Electronic supplementary information for

Lead-free Mn-doped antimony halide perovskite quantum dots with bright deep-red emission

Aifei Wang, ^{‡a,b} Faheem Muhammad, ^{‡a} Yao Liu,^a and Zhengtao Deng^{*a}

- a. College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
- b. Current address : Institute of Advanced Materials (IAM), Nanjing Tech University (NJ Tech), 5 Xinmofan Road, Nanjing 210009, P.R. China

EXPERIMENTAL SECTION

Chemicals. All reagents and solvents were used without further purification. Antimony trichloride (SbCl₃, 99.95 %), antimony tribromide (SbBr₃, 99.5 %, alfa), Magnesium chloride hexahydrate (MgCl2·6H2O, AR, Aladdin), Magnesium bromide hexahydrate (MgBr₂·6H₂O, 98 %, Aladdin), Manganese chloride (MnCl₂·4H₂O, 99.0 %, Aladdin), Manganese(II) bromide (MnBr₂, 99%, Aladdin), Caesium chloride (CsCl, ≥99 %, Aladdin), Caesium bromide (CsBr, 99.5 %, Aladdin), Oleylamine (OLAm, 80-90%, Aladdin), oleic acid (OA, 85%, Aladdin), Dimethylsulfoxide (DMSO, AR, Xiya), Isopropanol (IPA, AR ≥99.5 %, Macklin), n-Octanoic acid (98 %, Aladdin), poly(ethylene glycol) methyl ether thiol (PEG-SH, Mn=5000, Aldrich), 1-Dodecanethiol (98 %, Aladdin), 1-Octanethiol (98 %, Aladdin), n-Butanol (99 %, Aladdin), 3-Mercaptopropionic acid (MPA, 98%, Aladdin).

Synthesis of Mn²⁺-doped Cs₃Sb₂Cl_x/Br_{9-x} (0≤x≤9) perovskite quantum dots. Colloidal Mn²⁺-doped Cs₃Sb₂X₉ NCs were synthesized following the ligand-assisted reprecipitation (LARP) technique. Typically, precursor solution was prepared by dissolving a mixture of CsX (0.6 mmol), SbX₃ (0.4 mmol), OLAm (0.3 mmol) into DMSO (4 mL). Then, precursor solution 200 μ L was dropped into a clear solution of mixed solution of 2 mL IPA, MnX₂ (0.01-0.1 mmol) and 30 mg poly(ethylene glycol)methyl ether thiol (mPEG-SH,) under vigorous stirring. Claret fluorescence emission was observed during stirring. Different Cl⁻ and Br⁻ ratios in Mn²⁺-doped Cs₃Sb₂Cl_x/Br_{9-x} (0≤x≤ 9) perovskite QDs were tuned by adding additional MgX₂. Ligands effects on Mn²⁺-doped Cs₃Sb₂X₉ NCs were studied by simply substituting the equimolar amounts of organic carboxylic acid or mercaptan (OA, n-Octanoic acid, 1-Dodecanethiol, 1-Octanethiol, n-Butanol, MPA).

Characterization Details. Powder X-ray diffraction (PXRD) was measured with a Bruker AXS D8 X-ray diffractometer equipped with monochromatized Cu K α radiation (λ =1.5418 Å). Transmission electron microscopy (TEM) was performed on an FEI Tecnai G2 F20 electron microscope operating at 200 kV. Photoluminescence (PL) spectra were obtained with a Horiba PTI QuantaMaster 400 steady-state fluorescence quantum yields were measured using a Horiba PTI QuantaMaster 400 steady-state fluorescence system with an integrated sphere and a Quantaurus-QY absolute PL quantum yield spectrometer (C11347 series).

Cell labelling with QDs and Confocal microscopy. Cell lines were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (GIBCO) and 100 units ml-1 penicillin–streptomycin (Cellgro) in a humidified incubator at 37 °C containing 5% CO₂. Cell binding buffer was prepared by dissolving 0.9 g glucose (Sigma), 0.2033 g magnesium chloride hexahydrate (Sigma), 20

S2

mg yeast tRNA (Sigma) and 200 mg BSA in 200 ml 1 Dulbecco's PBS (with MgCl₂ and CaCl₂) supplemented with 10% FBS (heat inactivated). 1 x 10⁵ Ramos cells were suspended in 300 µl buffer containing 200 nM of Mn²⁺-doped Cs₃Sb₂Cl_x/Br_{9-x} (0≤x≤9) perovskite QDs and incubated at 4 °C for a few minutes. The cells were then recollected by centrifugation and washed. The images were obtained with a Zeiss LSM 510 confocal microscope.

 $Cs_3Sb_2Cl_x/Br_{9-x}$ (0 $\leq x \leq 9$) QDs.

Figure S2. TEM images of other Mn²⁺-doped Cs₃Sb₂Cl_x/Br_{9-x} (0≤x≤9) QDs with feeding ratio of (a) Sb: Mn=1:1 and (b) Sb: Mn=1:3.

Figure S3. XPS spectra of Mn-doped Cs3Sb2Cl9 and Cs3Sb2Clx/Br9-x (actual feeding ratio of Cl:Br =2:1 and Mn:Sb =2:1) QDs.

Figure S4. PL emission spectra of the undoped $Cs_3Sb_2Cl_9$, Mn-doped $Cs_3Sb_2Cl_9$ and $Cs_3Sb_2Cl_x/Br_{9-x}$ (actual feeding ratio of Cl:Br =2:1 and Mn:Sb =2:1) QDs.

Figure S5. PL excitation (EX) and PL emission spectra of Mn^{2+} -doped $Cs_3Sb_2Cl_x/Br_{9-x}$ ($0 \le x \le 9$) QDs.

Figure S6. PL intensity changes of the Mn-doped QDs in the presence of water within 4 hours. (a) MPA and (b) PEG-SH synthesized Mn-doped $Cs_3Sb_2(Br_{0.25}/Cl_{0.75})_9$ QDs. (c) summary of the PL intensity changes of (a) and (b).

Figure S7. PL emission spectrum of Mn^{2+} -doped $Cs_3Sb_2Cl_x/Br_{9-x}$ ($0 \le x \le 9$) QDs labeled on Ramos cells taking with the confocal microscope. The excitation wavelength is 405 nm.

Table S1. Summary of comparison PL characteristics of undoped and Mn²⁺-doped lead-free halide perovskite materials in bulk and QDs form. High temperature (HT) and room temperature (RT).

Composition	Sample Size	Synthesize Method	PL center	PL QYs (Measure Method)	Ref.
$Cs_3Sb_2Cl_9$ nanowires	20 nm (diameter)	hot-injection (HT)	436 nm	4% (integrated sphere)	1
Cs ₃ Sb ₂ Br ₉ QDs	3.07 nm	ligand-assisted reprecipitation (RT)	410 nm	46% (standard sample)	2
Cs ₃ Bi ₂ I ₉ NCs	19 nm	hot-injection (HT)	580 - 605 nm	0.017% (not mention)	3
MA ₃ Bi ₂ Br ₉ QDs	3.05 nm	ligand-assisted reprecipitation (RT)	360 - 540 nm	12% (standard sample)	4
MA ₃ Bi ₂ Br ₉ QDs	6.02 nm	ligand-assisted reprecipitation (RT)	422 nm	54.1% (standard sample)	5
Cs ₃ Bi ₂ Br ₉ QDs	6 nm	ligand-assisted reprecipitation (RT)	460 nm	0.2%-4.5% (standard sample)	6
Cs ₂ AgBiX ₆ QDs	8 nm	hot-injection (HT)	629-738 nm	\sim 0.3 ± 0.3% (not meantion)	7
Mn-doped Cs ₂ AgInCl ₆	bulk crystals	concentrated acid precipitation	632 nm	doped=3-5% (standard sample)	8

Mn-doped Cs₂AgInCl ₆ QDs	9.8 nm (undoped) 12 nm (doped)	hot-injection (HT)	bandadge=560n m doped=620nm	undoped =1.6% doped=16% (integrated sphere)	9
Mn-doped Cs ₂ NaBiCl ₆	bulk crystals	concentrated acid precipitation (RT)	590 nm	doped=15% (integrated sphere)	10
Mn-doped Cs₂NaBiCl ₆	11 nm	hot-injection (HT)	600 nm	5.0%.	11
${\sf Mn}{\sf -}{\sf Doped} \\ {\sf Cs}_2{\sf Naln}_x{\sf Bi}_{1-x}{\sf Cl}_6$	10.45 ± 0.5 nm	hot-injection (HT)	around 600 nm	44.6%	12
Cs₃Sb₂Cl _x /Br _{9-x} (0≤x≤9) QDs	6 nm	ligand-assisted reprecipitation (RT)	bandadge=410- 465nm doped=660nm	undoped=0.8% doped=49% (integrated sphere)	This work

Table S2. Summary of Mn²⁺ emission lifetime analysis of various feeding molar ratio of Mn/Sb.

Mn:Sb	τ1	τ2	A1	A2	τns
0.5:1	0.78	91.06	11081.71	5356.84	496437.6
1:1	34.85	63.66	1201.85	2246.88	184920.9
2:1	0.78	23.82	16521.21	3013.03	143639.4
3:1	1.46	30.04	4299.52	1817.51	60875.3

Table S3. Summary of Mn²⁺ emission lifetime analysis of various feeding molar ratio of Cl/Br.

Cl Content	τ1	τ2	A1	A2	τns
100 %	1.07	12.43	18442.72	826.03	30001.26
60 %	9.93	54.9	578.96	208.08	17172.66
50 %	1.12	47.63	15820.47	1527.75	90485.66
33 %	1.05	54.67	15767.39	2276.97	141037.7

Table S4. Bond dissociation energy (kJ/mol) of metals cations and halides/ligands anions.

	Cs ⁺	Sb ³⁺	Mn ²⁺	-
Cl-	117.4	410	337.6	
Br [.]	610.5	373	323.8	
S ²⁻	-	378.7	318	

References for supplementary information:

- 1. B. Pradhan, G. S. Kumar, S. Sain, A. Dalui, U. K. Ghorai, S. K. Pradhan and S. Acharya, *Chem. Mater.*, 2018, **30**, 2135-2142.
- 2. J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang and H. Song, *ACS nano*, 2017, **11**, 9294-9302.
- 3. Y. Zhang, J. Yin, M. R. Parida, G. H. Ahmed, J. Pan, O. M. Bakr, J. L. Bredas and O. F. Mohammed, *J. Phys. Chem. Lett.*, 2017, **8**, 3173–3177.
- 4. M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou and J. Tang, *Angew. Chem. Int. Ed.*, 2016, **55**, 15012-15016.
- 5. M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin and J. Tang, *Nano Lett.*, 2018, **18**, 6076–6083.
- 6. B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng and K. Han, *Angew. Chem.*, 2017, **129**, 12645-12649.
- 7. S. E. Creutz, E. N. Crites, M. C. De Siena and D. R. Gamelin, *Nano Lett.*, 2018, **18**, 1118-1123.
- 8. N. N. K and A. Nag, *Chem. Commun.*, 2018, **54**, 5205-5208.
- F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. De Trizio and L. Manna, *J. Am. Chem. Soc.*, 2018, 140, 12989-12995.
- 10. J. D. Majher, M. B. Gray, T. A. Strom and P. M. Woodward, *Chem. Mater.*, 2019, **31**, 1738-1744.
- 11. W. Lee, D. Choi and S. Kim, *Chem. Mater.*, 2020, **32**, 6864–6874.
- 12. P. Han, X. Zhang, C. Luo, W. Zhou, S. Yang, J. Zhao, W. Deng and K. Han, *ACS Central Sci.*, 2020, **6**, 566-572.