Synthesis of an azadioxa-planar triphenylborane and investigation of its structural and photophysical properties

Yuichi Kitamoto, ${ }^{*}, a$ Kazuma Oda, ${ }^{b}$ Kohei Ogino, ${ }^{,}$Kunimasa Hiyama, ${ }^{b}$ Hiroshi Kita, ${ }^{b}$ Tetsutaro Hattori ${ }^{a}$ and Shuichi Oi^{*}, c

${ }^{a}$ Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
${ }^{b}$ Advanced Technology Center, Corporate R\&D Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-Machi, Hachioji-shi, Tokyo 192-8505, Japan
${ }^{c}$ Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Supplementary Information

Contents:

1. Experimental Section S2
2. Synthesis S4
3. ${ }^{11}$ B NMR study S5
4. X-ray crystallographic analysis S6
5. Photophysical data S10
6. Theoretical calculation S11
7. References S21
8. NMR spectra of synthesized compounds S22
9. HRMS spectra of synthesized compounds S28

1. Experimental Section

General: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ NMR were recorded using a Bruker Biospin AVANCE III 400 spectrometer. The ${ }^{1} \mathrm{H}$ NMR chemical shifts were reported in $\mathrm{ppm}(\delta)$ with reference to protons of tetramethylsilane singlet at 0.00 ppm . The ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in $\mathrm{ppm}(\delta)$ with reference to residual carbons $\left(\mathrm{CHCl}_{3}\right)$ in CDCl_{3} at 77.16 ppm . Interaction of the boron-bonded carbon atoms with the quadrupole moment of the boron nucleus causes line broadening. Therefore, the carbon atoms are not observed in the ${ }^{13} \mathrm{C}$ NMR spectrum. The ${ }^{11} \mathrm{~B}$ NMR chemical shifts were reported in ppm (δ) with reference to the chemical shift of $\mathrm{BF}_{3} \cdot \mathrm{OEt}$ at 0.00 ppm as an external standard. The multiplicities were presented as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and br $=$ broad. IR spectra were recorded on a JASCO FT/IR-350 Fourier-transform infrared spectrometer. Characteristic IR absorptions were reported in cm^{-1}. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-700 spectrometer using the electron impact (EI) method at Technical Division, School of Engineering, Tohoku University. Melting points were obtained using a Stuart melting point apparatus SMP3. UV-vis absorption spectra were recorded on a Shimazu UV-2500 spectrophotometer. The photoluminescence spectra in toluene were recorded on a Hitachi High-Tech F-7000 Spectrophotometer. The absolute photoluminescence quantum yield was measured using Hamamatsu Photonics Quantaurus-QY C11347. The transient photoluminescence decay was recorded using Hamamatsu Photonics Quantaurus-Tau C11367 equipped with YAG laser $(\lambda=355 \mathrm{~nm})$ as an excitation source. Spectrophotometric grade toluene solvent was purchased from Kanto Chemical Co., Inc. The solution for UV-vis and photoluminescence experiments was bubbled with N_{2}.

Reaction: All reactions were carried out under a positive pressure of nitrogen in egg-plant shaped flasks or Biotage 20 mL vials sealed with crimp caps unless noted otherwise. Column chromatography was performed using spherical silica gel (63-200 $\mu \mathrm{m}$, Kanto Chemical).

Materials: All solvents using in reactions, UV-vis, and photoluminescence experiments were purchased and used as received. Commercially available reagents were used without purification unless noted otherwise. Aniline was dried with KOH and distilled at reduced pressure, and then stored under N_{2} atmosphere before using. 1,13-Dihydroxy-5,9-dioxa-13b-boranaphtho[3,2,1$d e]$ anthracene (dihydroxy-triphenylborane 6) was prepared according to the literature. ${ }^{\text {S1 }}$

X-ray Crystallographic analysis: Single crystal of compound $\mathbf{1}$ was obtained by crystallizing the synthesized 1 from chloroform-hexane as a colorless crystal. Single-crystal X-ray diffraction data were collected with a Bruker APEX II CCD diffractometer equipped with a Helios multi-layered confocal mirror and a TXS fine-focus rotating anode using Mo-K α radiation ($\lambda=0.71073$ A). The structures were solved by direct methods and refined by least-squares method on F^{2} with SHELXL97. ${ }^{\text {S2 }}$ X-ray analysis was undertaken using the free GUI software of Yadokari-XG 2009. ${ }^{\text {S3,S4 }}$ Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (deposition number: CCDC 1570941). The crystal data are summarized in Table S1.

2. Synthesis

5,9-Dioxa-13b-boranaphtho[3,2,1-de] anthracene-1,13-diyl bis(trifluoromethanesulfonate) (7).
A 300 mL two necked and egg-plant shaped flask equipped with a Teflon coated magnetic stirring bar was charged with $6(1.362 \mathrm{~g}, 4.51 \mathrm{mmol})$, and then evacuated by heating and refilled with N_{2}. N, N-Diisopropylethylamine ($2.3 \mathrm{~mL}, 3.0$ equiv., 13.5 mmol) and 200 mL of dry dichloromethane were added, and then dry dichloromethane $(10 \mathrm{~mL})$ solution of trifluoromethanesulfonic anhydride $(1.63 \mathrm{~mL}, 2.2$ equiv., 9.92 mmol$)$ was added to the stirred solution using syringe driver at $-78{ }^{\circ} \mathrm{C}$ for 2.0 h . The reaction mixture was gradually warmed to room temperature overnight, and then stirred at room temperature for 3 h . The resulting mixture was washed successively with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq., 1 N HCl aq., and brine, and the extracts were dried over MgSO_{4}. After filtration, volatiles were evaporated under reduced pressure. The residue was purified by silica gel chromatography using hexane-dichloromethane (2:1) as an eluent to give the product $7(2.28 \mathrm{~g}, 89 \%)$ as colorless powder. Colorless powder; $\mathrm{Mp}: 159.3-159.8^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$): 3436, 1617, 1582, 1471, 1418, 1332, 1297, 1214, 1139, 1027, 968, 863, 838, 801, 754; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.85(\mathrm{t}, J=8.2 \mathrm{~Hz}$, 1 H), 7.78 (t, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (dd, $J=8.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 160.5,156.1,151.7,135.8,134.2,118.7,118.6(\mathrm{q}, J$ $=319.1 \mathrm{~Hz}$), 116.1, 109.5, two signals for the carbon atoms bonded to the boron atom were not observed due to the quadrupolar relaxation; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 40.2 ;$ HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{BF}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}, 565.9736$; found, 565.9738.

12-Phenyl-12H-4,8-dioxa-12-aza-3a ${ }^{2}$-boradibenzo $[c d, m n]$ pyrene (1).

A Biotage 20 mL vial equipped with a Teflon coated magnetic stirring bar was charged with 7 (0.566 $\mathrm{g}, 1.00 \mathrm{mmol}$) and sealed with a crimp cap, and then evacuated by heating and refilled with $\mathrm{N}_{2} .9 .0$ mL of dry 1,4-dioxane and aniline ($364 \mu \mathrm{~L}, 4.0$ equiv., 4.00 mmol) was added, and then lithium hexamethyldisilazide (LiHMDS) ($1.5 \mathrm{~mL}, 1.5$ equiv., $1.50 \mathrm{mmol}, 1.0 \mathrm{~mol} / \mathrm{L}$ in tetrahydrofuran) was added dropwise to the solution at ca. $10^{\circ} \mathrm{C}$. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ for 20 h . After the reaction mixture was diluted with chloroform, the resulting mixture was washed successively with 1 N HCl aq. and brine, and the extracts were dried over MgSO_{4}. After filtration, volatiles were evaporated under reduced pressure. The residue was purified by recrystallization from methanol-pentane (1:1) at $0^{\circ} \mathrm{C}$. The crude precipitate was purified by silica gel chromatography using hexane-dichloromethane (1:1) as an eluent to give the product $\mathbf{1}(0.127 \mathrm{~g}, 35 \%)$ as colorless powder.

Colorless powder; $\mathrm{Mp}: 306.6-307.1^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3449, 3067, 1622, 1606, 1487, 1446, 1312, $1269,1227,1209,1160,1057,984,855,784,741 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.67-7.71$ (m, 3H), $7.60(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 159.7, 158.7, 147.6, 140.8, 134.8, 134.7, 131.0, 130.2, 129.0, 109.8, 109.1, 107.2, two signals for the carbon atoms bonded to the boron atom were not observed due to the quadrupolar relaxation; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 33.9$; HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$: calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{BNO}_{2}, 359.1118$; found, 359.1117.

3. ${ }^{11}$ B NMR study

Figure S1 ${ }^{11} \mathrm{~B}$ NMR spectra of 7 in the presence of aniline (a) and the presence of aniline and LiHMDS (b) at $23{ }^{\circ} \mathrm{C}$ in dioxane- d_{8}. Conditions: $7\left(6.71 \times 10^{-2} \mathrm{mmol}\right.$), aniline (4.0 equiv., $2.68 \times$ $\left.10^{-1} \mathrm{M}\right)$, LiHMDS (1.5 equiv., $\left.1.01 \times 10^{-1} \mathrm{mmol}\right), 1,4$-dioxane- $d_{8}(0.7 \mathrm{~mL})$.

4. X-ray crystallographic analysis

Table S1 Crystal data and structure refinement for $\mathbf{1 .}$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{BNO}_{2}$
Formula weight	359.17
Temperature	100 K
Wavelength (Mo K α)	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=10.9490(12) \AA \quad \alpha=90^{\circ}$
	$b=19.966(2) \AA \quad \beta=99.4220(10)^{\circ}$
	$c=7.4024(8) \AA \quad \gamma=90^{\circ}$
Volume	1596.4(3) \AA^{3}
Z	4
Density (calculated)	$1.494 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
$\mu(\mathrm{MoK} \alpha)$	$0.094 \mathrm{~mm}^{-1}$
$F(000)$	744
Crystal dimensios	$0.2 \times 0.1 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	2.04 to 27.89°
Reflections collected	4595
Independent reflections	$1866[R(\mathrm{int})=0.0146]$
Refinement method	Full-matrix least-squares on F^{2}
Data / Restrains / Parameters	1866 / 0 / 130
Goodness-of fit on F^{2}	1.045
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0407, w R_{2}=0.1214$
R indices (all data)	$R_{1}=0.0445, w R_{2}=0.1255$
Largest diff. peak and hole	0.358 and $-0.320 \mathrm{e}^{-} \cdot \AA^{-3}$

Figure S2 Thermal ellipsoid drawing of $\mathbf{1}$ with thermal ellipsoids at 50% probability.

Table S2 Selected bond lengths and angles of $\mathbf{1}$.

	Length / \AA		Angle ${ }^{\circ}$
C1-B1	1.472(2)	C3-B1-C3 ${ }^{\text {1 }}$	121.03(14)
C3-B1	1.4699(13)	$\mathrm{C} 3{ }^{\# 1}-\mathrm{B} 1-\mathrm{C} 1$	119.49(7)
$\mathrm{C} 3{ }^{\# 1}-\mathrm{B} 1$	$1.4699(13)$	C3-B1-C1	119.48(7)
O1-C6	1.3951(12)		
O1-C5	1.3971(12)		
N1-C8	1.4200 (11)		
$\mathrm{N} 1-\mathrm{C} 8^{\# 1}$	1.4200 (11)		

Figure S3 $\pi-\pi$ Stacking structure of $\mathbf{1}$ depicted in spacefill (a) and capped sticks models (b). Green dotted lines indicate $\pi-\pi$ interaction (interplanar distance $=3.446 \AA$).

Figure S4 The motif of intermolecular $\mathrm{CH}-\pi$ hydrogen bonds of $\mathbf{1}$ from the top (a, b) and the side (c, d). The molecules in (a, c) and (b, d) are depicted in spacefill and capped sticks models, respectively. Blue dotted lines indicate $\mathrm{CH}-\pi$ hydrogen bond (intermolecular distance $=2.662$ A).

Figure $\mathbf{S 5}$ Crystal packing structure of $\mathbf{1}$ from the side (a, b) and the top ($\mathrm{c}, \mathrm{d})$. The molecules in (a, c) and (b, d) are depicted in capped sticks and spacefill models, respectively. Each color shows a rod unit arranged by $\pi-\pi$ stacking interaction along the c-axis.

5. Photophysical data

Table S3 Comparison of photophysical data of $\mathbf{3},{ }^{\mathrm{S} 1} \mathbf{4},{ }^{\mathrm{S} 5}$ and $\mathbf{1}$.

3

4

1

	Absorption		Fluorescence			Phosphorescence ${ }^{f}$
	$\lambda_{\text {max }} / \mathrm{nm}$	$\log _{10} \varepsilon$	$\lambda_{\text {max }} / \mathrm{nm}$	$k_{\mathrm{r}} / \mathrm{s}^{-1}$	$k_{\text {nr }} / \mathrm{s}^{-1}$	$\lambda_{\text {max }} / \mathrm{nm}$
$3^{a, h}$	338	4.39	$386\left(\Phi_{\mathrm{PL}}=0.63\right)^{c, d}$	1.02×10^{8}	0.59×10^{8}	400-414
$4^{\text {b,h }}$	384	4.51	$403\left(\Phi_{\text {PL }}=0.36\right)^{c}$	0.75×10^{8}	1.32×10^{8}	4278
1^{a}	380	4.34	$406\left(\Phi_{\mathrm{PL}}=0.84\right)^{\text {c,e }}$	0.98×10^{8}	0.19×10^{8}	426

${ }^{a} 1 \times 10^{-5} \mathrm{M}$, toluene solution. ${ }^{b} 2 \times 10^{-5} \mathrm{M}$, dichloromethane solution. ${ }^{c}$ Absolute PL quantum yield.
${ }^{d} \lambda_{\mathrm{ex}}=320 \mathrm{~nm} .{ }^{e} \lambda_{\mathrm{ex}}=360 \mathrm{~nm} .{ }^{f}$ at $77 \mathrm{~K} .{ }^{g}$ A poly(methyl methacrylate) film of $4(1 \mathrm{wt} \%)$.
${ }^{h}$ Photophysical data of $\mathbf{3}$ and $\mathbf{4}$ are referenced from refs. S1 and S5, respectively.

6. Theoretical calculation

Theoretical calculations of $\mathbf{1}$ and $\mathbf{4}$ were carried out using the Gaussian 09 package ${ }^{\mathrm{S} 6}$ at the B3LYP/6-311G(d,p) level (in toluene, PCM model). After the optimization, the TD-DFT calculations were also conducted at the B3LYP/6-311G(d,p) level (in toluene, PCM model). The output views were obtained by the GaussView version 5.0. ${ }^{\text {S7 }}$

Table S4 Calculated excitation energy (E, λ) and oscillator strength (f) of $\mathbf{1}$ by DFT and TDDFT at the B3LYP/6-311G(d,p) level (in toluene, PCM model).

Excited state	E / eV	λ / nm	f^{a}	Main CI coefficient ${ }^{\text {b }}$	
1	3.519	352	0.1961	HOMO \rightarrow LUMO	0.69723
2	3.897	318	0.0639	HOMO-1 \rightarrow LUMO	0.68701
3	4.053	306	0.0233	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+1$	0.69711
5	4.377	283	0.0118	HOMO-1 \rightarrow LUMO+1	0.27452
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+3$	0.62135
6	4.417	281	0.0967	$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	0.57830
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+5$	0.36443
7	4.602	269	0.1163	HOMO-1 \rightarrow LUMO+3	0.25433
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+4$	-0.29088
				$\mathrm{HOMO} \rightarrow \mathrm{LUMO}+5$	0.55479

[^0]Table S5 Optimized structure and selected bond lengths of $\mathbf{1}$ by DFT at the B3LYP/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level (in toluene, PCM model).

	Length /		Angle /
C5-B27	1.47071	C5-B27-C7	120.750
C7-B27	1.47071	C5-B27-C8	119.625
C8-B27	1.47508	C7-B27-C8	119.625
C9-O26	1.39228		
C10-O26	1.38843		
C6-O28	1.39228		
C11-O28	1.38843		
C29-N31	1.41926		
C30-N31	1.41926		

Figure S6 The theoretical excitation (oscillator strength vs. wavelength) of $\mathbf{1}$ obtained by TDDFT calculation at the B3LYP/6-311G(d,p) level (in toluene, PCM model). The values of the oscillator strength are shown in Table S4.

Figure S7 Kohn-Sham molecular orbitals for 1 at the B3LYP/6-311G(d,p) level (in toluene, PCM model).

LUMO (-1.493 eV)

Figure S8 Energy diagram and Kohn-Sham molecular orbitals (HOMOs and LUMOs) for $\mathbf{1}$ and 4 at the B3LYP/6-311G(d, p) level (in toluene, PCM model). To compare $\mathbf{1 , 3},{ }^{\mathrm{S} 1}$ and $\mathbf{4}$ at the same method [the B3LYP/6-311G(d,p) level (in toluene, PCM model)], DFT and TD-DFT calculations of $\mathbf{4}$ were carried out. Hatakeyama et al. reported the result of calculation for $\mathbf{4}$ at the B3LYP/631G(d) level. ${ }^{\text {S5 }}$

Table S6 The energy and coordinates of $\mathbf{1}$ in the ground state optimized at the B3LYP/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level (in toluene, PCM model).

Energy $=-1153.3570759$ Hartrees

	Coordinates (Angstroms)		
	X	Y	Z
C	0.598721827	1.128113221	3.507363628
H	1.149582844	1.413300355	4.394391321
C	-1.574235408	0.764459112	2.377384913
H	-2.653033957	0.786894833	2.447932177
C	0.49200595	0.391843747	1.216933576
C	1.247590723	0.751872869	2.336698829
C	0.492015328	-0.391833057	-1.216916635
C	2.694089851	-3.3384×10^{-6}	1.97494×10^{-5}
C	1.247608729	-0.75186829	-2.3366741
C	3.357979587	-0.37538878	-1.166138014
C	3.357970602	0.37537725	1.166184189
C	-1.574217086	-0.764432969	-2.37738886
C	0.598748853	-1.128103961	-3.507345404
C	4.750778822	-0.379529061	-1.179056185
C	4.750769737	0.379507189	1.179116422
C	-0.803132603	-1.121912038	-3.488791826
H	-2.653015093	-0.786860483	-2.447947066
H	1.149616705	-1.413295563	-4.394367416
C	5.409228251	-1.33949×10^{-5}	0.000033446
H	5.307249198	-0.664036663	-2.063031436

H	5.307233302	0.664010717	2.063097271
H	-1.325631527	-1.412734905	-4.393727112
H	6.493570261	-1.74271×10^{-5}	3.89221×10^{-5}
C	-0.803159486	1.121932038	3.488795796
H	-1.325665381	1.412758691	4.393725841
O	2.639266228	-0.739303556	-2.296960394
B	1.219011513	2.5054×10^{-6}	1.21861×10^{-5}
O	2.639248528	0.739297492	2.296999273
C	-0.915328449	-0.384605034	-1.195549194
C	-0.915337668	0.384626407	1.19555185
N	-1.576406082	1.32528×10^{-5}	-2.0516×10^{-6}
C	-3.018488362	1.87471×10^{-5}	-9.4078×10^{-6}
C	-3.712396077	-1.151273286	0.370645289
C	-3.712383504	1.151316062	-0.370671236
C	-5.105875884	-1.14904702	0.369883775
H	-3.158681037	-2.037957383	0.65611299
C	-5.105863335	1.149100435	-0.369923951
H	-3.158658776	2.037995928	-0.65613329
C	-5.803173128	2.93714×10^{-5}	-2.36404×10^{-5}
H	-5.645165036	-2.043994609	0.657992874
H	-5.645142714	2.044052138	-0.658038562
H	-6.887096206	3.35062×10^{-5}	-2.91826×10^{-5}

Table S7 The energy and coordinates of $\mathbf{4}$ in the ground state optimized at the B3LYP/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level (in toluene, PCM model).

Energy $=-1575.8363413$ Hartrees

	Coordinates (Angstroms)		
	X	Y	Z
C	2.818282934	2.507363667	-0.000190184
H	3.897743058	2.560240991	-0.000219698
C	0.6714447	3.712014161	-0.000196537
H	0.154090576	4.660892129	-0.000230751
C	0.726188917	1.29432196	-7.87505×10^{-5}
C	2.136826417	1.279693765	-0.000112459
C	-1.484319106	-0.018291929	3.56492×10^{-5}
C	0.757722463	-1.276367285	4.41548E-05
C	-2.146650067	-1.263878901	0.00011073
C	0.039700537	-2.49067342	0.000118965
C	2.167599569	-1.227180502	8.7701×10^{-6}
C	-3.580850271	1.186979801	2.80159×10^{-5}
C	-3.55070672	-1.274596156	0.000144698
C	0.762140609	-3.69466209	0.000160355
C	2.878880293	-2.437812767	5.07525×10^{-5}
C	-4.223211296	-0.051862301	0.000102537
H	-4.166376932	2.0953781	-1.3067×10^{-6}
H	-4.113757931	-2.19709023	0.000202005
C	2.156182753	-3.63156537	0.000125241
H	0.26816432	-4.655920747	0.000217961

H	3.959308507	-2.464262644	2.70453×10^{-5}
H	-5.308220272	-0.065152441	0.000129128
H	2.710177148	-4.564578955	0.000157471
C	2.066608223	3.683086829	-0.000229912
H	2.597600546	4.629381529	-0.000290023
B	-0.000129782	-0.000119132	0.000000695
C	-2.176948135	1.210707455	-6.5952×10^{-6}
C	-0.021324825	2.490716246	-0.000119335
N	-1.434804408	2.415994369	-8.14027×10^{-5}
C	-2.170587499	3.655141244	-0.000121181
C	-2.52546999	4.252831677	-1.20892153
C	-2.525414479	4.252941653	1.208641071
C	-3.236799972	5.451065136	-1.207135942
H	-2.242517023	3.776122362	-2.140021958
C	-3.236744832	5.451174769	1.206779213
H	-2.242418995	3.776316966	2.139771918
C	-3.592945204	6.051106734	-0.000197466
H	-3.512080194	5.914687915	-2.147504695
H	-3.511982136	5.914882932	2.147118439
H	-4.146235502	6.983282562	-0.000227149
N	-1.375153682	-2.45060641	0.000149207
C	-2.080289535	-3.707463621	0.000222954
C	-2.420275699	-4.313712033	1.209038259

C	-2.420330551	-4.313822893	-1.208521349
C	-3.101971292	-5.529049732	1.207298071
H	-2.149054134	-3.830169724	2.140109019
C	-3.102026106	-5.529160418	-1.206638681
H	-2.149151266	-3.830366058	-2.139648834
C	-3.443302526	-6.137678254	0.000365342
H	-3.365710311	-5.999283292	2.14769564
H	-3.365807944	-5.999480253	-2.146981109
H	-3.973577445	-7.083134446	0.000420714
N	2.809580584	0.034314378	-6.76185×10^{-5}
C	4.250616781	0.052165646	0.000101192
C	4.945732986	0.060979402	1.20865846
C	4.94567825	0.06085814	1.208893152
C	6.339097997	0.0784293	1.206806554
H	4.391455532	0.054141185	2.139791035
C	6.339043357	0.078308349	-1.207106064
H	4.39135866	0.053926662	-2.139999948
C	7.036753288	0.087202897	0.00016601
H	6.878279343	0.085298425	2.147161112
H	6.878182169	0.085083236	-2.147485697
H	8.120686825	0.100824804	-0.000191253

7. References

(S1) Y. Kitamoto, T. Suzuki, Y. Miyata, H. Kita, K. Funaki and S. Oi, Chem. Commun., 2016, 52, 7098.
(S2) G. M. Scheldrick, SHELEX-97, Programs for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
(S3) K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, 2001.
(S4) C. Kabuto, S. Akine, T. Nemoto and E. J. Kwon, Crystallogr. Soc. Jpn., 2009, 51, 218.
(S5) S. Nakatsuka, H. Gotoh, K. Kinoshita, N. Yasuda and T. Hatakeyama, Angew. Chem. Int. Ed., 2017, 56, 5087.
(S6) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT, 2009.
(S7) R. Dennington, T. Keith and J. Millam, Gauss View (Version 5), Semichem, Inc., Shawnee Mission, KS, 2009.
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR spectra of synthesized compounds

8.1. 5,9-Dioxa-13b-boranaphtho[3,2,1-de] anthracene-1,13-diyl bis(trifluoromethanesulfonate) (7).
[${ }^{1} \mathrm{H}$ NMR spectrum]

$\left[{ }^{13} \mathrm{C}\right.$ NMR spectrum $]$

$\stackrel{0}{\tilde{\sim}} \stackrel{\infty}{\circ}$	$\stackrel{N}{N}$	$\underset{\substack{\mathrm{m}} \stackrel{m}{N}}{ }$	
$\stackrel{\circ}{\circ}$	-	ம்	
$\stackrel{\square}{\square}$		$\stackrel{\sim}{\square} \stackrel{n}{\sim}$	\sim
		1/	1

[${ }^{11} \mathrm{~B}$ NMR spectrum]

8.2. 12-Phenyl-12H-4,8-dioxa-12-aza-3a ${ }^{2}$-boradibenzo[cd,mn]pyrene (1).

[${ }^{1} \mathrm{H}$ NMR spectrum]

[${ }^{13} \mathrm{C}$ NMR spectrum]

1
[${ }^{11} \mathrm{~B}$ NMR spectrum]

9. HRMS spectra of synthesized compounds

9.1. 5,9-Dioxa-13b-boranaphtho[3,2,1-de]anthracene-1,13-diyl bis(trifluoromethanesulfonate)

(7).

HRMS (EI), MS standard: PFK (internal standard, PFK peaks: $\mathbf{\nabla}$)

9.2. 12-Phenyl-12H-4,8-dioxa-12-aza-3a²-boradibenzo[cd,mn]pyrene (1).

HRMS (EI), MS standard: PFK (internal standard, PFK peaks: $\boldsymbol{\nabla}$)

[^0]: ${ }^{a}$ Oscillator strength. ${ }^{b}$ Coefficient of the wave function for each excitation.

