Enzyme-assisted chemical labelling enables precise identification of

an RNA methyltransferase's substrate modification sites

Siying Xiang,^a Minsong Gao,^a Jie Cao,^a Xiao Shu,^a Mohan Cheng,^a Fengqin Wang,^c Ting Deng^d and Jianzhao Liu*ab

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China. ^b Life Sciences Institute, Zhejiang University, Hangzhou, China. ^c College of Animal Sciences, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, China. d State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.

Materials and instruments

All chemicals and reagents were used as purchased, without further purification. *Se*-allyl-Lselenohomocysteine (SeAHC) was synthesize[d](#page-6-0) following the protocol previously described¹. Recombinant human methyltransferases, METTL3/METTL14 heterodimer, were co-expressed in ins[e](#page-6-1)ct cells according to a previously published procedure². UHPLC-QQQ-MS/MS results were acquired using a Waters TQ MS triple-quadrupole LC spectrometer.

Molecular cloning

The gene coding for full-length (FL) human MAT2A (hMAT2A; 395 aa; Accession number NP_005902) and full-length (FL) human METTL16 (hMETTL16; 562 aa; Accession number NP_076991) were amplified from HeLa cell cDNA by PCR (polymerase chain reaction). MAT2A coding gene was cloned into the pET28a vector with $6 \times$ his-tag in N-terminal. The recombinant pET28a based plasmid encoding MTN (*E. coli* MTN; 232 aa; Accession number: NP_414701) was constructed similarly. hMETTL16 sequence was cloned into the pcDNA3.0 vector to provide eukaryotic expression plasmid bearing CMV enhancer and N-terminal flag tag. For MAT2A I117A, we use KOD-Plus-Mutagenesis Kit to generate a mutation sequence from wild type (MAT2A wt). Constructs covering the core methyltransferase domain of hMETTL16^{[3](#page-6-2)} (METTL16-MTD; 1-291 aa) was cloned into the pET28a vector for bacterial expression.

Expression and purification of proteins

(1) Prokaryotic expression and purification of MAT2A (wt and I117A), METTL16-MTD and MTN Purification of recombinant MAT2A and MTN was performed as previously described^{[4,](#page-6-3) [5](#page-6-4)}. For MAT2A (wt and I117A) and MTN, plasmids were transferred into *E. coli* BL21(DE3), while *Rosetta* DE3 strain was chosen for the preparation of METTL16-MTD. Strains harboring abovementioned plasmids were grown in 10 mL of LB broth containing corresponding antibiotic at 37°C overnight. Then culture was inoculated into new LB media for mass cultivation with a volume ratio 1:100 and incubated at 37 °C to reach an OD 600 of 0.6 to 0.8. MAT2A wt and I117A expressions were induced with 0.5 mM IPTG for 16 h at 16 °C. The induced expression condition of METTL16-MTD was 0.7 mM IPTG, 16 h at 20 °C. For MTN, cultures were induced by the addition of 1 mM ITPG and were incubated at 16 °C for 20 h. Cultures were harvested via centrifugation at 6000 g for 20 min. The resulting cells were resuspended in the corresponding lysis buffer and followed by 70% intensity sonication for 1 h. The target proteins were then purified by Ni-NTA (GE Healthcare) and followed by gel filtration chromatograph (Superdex 75 prep grade). The pure fractions retained with N-terminal 6 \times his-tag were verified by SDS-PAGE gel and then stored at -20 \degree C in the buffer containing 20 mM Tris-HCl pH 8.0, 200 mM KCl and 20% glycerol. Compositions of the lysis buffer used in the purification of above proteins is shown in **Supplementary Table 1**.

(2) Eukaryotic expression and purification of METTL16-FL

For the expression of hMETTL16-FL, pcDNA3 plasmid harboring METTL16 was transfected into HEK293T cells. Cells were grown at 37 °C with 5% $CO₂$ and harvested after 48 h. Cultures were resuspended in lysis buffer and hold for 15~30 min on ice. After that, cells were disrupted with 45% intensity super-sonication for 2 min. The target protein was purified by ANTI-FLAG M2 Affinity Gel (Sigma) followed by corresponding protocol. The eluted protein was concentrated with an ultrafiltration tube and then confirmed by SDS-PAGE (sodium dodecyl sulphate–polyacrylamide gel electrophoresis).

Enzymatic labelling assay

The *in vitro* enzymatic labelling reactions were carried out in a volume of 50 μl with 2 mM SeAHC, 1 mM ATP (NEB, 10 mM), 1−5 μg RNA probes, 5 μM MAT2A (wt or I117A), 10 μM MTN, 2−5 μM RNA methyltransferase (METTL3/METTL14 or METTL16) in reaction buffer containing 25 mM Tris buffer (pH 8.0), 5 mM MgCl₂, 50 mM KCl, 0.05 mM ZnCl₂ and 0.2 U/μL RNasin (TaKaRa, $40 \text{ U/}\mu\text{L}$). Prior to the reaction, the RNA probes were denatured and annealed with a program of (i) 90 °C for 3 min, (ii) −2 °C/cycle for 40 cycles within 30 min and (iii) 4 °C for 5 min. After that, other components were added and reactions were incubated at 37 °C for 4 h. Reactions were quenched by inactivating the enzyme at 70 ℃ for 20 min. RNA probes were precipitated from the reaction solution with isopropyl alcohol. About 100 ng product was measured through UHPLC-QQQ-MS/MS after enzymatic digestion to quantify enzymatic labelling efficiency while others were used for immunoprecipitation and subsequent TA cloning assay.

Quantitative analysis of enzymatic labelling efficiency by UHPLC-QQQ-MS/MS

RNA probes enzymatic labelled were digested into nucleosides and measured by reverse-phase UHPLC on a C18 column with online MS detection using a Waters TQ MS triple-quadrupole LC spectrometer in positive electrospray ionization mode. The modification efficiency was based on the ratio of a⁶A (N⁶-allyladenosine) to A, while the amounts of nucleosides from sample were calculated on the base of the standard curve generated by pure standards. For each sample, 100~300 ng RNA was digested by using 1 U nuclease P1 (Wako) in 40 μL reaction containing 20 mM NH4OAc at 42 ℃ for 2 h. Afterwards, 1 μL BAP (Bacterial Alkaline Phosphatase, Toyobo), 5 μL $10 \times$ BAP Buffer (Toyobo) and 4 μL DEPC H₂O were added and the reaction was incubated at 37 \degree C for 2 h. Samples were then filtered by 0.22 μ m filter (Millipore) and diluted to 80 μ L. A 10 μ L volume of the sample was injected into the UHPLC-QQQ-MS/MS system. The a⁶A nucleoside was quantified by using the nucleoside to base ion mass transitions of 308 to 176.

Immunoprecipitation (IP) and biochemical mutation assay

After the completion of enzymatic reactions, we used immunoprecipitation to enrich the $a⁶A$ containing RNA probes. N⁶-isopentenyladenosine antibody which can specifically recognize a⁶A was utilized. The IP procedures followed the previous wor[k](#page-6-0)¹. The enriched a⁶A-containing probes were treated by iodine to induce the formation of 1, N⁶-cylized adenosine (cyc-A). After purification, cyclized RNA probes were used as templates for reverse transcription (RT) to get complementary DNA (cDNA) fo[l](#page-6-5)lowing the protocol⁶ in **Scheme S1**. The HIV reverse transcriptase was selected due to its higher read-through rate for cyc-A. The cDNA was amplified by polymerase chain reaction (PCR). The PCR product was cloned into pClone007 Simple Vector by a sticky TA end annealing and then the recombinant plasmid was transformed into competent cells. Single colony was picked for Sanger sequencing.

Scheme S1

One pot treated probe, 26 µL

IP with N⁶-isopentenyladenosine antibody

Chemical treatment with iodine 0.125 M I_2 , 4 µL 37 °C, 0.5 h, brown

0.2 M Na₂S₂O₃, 4 µL Colorless, rapid transformation

0.1 M $Na_2C_2O_3$, pH 9.5, 6 µL 37 °C, 0.5 h

Isopropanol precipitation to purify probe

Cyclized probe

Reverse Transcription

- 1. template RNA (20~200 ng)
- 2. reverse primer
- 3. 5 x reaction buffer
- 4. $dNTPs$ (10 µM, 1 µL) 5. RT enzyme: HIV (20 U, 0.5 µL)
- 6. DEPC H_2O (up to 20 µL)

37 °C, 1 h; 70°C, 10 min

Add forward primer PCR, 30-35 cycles

Agarose gel electrophoresis to confirm DNA bands, purification

TA cloning & Sanger sequencing

Results analysis

Figure S1. Coomassie staining results of purified a) MAT2A wt & I117A, b) METTL16-FL, c) METTL16-MTD and d) MTN. The red boxes indicate the target proteins.

Figure S2. The a⁶A modification ratio of RNA probes measured by UHPLC-QQQ-MS/MS. a) The a⁶A modification ratio of RNA probe R1 catalyzed by METTL3/METTL14 in the presence of MAT2A wt or I117A. b) The a⁶A modification ratios of probe R2 and R3 catalyzed by METTL16-FL through enzymatic labelling assay.

Figure S3. Examples of Sanger sequencing data showing the cDNA mutation results of the RNA probes R1 (a), R2 (b), and R3 (c) with (Top panel) and without (Bottom panel) a cascade of enzymatic treatments as illustrated in our developed method.

Figure S4. The METTL16-MTD-catalysed labelling of R2 probe and characterization of its modification site. a) The Sanger sequencing results for cDNA of allyl-modified and iodinated R2 with adenosine (37-A) located in UACAGAGAA motif. b) Statistics of mutation (A to T/C/G) rates of 37-A in R2 probe.

Supplementary Table 1. The bacterial strain or cell line for expressing the listed enzymes and their corresponding lysis buffer used in this work.

Supplementary Table 2. The sequences of RNA probes and DNA primers used in this work.

References

- 1. X. Shu, J. Cao, M. Cheng, S. Xiang, M. Gao, T. Li, X. Ying, F. Wang, Y. Yue, Z. Lu, Q. Dai, X. Cui, L. Ma, Y. Wang, C. He, X. Feng and J. Liu, Nat. Chem. Biol., 2020, **16**, 887-895.
- 2. J. Liu, Y. Yue, D. Han, X. Wang, Y. Fu, L. Zhang, G. Jia, M. Yu, Z. Lu, X. Deng, Q. Dai, W. Chen and C. He, Nat. Chem. Biol., 2014, **10**, 93-95.
- 3. K. E. Pendleton, B. Chen, K. Liu, O. V. Hunter, Y. Xie, B. P. Tu and N. K. Conrad, Cell, 2017, **169**, 824-835 e814.
- 4. R. Wang, K. Islam, Y. Liu, W. Zheng, H. Tang, N. Lailler, G. Blum, H. Deng and M. Luo, J. Am. Chem. Soc., 2013, **135**, 1048-1056.
- 5. M. T. Banco, V. Mishra, A. Ostermann, T. E. Schrader, G. B. Evans, A. Kovalevsky and D. R. Ronning, Proc. Natl. Acad. Sci. 2016, **113**, 13756-13761.
- 6. X. Shu, Q. Dai, T. Wu, I. R. Bothwell, Y. Yue, Z. Zhang, J. Cao, Q. Fei, M. Luo, C. He and J. Liu, J. Am. Chem. Soc., 2017, **139**, 17213-17216.