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Experimental section

Synthesis of carbon-coated TNO NSAs 

The carbon-coated TNO NSAs directly grown on the carbon cloth were prepared 

by a facile solvothermal process and subsequent carbon-coating treatment. First, a piece 

of carefully cleaned carbon cloth (2.5 cm  2.5 cm, WOS1009, Cetech Co. Ltd., 

Taiwan) was placed in a Teflon-lined reactor (100 mL, sealed by a stainless-steel 

autoclave) containing a solution of niobium chloride (NbCl5, 1.8 mmol), tetrabutyl 

titanate (Ti(OC4O9)4, 0.9 mmol) and ca. 0.7 g HF in 50 mL glycol. The reactor was 

heated to and held at 200 °C for 20 h. After cooling down, the modified carbon cloth 

(denoted as precursor) was picked up, and then cleaned with ethanol and distilled water 

successively for several times. Secondly, the precursor was coated with polydopamine 

by immersing it in a solution containing 50 mg dopamine hydrochloride in a Tris buffer 

(75 mL, 10 mol L-1; pH=8.5) for 20 h under continuous stirring. Then, the 

polydopamine-coated precursor was annealed at 750 °C for 5 h in Ar atmosphere to 

obtain the carbon-coated TNO NSAs. The average mass loading of TNO materials on 

the carbon cloth was estimated by the average mass difference between the reference 

carbon cloth and modified carbon cloth with TNO NSAs (of the same area or size). The 

reference carbon cloth was prepared by a control experiment which is similar to that for 
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the pristine TNO NSAs, but NbCl5 and Ti(OC4O9)4 were not added in the solution for 

hydrothermal reaction (therefore no TNO materials present on the carbon cloth). The 

coating-carbon content on the carbon-coated TNO NSAs was subtracted based on the 

TGA analysis. The mass loading varies between 3.0 and 10.0 mg cm-2 and depends on 

the experimental conditions (solvothermal time and etc.).

Physical characterizations

The surface morphology of as-prepared materials was examined by field emission 

scanning electron microscopy (FE-SEM, Hitachi S-4800, Japan), and the transmission 

electron microscopy (TEM) were characterized with JEM-2010FEF (200 kV). The 

powder X-ray diffraction (XRD) was performed with Bruker D-8 Advance (Cu Kα). 

The surface chemical states of the materials were analyzed with X-ray photoelectron 

spectroscopy (XPS, Escalab 250-Xi, USA). The electronic conductivity of the pristine 

and carbon-coated TNO NSAs were measured by the four-point probe method with 

Keithley 6517B. The TGA and BET data of the carbon-coated TNO NSAs were 

obtained with Mettler Toledo TGA/DSC and V-Sorb 2800TP, respectively.   

Electrochemical characterizations

The galvanostatic charge/discharge performances were examined by LAND CT2001A 

battery testing system (Wuhan Jinnuo, China), and the measured cycling performances 

are in statistic error of 5%. Cyclic voltammetry (CV) was performed with CHI-660 

electrochemical workstation (Shanghai Chenhua). Electrochemical impedance 

characterization was carried out on a PGSTAT100N electrochemical workstation 

(Autolab), at open circuit potential (OCV) in the frequency range from 0.005 Hz to 

1000 kHz and with a potential amplitude of 10 mV applied during testing. The CR2032-

type coin or soft package cells were assembled in an Ar-filled glove box for half-cell 

or full battery testing. In the half cells, Li foil was used as the counter electrode, the 

electrodes of modified carbon cloths with directly grown TNO materials or LNMO 

were used as the working electrode. In the full batteries, the carbon-coated TNO NSAs 

and the LNMO electrodes were applied as the anode and cathode, respectively. The 

LNMO cathodes were prepared by slurry-coating with a doctor blade (on Al foil for 



coin cells and on carbon cloth for soft-packaged battery, respectively). The slurry was 

prepared by homogeneously mixing the LNMO powders, acetylene black and fluoride 

(PVDF) in a weight ratio of 8:1:1 in N-methylpyrrolidone (NMP). All the electrodes 

were vacuum-dried at 130 oC for 5 h before cell preparation. The electrolyte of 1 M 

LiPF6 in ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 in volume) were 

commercially supplied by Guotai Huarong (China) and directly used. The mass-loading 

of the TNO NSAs at the anode and LNMO at the cathode for the full battery is about 

5.8 and 14.5 mg cm-2, respectively. The model flexible batteries in soft packages were 

hot-sealed in a PE polymer bag of ca. 6.25 cm2 (2.5 cm  2.5 cm). The gravimetric 

energy/power densities of the full batteries (E and P) are calculated with 

 and , where I is the constant current density (A g-1 or A cm-
2

1
)(

t

t
dttIVE tEP  /

3), V(t) is the working voltage at t, dt is time differential, t1 and t2 (s) are the start and 

end time of discharging, and △t is the total discharging time. The mass used for 

calculation is based on the active anode and cathode materials.



Table S1 The representative nanoarray materials in previously reported research. 

Sample Typical characteristics Mass Loading (mg cm-2) Ref.
CNTs//Li4Ti5O12 nanowire 2.34 1

ZnCo2O4 nanowire 0.3-0.6 2
 Li4Ti5O12-C nanotube 0.42 3

MnCo2O4 nanosheet 3 4
CoMoO4 nanowire 2.0-2.2 5
NiCo2S4 nanotube 1.2 6
CoFe2O4 nanowire 1.7-2.0 7

Zn3P2 nanowire 3 8
Fe3O4 nanotube 0.8-1.2 9

Mo-doped SnS2 nanosheet 0.8 10
V2O5 nanosheet 2.1 11
Co4N nanoarray 2.1-2.5 12

Carbon coated MoS2 nanosheet 0.45 13
Co3O4 nanosheet 0.53 14

Li4Ti5O12 cuboid 2.87 15
NiSe2 nanosheet 1.5-1.8 16

TiO2@TiN  nanowire 1.5 17
TiO2@rutile SnO2  nanorod 1.2 18
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Fig. S1 Nitrogen adsorption/desorption isotherm and pore size distribution of the carbon-
coated TNO NSAs.

Fig. S2 (a) TGA analysis. (b) Raman spectra.
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Fig. S3 (a-d) Ti 2p, Nb 3d, O 1s and N 1s XPS absorption of the carbon-coated TNO NSAs. 
(e) The elemental mapping images.
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Fig. S4 Discharge/charge profiles of the pristine TNO NSAs in the initial two cycles at 1 C.

Fig. S5 The overall SEM images: (a) the carbon-coated TNO NSAs after 2000 cycles; (b) 
the pristine TNO NSAs after 1000 cycles. 
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Fig. S6 (a) CV profiles of the pristine TNO NSAs at various sweep rates. (b) Plots of the 
peak current at ca. 1.70 V against sweep rates for the pristine TNO NSAs.

Table S2 The calculated diffusion coefficients of lithium ions (DLi+).

DLi+ (cm2 s-1) carbon coated TNO NSAs pristine TNO NSAs

anodic peak 2.10 × 10-12 1.55 × 10-12

cathodic peak 2.06 × 10-12 1.57 × 10-12

Fig. S7 LNMO: (a) Rate performance. (b) Cycling performance.
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Fig. S8 (a) Cyclic performance of the high-loading full cell at 5 C (inset image: the high-
loading carbon cloth). (b) Rate performances. 

 

Fig. S9 (a) Charge/discharge profiles for the carbon-coated TNO NSAs with or without 
continuous bending (Inset images for continuous bending). (b) Cycling performance of 
the carbon-coated TNO NSAs under different bending angles. (c) Charge/discharge 
profiles of the full battery under different bending angles.
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