7.11 (m, 6H), 7.07 (d, *J* = 7.0 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 7.1 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.6, 165.8, 151.4, 139.6, 138.8, 136.4, 133.8, 132.8, 131.0, 130.4, 130.2, 129.3, 129.1, 128.96, 128.85, 128.79, 128.4, 123.4, 120.8, 119.4, 119.0, 117.0, **IR** (KBr) \tilde{v} (cm⁻¹): 3239, 2918, 1735, 1704, 1612, 1493, 1298, 1080, 860, 755.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁵ClN₂O₂ 553.0318; found: 553.0316; $[M+H]^+$ Calcd for C₃₀H₁₉⁸¹Br³⁵ClN₂O₂ 555.0298; found: 555.0297; $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁷ClN₂O₂ 555.0298; found: 555.0297; $[M+H]^+$ Calcd for C₃₀H₁₉⁸¹Br³⁷ClN₂O₂ 557.02680; found: 557.0282. *N*-(3-(4-Bromophenyl)-4-oxo-2-phenylindeno[1,2-b]pyrrol-1(4H)-yl)-4-methylbenzamide (6ja)

Following the TP-3, **6ja** was obtained from **3j** (194.1 mg, 0.3 mmol), benzoyl chloride **5a** (38.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (126.4 mg, 79% yield). R_f= 0.55 (EtOAc:Hexanes =1:2); mp = 161.2-161.5 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 9.3 (brs, 1H), 7.53 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.25 – 7.22 (m, 5H), 7.20 (pt, *J* = 7.4 Hz, 4H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.96 (pt, *J* = 7.4 Hz, 1H), 6.92 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 6.8 Hz, 1H), 2.35 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.3, 166.7, 151.4, 144.0, 139.0, 136.4, 134.0, 132.7, 131.3, 131.0, 130.5, 130.3, 129.6, 129.1, 128.9, 128.8, 128.3, 127.7, 127.4, 123.3, 120.7, 119.3, 119.0, 117.0, 21.5.

IR (KBr) \tilde{v} (cm⁻¹): 3248, 2918, 2848, 1735, 1699, 1635, 1498, 1274, 865, 750.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₂⁷⁹BrN₂O₂ 533.0865; found: 533.0861; [M+H]⁺ Calcd for C₃₁H₂₂⁸¹BrN₂O₂ 535.0844; found: 535.0839.

N-(2,3-Bis(4-bromophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ab)

Following the TP-3, **6ab** was obtained from **3a** (190.2 mg, 0.3 mmol), 4-bromo benzoyl chloride **5b** (72.4 mg, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 88:12) to give as an orange solid (149.0 mg, 83% yield). R_f= 0.60 (EtOAc:Hexanes =1:2); mp = 251.0-251.4 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.20 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.38-7.31 (m, 3H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.21 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.3 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 184.9, 166.1, 150.8, 138.3, 135.4, 133.6, 133.5, 133.0, 132.2, 131.8, 131.2, 130.7, 130.4, 129.0, 128.9, 128.0, 127.5, 123.3, 122.5, 120.3, 118.3, 118.0, 117.4.

IR (KBr) \tilde{v} (cm⁻¹): 3235, 2923, 1725, 1697, 1660, 1493, 1278, 1075, 865, 755.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₁₉⁷⁹Br₂N₂O₂ 596.9813; found: 596.9812; [M+H]⁺ Calcd for C₃₀H₁₉⁷⁹Br⁸¹BrN₂O₂ 598.9793; found: 598.9794; [M+H]⁺ Calcd for C₃₀H₁₉⁸¹Br₂N₂O₂ 600.9772; found: 600.9780.

N-(3-(4-Bromophenyl)-2-(4-chlorophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ac)

Following the TP-3, **6ac** was obtained from **3a** (190.2 mg, 0.3 mmol), 4-chloro benzoyl chloride **5c** (42.3 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column

chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (137.9 mg, 83% yield). $R_f = 0.55$ (EtOAc:Hexanes =1:2); mp = 151.4-151.8 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.21 (s, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 2H), 7.51 (t, *J* = 1.8 Hz, 1H), 7.49 (t, *J* = 2.2 Hz, 2H), 7.47 (t, *J* = 2.2 Hz, 1H), 7.40 (d, *J* = 7.1 Hz, 1H), 7.37-7.30 (m, 5H), 7.22 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.1 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 184.9, 166.1, 150.8, 138.3, 135.4, 133.8, 133.6, 133.0, 132.0, 131.3, 130.4, 129.01, 128.95, 127.68, 127.56, 123.4, 120.3, 118.4, 118.0, 117.5.
IR (KBr) ν̃ (cm⁻¹): 3428, 2923, 1760, 1699, 1640, 1493, 1276, 1092, 888, 756.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{19}^{79}Br^{35}ClN_2O_2$ 553.0318; found: 553.0320; $[M+H]^+$ Calcd for $C_{30}H_{19}^{79}Br^{37}ClN_2O_2$ 555.0298; found: 555.0301; $[M+H]^+$ Calcd for $C_{30}H_{19}^{81}Br^{35}ClN_2O_2$ 555.0298; found: 555.0301; $[M+H]^+$ Calcd for $C_{30}H_{19}^{81}Br^{37}ClN_2O_2$ 557.0268; found: 557.0283.

General procedure for the preparation of indenopyrrole derivative 6ac from spiro-indene-1,2'-[1,3,4]oxadiazol 8ac:

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **8ac** (114.0 mg, 0.2 mmol), anhydrous THF (2 mL), PBu₃ (54.3 μ L, 1.1 equiv) and Et₃N (40.0 μ L, 1.5 equiv). The reaction mixture was stirred for 5 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give the product **6ac** in 69% yield (76.5 mg).

N-(3-(4-Bromophenyl)-2-(4-fluorophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ad)

Following the TP-3, **6ad** was obtained from **3a** (190.2 mg, 0.3 mmol), 4-fluoro benzoyl chloride **5d** (39 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (130.6 mg, 81% yield). R_f= 0.52 (EtOAc:Hexanes =1:2); mp = 138.8-139.2 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.22 (brs, 1H), 7.69 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.29-7.14 (m, 7H), 7.02 (t, *J* = 7.68 Hz, 1H), 6.96 (q, *J* = 8.6 Hz, 3H), 6.67 (d, *J* = 7.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.2, 166.5, 163.0 (d, ${}^{1}J_{C-F} = 250.3 \text{ Hz}$), 151.4, 139.0, 135.2, 134.0, 133.3, 132.8, 132.54 (d, ${}^{3}J_{C-F} = 8.5 \text{ Hz}$), 131.2, 131.0, 130.6, 130.3, 129.2, 128.5, 127.3, 125.20 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$), 123.5, 121.0, 119.7, 119.2, 117.1, 116.15 (d, ${}^{2}J_{C-F} = 21.6 \text{ Hz}$). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ/ppm: -115.31.

IR (KBr) \tilde{v} (cm⁻¹): 3243, 2923, 1735, 1689, 1511, 1267, 1158, 852, 760.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₁₉⁷⁹BrFN₂O₂ 537.0614; found: 537.0615; [M+H]⁺ Calcd for C₃₀H₁₉⁸¹BrFN₂O₂ 539.0593; found: 539.0598.

N-(3-(4-Bromophenyl)-4-oxo-2-(*p*-tolyl)indeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ae)

Following the TP-3, **6ae** was obtained from **3a** (190.2 mg, 0.3 mmol), 4-methyl benzoyl chloride **5e** (43.6 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (136.0 mg, 85% yield). R_f= 0.54 (EtOAc:Hexanes =1:2); mp = 255.6-255.9 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.54 (s, 1H), 7.65 (d, *J* = 7.80 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.25-7.16 (m, 4H), 7.13 (d, *J* = 7.1 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.94 (t, *J* = 7.7 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.60 (d, *J* = 7.0 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.4, 166.7, 151.3, 139.0, 136.5, 134.0, 133.1, 132.7, 131.4, 131.0, 130.7, 130.3, 129.6, 129.0, 128.2, 127.4, 126.0, 123.3, 120.6, 119.2, 119.1, 117.0, 21.3.

IR (KBr) \tilde{v} (cm⁻¹): 3235, 2918, 2360, 1739, 1699, 1665, 1493, 1278, 865, 750.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₂⁷⁹BrN₂O₂ 533.0865; found: 533.0870; [M+H]⁺ Calcd for C₃₁H₂₂⁸¹BrN₂O₂ 535.0844; found: 535.0856.

N-(3-(4-Bromophenyl)-2-(3-chlorophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6af)

Following the TP-3, **6af** was obtained from **3a** (190.2 mg, 0.3 mmol), 3-chloro benzoyl chloride **5f** (42.2 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (141.2 mg, 85% yield). R_f= 0.55 (EtOAc:Hexanes =1:2); mp = 234.2-234.6 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.77 (brs, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 6.9 Hz, 1H), 7.35 – 7.29 (m, 6H), 7.23 (d, *J* = 8.6 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 7.1 Hz, 1H), 7.07 (pt, *J* = 7.3 Hz, 1H), 6.79 (d, *J* = 7.1 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 184.9, 166.2, 150.9, 138.3, 134.9, 133.55, 133.50, 133.2, 133.0, 131.2, 131.1, 130.80, 130.76, 130.6, 130.4, 129.7, 129.0, 128.94, 128.88, 127.5, 123.4, 120.4, 118.5, 117.9, 117.5.

IR (KBr) \tilde{v} (cm⁻¹): 3428, 2918, 2848, 1735, 1638, 1490, 1273, 865, 745.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁵ClN₂O₂ 553.0318; found: 553.0316; $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁷ClN₂O₂ 555.0298; found: 555.0298; $[M+H]^+$ Calcd for C₃₀H₁₉⁸¹Br³⁵ClN₂O₂

555.0298; found: 555.0301; [M+H]⁺ Calcd for C₃₀H₁₉⁸¹Br³⁷ClN₂O₂ 557.0268; found: 557.0282. *N*-(3-(4-Bromophenyl)-4-oxo-2-(*m*-tolyl)indeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ag)

Following the TP-3, **6ag** was obtained from **3a** (190.2 mg, 0.3 mmol), 3-methyl benzoyl chloride **5g** (43.6 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (128.0 mg, 80% yield). R_f= 0.53 (EtOAc:Hexanes =1:2); mp = 151.1-151.5 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 12.11 (brs, 1H), 7.79 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.65 (tt, *J* = 7.2, 1.7 Hz, 1H), 7.55 (t, *J* = 7.9 Hz, 2H), 7.47 (dt, *J* = 8.7, 2.2 Hz, 2H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.36 (dt, *J* = 8.5, 2.0 Hz, 2H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.28 (t, *J* = 7.7 Hz, 1H), 7.21 (pt, *J* = 7.3 Hz, 2H), 7.19 – 7.16 (m, 1H), 7.09 (d, *J* = 7.7 Hz, 1H), 6.93 (d, *J* = 7.3 Hz, 1H), 2.23 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 185.0, 166.2, 150.7, 138.3, 137.9, 136.8, 133.7, 133.5, 132.8, 131.6, 131.1, 130.5, 130.3, 129.6, 128.89, 128.75, 128.63, 127.5, 127.4, 123.3, 120.0, 117.8, 117.3, 20.9.

IR (KBr) \tilde{v} (cm⁻¹): 3428, 2918, 1721, 1642, 1490, 1372, 1076, 896, 754.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₁H₂₂⁷⁹BrN₂O₂ 533.0865; found: 533.0861; $[M+H]^+$ Calcd for C₃₁H₂₂⁸¹BrN₂O₂ 535.0844; found: 535.0844.

N-(3-(4-Bromophenyl)-2-(3-methoxyphenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ah)

Following the TP-3, 6ah was obtained from 6a (190.2 mg, 0.3 mmol), 3-methoxy benzoyl chloride

5h (46.4 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as a yellow solid (110.4 mg, 67% yield). R_f= 0.48 (EtOAc:Hexanes =1:2); mp = 248.3-248.7 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 8.93 (brs, 1H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.30 (m, 3H), 7.30 – 7.27 (m, 2H), 7.21 (t, *J* = 8.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.1 Hz, 1H), 6.84 (d, *J* = 7.3 Hz, 2H), 6.74 (d, *J* = 7.0 Hz, 1H), 3.63 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 186.1, 166.5, 159.9, 151.4, 139.1, 135.9, 134.1, 133.2, 132.8, 131.3, 131.2, 130.8, 130.4, 130.1, 129.2, 128.5, 127.3, 123.6, 122.8, 120.9, 119.6, 119.3, 117.1, 115.5, 115.3, 55.2.

IR (KBr) \tilde{v} (cm⁻¹): 3428, 2918, 2852, 2334, 1750, 1644, 1215, 1008, 867, 753.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₁H₂₂⁷⁹BrN₂O₃ 549.0814; found: 549.0811; [M+H]⁺ Calcd for C₃₁H₂₂⁸¹BrN₂O₃ 551.0793; found: 551.0796.

N-(3-(4-Bromophenyl)-2-(2-chlorophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6ai)

Following the TP-3, **6ai** was obtained from **3a** (190.2 mg, 0.3 mmol), 2-chloro benzoyl chloride **5i** (41.8 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 86:14) to give as an orange solid (124.6 mg, 75% yield). R_f= 0.55 (EtOAc:Hexanes =1:2); mp = 170.3-170.7 °C.

¹**H NMR** (400 MHz, DMSO-d₆, 25 °C) δ/ppm: 9.15 (s, 1H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.35-7.26 (m, 7H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.13 - 6.97 (m, 2H), 6.80 (d, *J* = 6.2 Hz, 1H).

¹³**C NMR** (100 MHz, DMSO-d₆, 25 °C) δ/ppm: 186.0, 166.2, 151.6, 139.0, 134.0, 133.1, 132.7, 131.3, 131.1, 130.1, 130.5, 129.9, 129.0, 128.8, 128.6, 127.8, 127.2, 123.6, 121.0, 120.8, 119.2, 117.3.

IR (KBr) \tilde{v} (cm⁻¹): 3239, 2918, 1754, 1699, 1665, 1491, 1276, 1213, 852, 743. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₁₉⁷⁹Br³⁵ClN₂O₂ 553.0318; found: 553.0319; [M+H]⁺ Calcd for C₃₀H₁₉⁷⁹Br³⁷ClN₂O₂ 555.0298; found: 555.0301; [M+H]⁺ Calcd for C₃₀H₁₉⁸¹Br³⁵ClN₂O₂ 555.0298; found: 555.0301; [M+H]⁺ Calcd for C₃₀H₁₉⁸¹Br³⁷ClN₂O₂ 557.0268; found: 557.0285. General procedure for the preparation of indenopyrrole derivative 6ai from spiro-indene-1,2'-[1,3,4]oxadiazol 8ai:

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **8ai** (114.0 mg, 0.2 mmol), anhydrous THF (2 mL), PBu₃ (54.3 μ L, 1.1 equiv) and Et₃N (40.0 μ L, 1.5 equiv). The reaction mixture was stirred for 7 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 86:14) to give the product **6ai** in 63% yield (69.8 mg).

N-(3-(4-Bromophenyl)-2-(furan-2-yl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)benzamide (6aj)

Following the TP-3, **6aj** was obtained from **3a** (190.2 mg, 0.3 mmol), 2-furoyl chloride **5j** (32.6 μ L, 1.5 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give as an orange solid (110.0 mg, 72% yield). R_f= 0.50 (EtOAc:Hexanes =1:2); mp = 230.1-230.5 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 9.26 (s, 1H), 7.69 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.37-7.29 (m, 4H), 7.22 (d, *J* = 7.1 Hz, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 7.2 Hz, 1H), 6.32 (d, *J* = 1.3 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 185.7, 166.5, 151.8, 143.3, 142.6, 139.0, 133.6, 133.2, 132.8, 131.3, 130.8, 130.5, 130.2, 129.1, 128.8, 127.4, 125.6, 123.5, 122.1, 121.5, 119.0, 117.6, 112.4, 111.5.

IR (KBr) \tilde{v} (cm⁻¹): 3441, 3243, 2914, 1735, 1699, 1650, 1609, 1491, 1278, 1057, 852, 750.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₈H₁₇⁷⁹BrN₂O₃ 509.0501; found: 509.0497; $[M+H]^+$ Calcd for C₂₈H₁₇⁸¹BrN₂O₃ 511.0480; found: 511.0478.

N-(3-(4-Bromophenyl)-4-oxo-2-phenylindeno[1,2-*b*]pyrrol-1(4*H*)-yl)pivalamide (7ak)

Following the TP-3, **7ak** was obtained from **3a** (190.2 mg, 0.3 mmol), pivaloyl chloride **5k** (40.4 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give as an orange solid (89.9 mg, 60% yield) along with zwitterion **3a** (48.1 mg, 25% yield).

 $R_f = 0.58$ (EtOAc:Hexanes =1:2); mp = 300.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.27 (s, 1H), 7.40 – 7.30 (m, 4H), 7.28 (d, *J* = 2.1 Hz, 4H), 7.20 (dd, *J* = 8.3, 1.7 Hz, 2H), 7.12 (td, *J* = 7.4, 1.4 Hz, 1H), 7.04 (td, *J* = 7.3, 1.2 Hz, 1H), 6.7. (d, *J* = 7.3 Hz, 1H), 1.08 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.2, 176.7, 151.3, 139.1, 136.3, 134.3, 132.7, 131.3, 131.1, 130.8, 130.2, 129.4, 129.2, 128.8, 128.3, 123.4, 120.8, 119.4, 119.1, 116.9, 38.5, 27.0.

IR (KBr) \tilde{v} (cm⁻¹): 3437, 2923, 2360, 1740, 1701, 1493, 1151, 865, 749.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₄⁷⁹BrN₂O₂ 499.1021; found: 499.1021; [M+H]⁺ Calcd for C₂₈H₂₄⁸¹BrN₂O₂ 501.1001; found: 501.1004.

General procedure for the preparation of indenopyrrole derivative 7ak from spiro-indene-1,2'-[1,3,4]oxadiazol 8ak:

A dry and argon-flushed 10 mL Schlenk flask equipped with a magnetic stir bar and septum was sequentially charged with **8ak** (103.1 mg, 0.2 mmol), anhydrous THF (2 mL), PBu₃ (54.3 μ L, 1.1 equiv) and Et₃N (40.0 μ L, 1.5 equiv). The reaction mixture was stirred for 10 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give the product **7ak** in 50% yield (50.0 mg).

N-(3-(4-Bromophenyl)-2-(4-chlorophenyl)-4-oxoindeno[1,2-*b*]pyrrol-1(4*H*)-yl)pivalamide (7ik)

Following the TP-3, **7ik** was obtained from **3i** (200.4 mg, 0.3 mmol), pivaloyl chloride **5k** (40.4 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give as an orange solid (64.0 mg, 40% yield) along with zwitterion **3i** (72.0 mg, 36% yield).

 $R_f = 0.58$ (EtOAc:Hexanes =1:2); mp = 265.3-265.7 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.23 (s, 1H), 7.33 (d, *J* = 7.0 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.29 (d, *J* = 2.5 Hz, 2H), 7.25 (pt, *J* = 2.2 Hz, 1H), 7.23 (t, *J* = 2.2 Hz, 1H), 7.14 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.12 (dt, *J* = 8.4, 1.4 Hz, 2H), 7.06 (td, *J* = 7.5, 1.0 Hz, 1H), 6.72 (d, *J* = 7.4 Hz, 1H), 1.15 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.1, 176.6, 151.4, 139.1, 135.3, 135.0, 134.1, 132.8, 132.1, 131.3, 130.9, 130.2, 129.1, 128.5, 127.7, 123.6, 121.1, 119.8, 119.2, 117.0, 38.5, 27.1.
IR (KBr) ν̃ (cm⁻¹): 3430, 2921, 2350, 1735, 1699, 1660, 1495, 1287, 1021, 890, 750.
HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₈H₂₃⁷⁹Br³⁵ClN₂O₂ 533.0631; found: 533.0630; $[M+H]^+$ Calcd for C₂₈H₂₃⁷⁹Br³⁷ClN₂O₂ 535.0611; found: 535.0612; $[M+H]^+$ Calcd for C₂₈H₂₃⁸¹Br³⁵ClN₂O₂ 535.0611; found: 535.0612; $[M+H]^+$ Calcd for C₂₈H₂₃⁸¹Br³⁵ClN₂O₂ 535.0611; found: 535.0612; $[M+H]^+$ Calcd for C₂₈H₂₃⁸¹Br³⁷ClN₂O₂ 537.0581; found: 537.0596. *N*-(3-(4-Bromophenyl)-4-oxo-2-(*p*-tolyl)indeno[1,2-*b*]pyrrol-1(4*H*)-yl)pivalamide (7jk)

Following the TP-3, **7jk** was obtained from **3j** (194.3 mg, 0.3 mmol), pivaloyl chloride **5k** (40.4 μ L, 1.1 equiv) and triethylamine (63 μ L, 1.5 equiv). The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give as an orange solid (69.2 mg, 45% yield) along with zwitterion **3j** (60.1 mg, 31% yield).

 $R_f = 0.58$ (EtOAc:Hexanes =1:2); mp = 281.3-281.7 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.64 (s, 1H), 7.24 – 7.19 (m, 5H), 7.05 (pt, *J* = 3.6 Hz, 1H), 7.02 (d, *J* = 7.0 Hz, 3H), 7.00 (d, *J* = 6.9 Hz, 1H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.62 (d, *J* = 7.2 Hz, 1H), 2.31 (s, 3H), 1.03 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 186.3, 177.0, 151.1, 139.08, 139.04, 136.5, 134.3, 132.6, 131.4, 131.0, 130.5, 130.1, 129.4, 128.1, 126.1, 123.2, 120.6, 119.1, 118.9, 116.8, 38.4, 26.9, 21.3.

IR (KBr) \tilde{v} (cm⁻¹): 3428, 2952, 2354, 1735, 1698, 1650, 1492, 1273, 1080, 869, 752.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₉H₂₆⁷⁹BrN₂O₂ 513.1178; found: 513.1179; [M+H]⁺ Calcd for C₂₉H₂₆⁸¹BrN₂O₂ 515.1157; found: 515.1161.

(*E*)-3'-Benzoyl-2-(4-bromobenzylidene)-5'-phenyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8aa)

Prepared according to TP-4 from 1a (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde 2a (101.76

mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), benzoyl chloride **5a** (87.1 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give **8aa** as a yellow solid (120.5 mg, 45% yield).

 $R_f = 0.51$ (EtOAc:Hexanes =2:8); mp = 186.9-187.8 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.01 (d, *J* = 7.3 Hz, 1H), 7.93 (s, 1H), 7.80 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.70 (td, *J* = 7.4, 1.3 Hz, 1H), 7.65 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.61 (dt, *J* = 7.7, 1.3 Hz, 3H), 7.55 (tt, *J* = 7.6, 2.2 Hz, 1H), 7.47 (dt, *J* = 7.9, 1.6 Hz, 2H), 7.46 – 7.43 (m, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.29 (dt, *J* = 8.3, 1.4 Hz, 2H), 7.21 (dt, *J* = 8.5, 2.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.2, 163.0, 154.8, 147.1, 138.3, 137.0, 136.0, 135.0, 133.0, 132.4, 132.0, 131.65, 131.60, 131.56, 130.8, 129.6, 128.9, 127.7, 126.9, 124.1, 123.9, 123.7, 123.2, 98.9.

IR (KBr) \tilde{v} (cm⁻¹): 3450, 2910, 1680, 1640, 1490, 1372, 1190, 1076, 754.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₀⁷⁹BrN₂O₃ 535.0657; found: 535.0653; [M+H]⁺ Calcd for C₃₀H₂₀⁸¹BrN₂O₃ 537.0637; found: 537.0640.

General procedure for the gram-scale preparation of spiro-indene-1,2'-[1,3,4]oxadiazol derivatives 8aa:

A flame dried and nitrogen-flushed 100-mL round bottom flask equipped with a magnetic stir bar and a septum was sequentially charged with 1 (1.057 g, 4 mmol), 2 (814.1 mg, 1.1 equiv), PhCO₂H (48.8 mg, 0.1 equiv) and anhydrous THF (40 mL). To this stirred reaction mixture, PPh₂Me (902.0 μ L, 1.2 equiv) and pyrrolidine (32.8 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and

dissolved in anhydrous THF (5 mL), benzoyl chloride **5** (697.0 μ L, 1.5 equiv) and Et₃N (1.06 mL, 2.0 equiv). The reaction mixture was stirred for 3 h at 50 °C. After completion of the reaction, solvent was removed in *vacuo* and the crude residue was subjected to flash column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give the product **8aa** in 43% yield (0.920 g).

(*E*)-3'-Benzoyl-2-(4-chlorobenzylidene)-5'-phenyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8ba)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-chloro benzaldehyde **2b** (64.4 μ L, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), benzoyl chloride **5a** (87.1 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give **8ba** as a yellow solid (98.2 mg, 40% yield).

 $R_f = 0.45$ (EtOAc:Hexanes =2:8); mp = 175.3-174.5 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.02 (d, *J* = 7.6 Hz, 1H), 7.96 (s, 1H), 7.81 (dd, *J* = 8.1, 1.7 Hz, 2H), 7.70 (tt, *J* = 7.7, 1.3 Hz, 1H), 7.66 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.64 – 7.60 (m, 3H), 7.55 (tt, *J* = 7.7, 2.2 Hz, 1H), 7.50 – 7.43 (m, 3H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.14 (dt, *J* = 8.6, 1.8 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.2, 163.1, 154.9, 147.1, 138.3, 137.1, 136.0, 135.6, 134.9, 132.51, 132.48, 132.1, 131.62, 131.57, 130.7, 129.7, 128.9, 128.7, 127.7, 127.0, 124.1, 123.7, 123.2, 99.0.

IR (KBr) \tilde{v} (cm⁻¹): 3435, 2900, 1682, 1638, 1495, 1372, 1190, 1060, 750.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₀³⁵ClN₂O₃ 491.1162; found: 491.1163; [M+H]⁺ Calcd for C₃₀H₂₀³⁷ClN₂O₃ 493.1133; found: 493.1147.

(*E*)-3'-Benzoyl-2-benzylidene-5'-phenyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8ea)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), benzaldehyde **2e** (55.90 μ L, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), benzoyl chloride **5a** (87.1 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give **8ea** as a yellow solid (79.9 mg, 35% yield).

 $R_f = 0.65$ (EtOAc:Hexanes =2:8); mp = 163.5-164.2 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.05 (s, 1H), 8.02 (d, *J* = 7.4 Hz, 1H), 7.80 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.69 (td, *J* = 7.5, 1.6 Hz, 1H), 7.65 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 2H), 7.52 (dt, *J* = 7.6, 2.2 Hz, 1H), 7.45 (dd, *J* = 8.0, 1.7 Hz, 2H), 7.42 (dd, *J* = 7.0, 1.4 Hz, 1H), 7.37 (d, *J* = 7.4 Hz, 2H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.23 (dt, *J* = 7.5, 2.3 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.4, 163.1, 154.8, 147.2, 140.0, 137.1, 135.8, 134.3, 134.1, 132.7, 131.8, 131.5, 131.4, 129.7, 129.4, 129.3, 128.7, 128.4, 127.6, 127.0, 124.3, 123.7, 123.2, 99.0.

IR (KBr) \tilde{v} (cm⁻¹): 3448, 2912, 1679, 1638, 1492, 1371, 1198, 1075, 751.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₀H₂₁N₂O₃ 457.1552; found: 457.1550.

(E)-3'-Benzoyl-2-(2-methoxybenzylidene)-5'-phenyl-3'H-spiro[indene-1,2'-

[1,3,4]oxadiazol]-3(2*H*)-one (8ha)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 2-methoxy benzaldehyde **2h** (66.4 μ L, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction

mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), benzoyl chloride **5a** (87.1 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 87:13) to give **8ha** as a yellow solid (99.9 mg, 41% yield).

 $R_f = 0.28$ (EtOAc:Hexanes =2:8); mp = 198.1-199.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.20 (s, 1H), 8.01 (d, *J* = 7.4 Hz, 1H), 7.74 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.67 (dd, *J* = 7.2, 1.2 Hz, 3H), 7.62 (pt, *J* = 7.5, 1.3 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.50 (tt, *J* = 7.5, 2.2 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.17 (td, *J* = 8.1, 1.7 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.59 (t, *J* = 7.5 Hz, 1H), 3.59 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.4, 162.8, 157.9, 154.6, 147.2, 137.4, 136.9, 135.6, 135.0, 132.8, 131.6, 131.35, 131.29, 130.8, 129.8, 129.7, 128.6, 127.6, 126.9, 124.5, 123.6, 123.3, 120.0, 110.5, 99.1, 55.4.

IR (KBr) \tilde{v} (cm⁻¹): 3442, 2918, 1683, 1639, 1498, 1376, 1195, 1072, 759.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₁H₂₃N₂O₄ 487.1658; found: 487.1657.

(*E*)-2-Benzylidene-3'-(4-chlorobenzoyl)-5'-phenyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8ac)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde **2a** (101.76 mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), 4-chloro benzoyl chloride **5c** (96.2 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 90:10) to give **8ac** as a yellow solid (108.3 mg, 38% yield).

 $R_f = 0.54$ (EtOAc:Hexanes =2:8); mp = 179.0-180.1 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.01 (d, *J* = 7.4 Hz, 1H), 7.93 (s, 1H), 7.79 (dd, *J* = 8.2, 1.6 Hz, 2H), 7.70 (td, *J* = 7.5, 1.4 Hz, 1H), 7.65 (td, *J* = 7.5, 1.4 Hz, 1H), 7.62 – 7.54 (m, 4H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.33 (td, *J* = 8.6, 1.8 Hz, 2H), 7.28 (dt, *J* = 8.4, 1.8 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.0, 161.9, 155.0, 146.9, 138.4, 137.8, 137.0, 136.0, 134.9, 132.9, 132.2, 131.69, 131.64, 131.1, 130.8, 130.6, 128.9, 128.0, 126.9, 123.9, 123.7, 123.2, 98.9.

IR (KBr) \tilde{v} (cm⁻¹): 3452, 2912, 1682, 1644, 1492, 1374, 1191, 1070, 748.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁵ClN₂O₃ 569.0268; found: 569.0266; $[M+H]^+$ Calcd for C₃₀H₁₉⁷⁹Br³⁷ClN₂O₃ 571.0238; found: 571.0247; $[M+H]^+$ Calcd for C₃₀H₁₉⁸¹Br³⁵ClN₂O₃ 572.0247; found: 572.0278; $[M+H]^+$ Calcd for C₃₀H₁₉⁸¹Br³⁷ClN₂O₃ 573.0218; found: 573.0235.

(E)-2-Benzylidene-3'-(4-methoxybenzoyl)-5'-phenyl-3'H-spiro[indene-1,2'-

[1,3,4]oxadiazol]-3(2*H*)-one (8al)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde **2a** (101.76 mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), 4-methoxy benzoyl chloride **5l** (101.5 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give **8al** as a yellow solid (113.1 mg, 40% yield).

 $R_f = 0.26$ (EtOAc:Hexanes =2:8); mp = 187.1-188.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.00 (d, *J* = 7.3 Hz, 1H), 7.91 (s, 1H), 7.80 (dd, *J* = 8.3, 1.5 Hz, 2H), 7.72 (dt, *J* = 8.8, 1.8 Hz, 2H), 7.68 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.64 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.55 (tt, *J* = 7.5, 2.1 Hz, 1H), 7.47 (tt, *J* = 7.4, 1.7 Hz, 2H),

7.27 (d, *J* = 8.4 Hz, 2H), 7.19 (dt, *J* = 8.6, 2.2 Hz, 2H), 6.86 (dt, *J* = 8.1, 2.1 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.3, 162.4, 162.3, 154.7, 147.3, 138.1, 136.9, 135.9, 135.3, 133.0, 131.9, 131.59, 131.52, 130.8, 128.9, 126.9, 124.5, 124.1, 123.8, 123.7, 123.3, 113.0, 99.0, 55.4.

IR (KBr) \tilde{v} (cm⁻¹): 3448, 2908, 1672, 1630, 1495, 1365, 1185, 1076, 742.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₃₁H₂₂⁷⁹BrN₂O₄ 565.0763; found: 565.0764; [M+H]⁺ Calcd for C₃₁H₂₂⁸¹BrN₂O₄ 567.0742; found: 567.0749.

(*E*)-2-Benzylidene-3'-(2-chlorobenzoyl)-5'-phenyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8ai)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde **2a** (101.76 mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), 4-chloro benzoyl chloride **5i** (95.0 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give **8ai** as a yellow solid (105.4 mg, 37% yield).

 $R_f = 0.40$ (EtOAc:Hexanes =2:8); mp = 199.0-200.1 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.01 (d, *J* = 7.7 Hz, 1H), 7.98 (s, 1H), 7.78 – 7.70 (m, 4H), 7.67 (tt, *J* = 7.3, 2.0 Hz, 1H), 7.52 (tt, *J* = 7.5, 1.9 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 8.7 Hz, 3H), 7.31 (d, *J* = 8.6 Hz, 3H), 7.21 (tt, *J* = 7.5, 1.9 Hz, 1H), 6.72 (dd, *J* = 7.8, 1.7 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.1, 162.2, 155.0, 146.5, 138.9, 137.2, 136.0, 134.3, 133.9, 132.7, 132.1, 131.8, 131.7, 131.4, 131.1, 130.7, 129.5, 128.8, 128.5, 127.1, 126.4, 124.4, 123.9, 123.68, 123.64, 98.4.

IR (KBr) \tilde{v} (cm⁻¹): 3442, 2902, 1678, 1635, 1490, 1350, 1185, 1050, 737.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{19}^{79}Br^{35}ClN_2O_3$ 569.0268; found: 569.0269; $[M+H]^+$ Calcd for $C_{30}H_{19}^{79}Br^{37}ClN_2O_3$ 571.0238; found: 571.0250; $[M+H]^+$ Calcd for $C_{30}H_{19}^{81}Br^{35}ClN_2O_3$ 572.0247; found: 572.0279; $[M+H]^+$ Calcd for $C_{30}H_{19}^{81}Br^{37}ClN_2O_3$ 573.0218; found: 573.0230. (*E*)-2-Benzylidene-5'-phenyl-3'-(thiophene-2-carbonyl)-3'*H*-spiro[indene-1,2'-

[1,3,4]oxadiazol]-3(2*H*)-one (8am)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde **2a** (101.76 mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), 2-thiophenecarbonyl chloride **5m** (80.3 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give **8am** as a yellow solid (105.6 mg, 39% yield).

 $R_f = 0.43$ (EtOAc:Hexanes =2:8); mp = 196.5-197.3 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 8.0 (d, *J* = 7.4 Hz, 1H), 7.97 (d, *J* = 6.5 Hz, 1H), 7.92 (s, 1H), 7.82 (d, *J* = 7.7 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.64 (d, *J* = 7.3 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 7.08 (d, *J* = 7.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 188.9. 156.5, 155.2, 146.6, 138.5, 137.2, 135.9, 135.3, 134.7, 133.9, 133.4, 132.6, 132.1, 131.7, 131.6, 130.5, 128.9, 126.9, 123.9, 123.7, 123.6, 123.5, 98.9.

IR (KBr) \tilde{v} (cm⁻¹): 3445, 2900, 1659, 1548, 1472, 1372, 1398, 1308, 1283, 1190, 1075, 750.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₈H₁₈⁷⁹BrN₂O₃S 541.0222; found: 541.0223; [M+H]⁺ Calcd for C₂₈H₁₈⁸¹BrN₂O₃S 543.0201; found: 543.0204.

(*E*)-2-Benzylidene-5'-phenyl-3'-pivaloyl-3'*H*-spiro[indene-1,2'-[1,3,4]oxadiazol]-3(2*H*)-one (8ak)

Prepared according to TP-4 from **1a** (132.13 mg, 0.5 mmol), 4-bromo benzaldehyde **2a** (101.76 mg, 1.1 equiv), PhCO₂H (6.1 mg, 0.1 equiv) and anhydrous THF (5.0 mL). To this stirred reaction mixture, PPh₂Me (112.8 μ L, 1.2 equiv) and pyrrolidine (4.0 μ L, 0.1 equiv) were added in sequence. The reaction mixture was stirred for 12 hours at 30 °C. Thereafter, solvent was removed by evaporation in *vacuo* and dissolved in anhydrous THF (5 mL), Pivaloyl chloride **5k** (91.8 μ L, 1.5 equiv) and Et₃N (133.1 μ L, 2.0 equiv.) The residue was purified by column chromatography (SiO₂, Hexanes/EtOAc= 85:15) to give **8ak** as a yellow solid (77.3 mg, 30% yield).

 $R_f = 0.60$ (EtOAc:Hexanes =2:8); mp = 201.1-202.0 °C.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ/ppm: 7.95 (d, *J* = 7.6 Hz, 1H), 7.84 (s, 1H), 7.81 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.67 (td, *J* = 7.4, 1.3 Hz, 1H), 7.60 (td, *J* = 7.5, 1.3 Hz, 1H), 7.55 (tt, *J* = 7.5, 2.3 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.31 (dt, *J* = 8.4, 1.8 Hz, 2H), 7.23 (dt, *J* = 8.6, 2.3 Hz, 2H), 1.16 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, 25 °C) δ/ppm: 189.3, 172.9, 153.5, 147.4, 137.6, 137.0, 135.8, 134.8, 132.8, 131.8, 131.5, 131.4, 131.2, 128.9, 126.7, 124.3, 124.0, 123.6, 122.6, 98.9, 39.5, 26.1.
IR (KBr) ν̃ (cm⁻¹): 3196, 2905, 1692, 1595, 1475, 1442, 1406, 1371, 1306, 1223, 1050, 750.
HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₄⁷⁹BrN₂O₃ 515.0970; found: 515.0969; [M+H]⁺ Calcd for C₂₈H₂₄⁸¹BrN₂O₃ 517.0950; found: 517.0953.

VI. References:

- 1 C.-J. Lee, Y.-J. Jang, Z.-Z. Wu and W. Lin, Org. Lett. 2012, 14, 1906.
- 2 R. Saijo, H. Uno, S. Mori and M. Kawase, Chem. Commun. 2016, 52, 8006.

VII. X-Ray crystallographic data for selected compounds:

a) **3a** (CCDC no. 2009731): The thermal ellipsoid drawn at 50% probability level.

Y .			
	The purified compo- solvent of CH ₂ Cl ₂ a After few days, col-	ound 3a is d and hexanes orless crysta	issolved in a mixed to slowly evaporate. als were obtained.
A.			
Empirical formula	C ₃₅ H ₄₂ Br	$N_2 O_2 P$	
Formula weight	633.59		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic	2	
Space group	P 21/n		
Unit cell dimensions	a = 10.0157	7(3) Å	$\alpha = 90^{\circ}$.
	b = 12.5950	6(4) Å	$\beta = 91.1220(10)^{\circ}.$
	c = 26.5786	5(8) Å	$\gamma = 90^{\circ}.$
Volume	3352.35(18	3) Å ³	
Z	4		
Density (calculated)	1.255 Mg/r	n ³	
Absorption coefficient	1.306 mm ⁻¹	l	
F(000)	1328		
Crystal size	0.22 x 0.17	x 0.07 mm ³	
Theta range for data collection	2.19 to 25.0	06°.	
Index ranges	-11<=h<=1	1, -15<=k<=1	14, -31<=l<=31
Reflections collected	44500		
Independent reflections	5913 [R(int	t) = 0.0691]	
Completeness to theta = 25.06°	99.9 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.9142 and	0.7621	
Refinement method	Full-matrix	least-squares	on F ²
Data / restraints / parameters	5913 / 0 / 3	67	
Goodness-of-fit on F ²	1.108		
Final R indices [I>2sigma(I)]	R1 = 0.046	1, wR2 = 0.11	198
R indices (all data)	R1 = 0.065	7, wR2 = 0.12	292
Largest diff. peak and hole	0.700 and	-0.582 e.Å ⁻³	

b) 6aa (CCDC no. 2016707): The thermal ellipsoid drawn at 65% probability level

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.09° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

The purified compound **6aa** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

C30 H21 Br N2 O3	
537.40	
200(2) K	
0.71073 Å	
Monoclinic	
P 21/c	
a = 7.0854(2) Å	$\alpha = 90^{\circ}.$
b = 18.2878(6) Å	$\beta = 98.9890(10)^{\circ}.$
c = 19.8064(7) Å	$\gamma = 90^{\circ}.$
2534.92(14) Å ³	
4	
1.408 Mg/m ³	
1.656 mm ⁻¹	
1096	
0.74 x 0.04 x 0.01 mm ³	
2.36 to 25.09°.	
-8<=h<=7, -21<=k<=21, -23<=	=l<=23
33421	
4498 [R(int) = 0.0654]	
99.6 %	
multi-scan	
0.9836 and 0.3737	
Full-matrix least-squares on F ²	2
4498 / 0 / 325	
1.017	
R1 = 0.0333, wR2 = 0.0703	
R1 = 0.0510, wR2 = 0.0786	
0.247 and -0.448 e.Å ⁻³	

c) 6ae (CCDC no. 2009642): The thermal ellipsoid drawn at 55% probability level.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.13°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

The purified compound **6ae** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

$C_{62} H_{44} Br_2 N_4 O_5$	
1084.83	
200(2) K	
0.71073 Å	
Triclinic	
P -1	
a = 11.994(4) Å	$\alpha = 96.769(8)^{\circ}.$
b = 12.841(5) Å	$\beta = 100.451(8)^{\circ}.$
c = 16.952(6) Å	$\gamma = 97.043(8)^{\circ}.$
2521.9(15) Å ³	
2	
1.429 Mg/m ³	
1.664 mm ⁻¹	
1108	
0.11 x 0.06 x 0.02 mm ³	
2.17 to 25.13°.	
-14<=h<=14, -15<=k<=15, -20	<=l<=20
81656	
8981 [R(int) = 0.2092]	
99.5 %	
multi-scan	
0.9675 and 0.8381	
Full-matrix least-squares on F ²	
8981 / 0 / 660	
1.029	
R1 = 0.0877, wR2 = 0.1633	
R1 = 0.2037, wR2 = 0.2056	
0.645 and -0.662 e.Å ⁻³	

d) 6ai (CCDC no. 2009644): The thermal ellipsoid drawn at 60% probability level.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.04°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

The purified compound **6ai** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

$C_{30}H_{20}BrClN_2O_3$	
571.84	
200(2) K	
0.71073 Å	
Monoclinic	
C 2/c	
a = 30.7223(10) Å	$\alpha = 90^{\circ}.$
b = 6.9755(2) Å	$\beta = 115.5280(10)^{\circ}.$
c = 27.9045(9) Å	$\gamma = 90^{\circ}.$
5396.2(3) Å ³	
8	
1.408 Mg/m ³	
1.656 mm ⁻¹	
2320	
0.16 x 0.09 x 0.02 mm ³	
2.61 to 25.04°.	
-35<=h<=36, -8<=k<=8, -32<=	=l<=32
36745	
4758 [R(int) = 0.0582]	
99.5 %	
multi-scan	
0.9676 and 0.7775	
Full-matrix least-squares on F ²	
4758 / 0 / 335	
0.994	
R1 = 0.0702, wR2 = 0.1844	
R1 = 0.0909, wR2 = 0.1973	
2.155 and -1.374 e.Å ⁻³	

e) 6aj (CCDC no. 2009643): The thermal ellipsoid drawn at 60% probability level.

The purified compound **6aj** is dissolved in a mixed

After few days, colorless crystals were obtained.

solvent of Ethyl acetate and hexanes to slowly evaporate.

Empirical formula	C ₂₈ H ₁₇ Br N ₂ O ₃	
Formula weight	509.35	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 9.9178(2) Å	$\alpha = 90^{\circ}.$
	b = 25.0870(5) Å	$\beta = 99.6680(10)^{\circ}.$
	c = 18.0566(4) Å	$\gamma = 90^{\circ}.$
Volume	4428.82(16) Å ³	
Z	8	
Density (calculated)	1.528 Mg/m ³	
Absorption coefficient	1.891 mm ⁻¹	
F(000)	2064	
Crystal size	0.32 x 0.30 x 0.04 mm ³	
Theta range for data collection	2.20 to 25.03°.	
Index ranges	-11<=h<=11, -29<=k<=	29, -21<=l<=19
Reflections collected	77253	
Independent reflections	7805 [R(int) = 0.0549]	
Completeness to theta = 25.03°	99.7 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9282 and 0.5829	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	7805 / 0 / 613	
Goodness-of-fit on F ²	0.994	
Final R indices [I>2sigma(I)]	R1 = 0.0326, wR2 = 0.0	822
R indices (all data)	R1 = 0.0465, wR2 = 0.0	900
Largest diff. peak and hole	0.312 and -0.461 e.Å ⁻³	

f) **7ak** (CCDC no. 2009645): The thermal ellipsoid drawn at 60% probability level.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.07°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

The purified compound **7ak** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

$C_{28}H_{23}BrN_2O_2$	
499.39	
200(2) K	
0.71073 Å	
Monoclinic	
Cc	
a = 17.2881(7) Å	$\alpha = 90^{\circ}.$
b = 16.3136(7) Å	$\beta = 113.2390(10)^{\circ}.$
c = 9.3609(4) Å	$\gamma = 90^{\circ}.$
2425.87(18) Å ³	
4	
1.367 Mg/m ³	
1.722 mm ⁻¹	
1024	
$0.23 \text{ x} 0.04 \text{ x} 0.02 \text{ mm}^3$	
2.50 to 25.07°.	
-19<=h<=20, -19<=k<=19, -11	<=l<=11
16214	
4042 [R(int) = 0.0537]	
99.8 %	
multi-scan	
0.9664 and 0.6929	
Full-matrix least-squares on F ²	
4042 / 2 / 299	
0.996	
R1 = 0.0405, wR2 = 0.0834	
R1 = 0.0674, wR2 = 0.0949	
0.001(10)	
0.370 and -0.322 e.Å ⁻³	

g) 7ik (CCDC no. 2009646): The thermal ellipsoid drawn at 60% probability level.

a		
Empirical formula	C ₂₈ H ₂₂ Br Cl N ₂ O ₂	
Formula weight	533.84	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C c	
Unit cell dimensions	a = 17.544(5) Å	$\alpha = 90^{\circ}.$
	b = 16.528(4) Å	$\beta = 113.$
	c = 9.324(3) Å	$\gamma = 90^{\circ}.$
Volume	2472.5(11) Å ³	
Z	4	
Density (calculated)	1.434 Mg/m ³	
Absorption coefficient	1.799 mm ⁻¹	
F(000)	1088	
Crystal size	0.15 x 0.06 x 0.03 mm ³	
Theta range for data collection	2.46 to 25.43°.	
Index ranges	-21<=h<=21, -19<=k<=1	19, -11<=l<=11
Reflections collected	19037	
Independent reflections	4472 [R(int) = 0.0796]	
Completeness to theta = 25.43°	99.6 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9480 and 0.7742	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	4472 / 2 / 310	
Goodness-of-fit on F ²	0.994	
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.08	399
R indices (all data)	R1 = 0.0751, wR2 = 0.10	008
Absolute structure parameter	0.015(9)	
Largest diff. peak and hole	$0.435 \text{ and } -0.378 \text{ e.}\text{\AA}^{-3}$	

The purified compound **7ik** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

 $\beta = 113.870(7)^{\circ}$.

h) 8aa (CCDC no. 2009650): The thermal ellipsoid drawn at 60% probability level.

Empirical formula	C ₃₀ H ₁₉ Br N ₂ O ₃	
Formula weight	535.38	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.3291(7) Å	$\alpha = 79.558(2)^{\circ}.$
	b = 9.2178(7) Å	$\beta = 87.777(3)^{\circ}.$
	c = 16.6899(15) Å	$\gamma = 74.713(2)^{\circ}.$
Volume	1215.52(18) Å ³	
Z	2	
Density (calculated)	1.463 Mg/m ³	
Absorption coefficient	1.727 mm ⁻¹	
F(000)	544	
Crystal size	0.77 x 0.58 x 0.17 mm ³	
Theta range for data collection	2.44 to 25.09°.	
Index ranges	-9<=h<=9, -10<=k<=10,	-19<=l<=19
Reflections collected	35541	
Independent reflections	4276 [R(int) = 0.0797]	
Completeness to theta = 25.09°	99.2 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.7579 and 0.3499	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4276 / 0 / 325	
Goodness-of-fit on F ²	1.001	
Final R indices [I>2sigma(I)]	R1 = 0.0378, wR2 = 0.09	078
R indices (all data)	R1 = 0.0450, wR2 = 0.10)37
Largest diff. peak and hole	0.489 and -0.638 e.Å ⁻³	

The purified compound **8aa** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

i) **8ak** (CCDC no. 2019535): The thermal ellipsoid drawn at 60% probability level.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.20°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

The purified compound **8ak** is dissolved in a mixed solvent of CH₂Cl₂ and hexanes to slowly evaporate. After few days, colorless crystals were obtained.

C28 H23 Br N2 O3	
515.39	
200(2) K	
0.71073 Å	
Triclinic	
P -1	
a = 9.7575(13) Å	$\alpha = 70.686(3)^{\circ}$
b = 10.9781(14) Å	$\beta = 73.323(3)^{\circ}$
c = 12.4931(14) Å	$\gamma = 72.669(3)^{\circ}$
1178.9(3) Å ³	
2	
1.452 Mg/m ³	
1.777 mm ⁻¹	
528	
0.44 x 0.38 x 0.19 mm ³	
2.24 to 25.20°.	
-11<=h<=11, -13<=k<=13, -	14<=l<=14
33847	
4196 [R(int) = 0.0471]	
98.9 %	
multi-scan	
0.7289 and 0.5086	
Full-matrix least-squares on	F^2
4196 / 0 / 310	
1.004	
R1 = 0.0305, wR2 = 0.0797	
R1 = 0.0375, wR2 = 0.0841	
0.340 and -0.535 e.Å ⁻³	

VIII. ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra of all new compounds:

¹H NMR Spectrum of **1a** (DMSO-d₆, 400 MHz)

 <pre>8</pre>	2.505 2.511 2.508 2.508 2.508 2.505 2.493 2.493 2.493	Current Data Parameters NAME SW 909-1 EXPNO 1 PROCNO 1
$ \begin{array}{c} $		F2 - Acquisition Parameters Date_ 20200616 Time 10.24 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 32768 SOLVENT DMSO NS 64 DS 0 SWH 7211.539 Hz FIDRES 0.220079 Hz AQ 2.2719147 sec RG 63.58 DW 69.333 usec DE 10.06 usec TE 298.5 K D1 2.0000000 sec TD0 1
		100 1 ====== CHANNEL f1 ====== SF01 400.1324008 MHz NUC1 1H P1 15.00 usec PLW1 11.39999962 W F2 - Processing parameters SI 16384 SF 400.1300032 MHz WDW EM SSB 0 LB 0 Hz GB 0 PC 1.00
		0 ppm

¹³C NMR Spectrum of **1a** (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **1i** (DMSO-d₆, 400 MHz)

S57

¹³C NMR Spectrum of 1i (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **1**j (DMSO-d₆, 400 MHz)

S59

¹³C NMR Spectrum of 1j (DMSO-d₆, 100 MHz)

¹³C NMR Spectrum of **3a** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3a** (CDCl₃, 162 MHz)

		34,81		00.0		Ct N/ E: PI	urrent Da AME XPNO ROCNO	ata Parameters SW 747-1 5 1
$ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	I3 Br					F: Da T: II PP TT SC D: ST ST ST TI D: D: TI TI SI SI	<pre>2 - Acqu: ate_ ime NSTRUM ROBHD ! JLPROG D LVENT 3 S NH IDRES 2 3 W E E E 1 1 1 D0 FO1 UC1 1</pre>	isition Parameters 20200615 11.46 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 16 4 49019.609 Hz 0.747980 Hz 0.747980 Hz 0.6684672 sec 198.09 10.200 usec 6.50 usec 296.5 K 2.00000000 sec 0.03000000 sec 1 CHANNEL f1 ======= 161.9836917 MHz 31P 15.00 usec
		M				F SH NU C P P P P P P P P P P P S S S S S S S S	JW1 JW2 PO2 PDPRG[2 PDP2 JW2 LW12 LW13 2 - Proc I F PDW SB B B C	13.19999981 W 3.19999981 W 3.19999981 W 3.191999981 W 3.191999981 W 3.191999981 W 3.191000 M 11 waltz16 90.00 usec 12.5000000 W 0.34722000 W 0.28125000 W essing parameters 32768 161.9755119 MHz EM 0 2.00 Hz 0 1.40
	50 40	 30 2 0	0 10	0 -10	-20 -30	ppm		

¹H NMR Spectrum of **3b** (CDCl₃, 400 MHz)

13

¹³C NMR Spectrum of **3b** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3b** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3c** (CDCl₃, 400 MHz)

S67

¹³C NMR Spectrum of **3c** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3c** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3d** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3d** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3d** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3e** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3e** (CDCl₃, 100 MHz)

			-34,98			00.0-			Current NAME EXPNO	Data Parameters SW ZW ns 3	
	O N NH PBug O 3e	3				1			PROCNO F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 NUC1 P1	1 iisition Paramete 20200612 10.03 spect 5 mm BBO BB-1H zgpg30 65536 CDC13 32 0 64724.918 H 0.587624 H 0.587624 H 0.5862656 s 3649.1 7.725 tt 2.00000000 0.03000000 1 CHANNEL f1 ===== 31P 15.40 tt	iz iz isec isec sec sec
					****		 	 9	PL1 SF01 CPDPRG[2 NUC2 PCPD2 PL2 PL12 PL13 SF02 F2 - Pro- SI SF WDW SSB LB GB PC	10.90 c 161.9674942 M CHANNEL f2 ===== waltz16 1H 90.00 t 26.00 c 29.00 c 400.1316005 M cessing parameter 32768 161.9755139 M EM 0 1.00 M	IB IHz ISEC IB IB IB MHz rs 4Hz Iz
 	, 0 60	 50	 40 3	,	 10	••••• 0	 	 ppm			

³¹P NMR Spectrum of **3e** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3f** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3f** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3f** (CDCl₃, 162 MHz)

	35 · 32	0.00		Current 1 NAME EXPNO PROCNO	Data Parameters SW ZW 3-C1 3 1
$ \begin{array}{c} & & \\ & & $				F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE E TE D1 D11 TD0 	uisition Parameters 20200611 10.38 spect 5 mm BBO BB-1H z gpg30 65536 CDC13 32 0 64724.918 Hz 0.987624 Hz 0.987624 Hz 0.987624 Hz 0.9066 5 sec 4096 7.725 usec 6.50 usec 297.4 K 2.00000000 sec 0.03000000 sec 1 CHANNEL f1 31P 15.40 usec 10.90 dB
				SF01	10.90 dB 161.9674942 MHz CHANNEL f2 ======
				CPDPRG[2 NUC2 PCPD2 PL2 PL12 PL13 SF02	waltz16 1H 90.00 usec 10.20 dB 26.00 dB 29.00 dB 400.1316005 MHz
				F2 - Prov SI SF WDW SSB LB GB PC	cessing parameters 32768 161.9755150 MHz EM 0 1.00 Hz 0 1.00
90 80 70 60 50 4	0 30 20	10 0 -10	-20 -30 ppm		

¹H NMR Spectrum of **3g** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3g** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3g** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3h** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3h** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3h** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **3i** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3i** (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3i** (CDCl₃, 162 MHz)

						34.86			00.00				Current NAME EXPNO PROCNO	Data Parameters SW ZW hy Cl 3 1
	CI		O H ⊕ PBu ₃ E	ßr									F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	uisition Parameters 20200601 15.23 spect 5 mm PABBO BB/ 2gg30 65536 CDC13 32 4 49019.609 Hz 0.747980 Hz 0.6684672 sec 198.09 10.200 usec 6.50 usec 292.7 K 2.0000000 sec 0.03000000 sec 1
		3	i										======= SF01 NUC1 P1 PLW1	CHANNEL fl 161.9836917 MHz 31P 15.00 usec 13.19999981 W
													SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	CHANNEL f2 400.1316005 MHz 1H waltz16 90.00 usec 12.50000000 W 0.34722000 W 0.28125000 W
						Į							F2 - Pro SI SF WDW SSB LB GB PC	cessing parameters 32768 161.9755132 MHz EM 0 2.00 Hz 0 1.40
 90	 80	 70	 60	 50	 40	 30	 20	 10	 0	 -20	-30	ppm		

¹H NMR Spectrum of **3i** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **3**j (CDCl₃, 100 MHz)

³¹P NMR Spectrum of **3j** (CDCl₃, 162 MHz)

¹H NMR Spectrum of **6aa** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **6aa** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6ba** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **6ba** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6ca** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6ca (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6da** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6da (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6ea** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of **6ea** (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6fa** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6fa (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6ia** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **6ia** (CDCl₃, 100 MHz)

¹H NMR Spectrum of 6ja (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6ja (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6ab** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6ab (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6ac** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6ac (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of 6ad (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6ad (CDCl₃, 100 MHz)

¹⁹F NMR Spectrum of **6ad** (CDCl₃, 376 MHz)

¹H NMR Spectrum of **6ae** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **6ae** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6af** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6af (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6ag** (DMSO-d₆, 400 MHz)

¹³C NMR Spectrum of 6ag (DMSO-d₆, 100 MHz)

¹H NMR Spectrum of **6ah** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6ah (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6ai** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6ai (CDCl₃, 100 MHz)

¹H NMR Spectrum of **6aj** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 6aj (CDCl₃, 100 MHz)

¹H NMR Spectrum of **7ak** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **7ak** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **7ik** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 7ik (CDCl₃, 100 MHz)

¹H NMR Spectrum of **7**jk (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 7jk (CDCl₃, 100 MHz)

¹H NMR Spectrum of 8aa (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 8aa (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ba** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **8ba** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ea** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **8ea** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ha** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **8ha** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ac** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **8ac** (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8al** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 8al (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ai** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 8ai (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8am** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 8am (CDCl₃, 100 MHz)

¹H NMR Spectrum of **8ak** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of 8ak (CDCl₃, 100 MHz)

IX. Scanned copies of EI Mass Spectra for selected compounds 6/7

S151

S152

S155

We have examined the reaction between phenyl substituted **8aa**, PBu₃ (1.1 equiv) and Et₃N (1.5 equiv) in the presence of THF at 50 °C. The desired indeno[1,2-*b*]pyrrole **6aa** was observed in 75% yield after 4 h, and further confirmed by using ¹H NMR as well as EIMS analysis.

We have examined the reaction between *para*-chloro substituted **8ac**, PBu₃ (1.1 equiv) and Et₃N (1.5 equiv) in the presence of THF at 50 °C. The desired indeno[1,2-*b*]pyrrole **6ac** was observed in 69% yield after 5 h, and further confirmed by using ¹H NMR as well as EIMS analysis.

We have also carried out the reaction between *ortho*-chloro substituted **8ai**, PBu₃ (1.1 equiv) and Et₃N (1.5 equiv) in presence of THF at 50 °C. The desired indeno[1,2-*b*]pyrrole **6ai** was observed in 63% yield after 7 h, and further confirmed by using ¹H NMR as well as EIMS analysis.

Similarly, we performed the reaction between pivaloyl substituted **8ak**, PBu₃ (1.1 equiv) and Et₃N (1.5 equiv) in presence of THF at 50 °C. The desired indeno[1,2-*b*]pyrrole **7ak** was observed in 50% yield after longer reaction time (10 h), and further confirmed by using ¹H NMR as well as EIMS analysis.

