Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite to 2D perovskite structure

Monireh Fazayeli^a, Maasoumeh Khatamian^{* a} and Giuseppe Cruciani^b

^aDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

^bDepartment of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy

Corresponding Email: khatamian@tabrizu.ac.ir

Figure S1. Close-up views of the XRD patterns of $[(ED)_2Pbl_4]Cl_2$ (red), CC- $[(ED)_2Pbl_4]Cl_2$ (black), and the sample obtained from heating the colour-changed crystals at 100°C (dark red)

Figure S2. FESEM images at different magnifications for [(ED)₂Pbl₄]Cl₂ (A, B, C) and CC-[(ED)₂Pbl₄]Cl₂ (D, E, F)

Table S1. Crystallographic data of $EDPbI_4$ and $[(ED)_2PbI_4]CI_2$

	EDPbI4[1]	[(ED)2PbI4]Cl2
Empirical formula	$C_2H_{10}N_2O_{0.042(4)}PbI_4$	$C_4H_{20}N_4PbI_4Cl_2$
Formula weight (g/mol)	777.60	909.94
Space group	R3	Pbcm
a, Å	14.5906(1)	8.7590(4)
b, Å	14.5906(1)	9.4400(4)
c, Å	32.7775(5)	23.5450(8)
α, °	90	90
β, °	90	90
γ, °	120	90
Z	18	4
V, Å ³	6043.00(14)	1946.82(14)
$\rho(g/cm^3)$	-	3.105

Table S2. Observed FTIR Wavenumbers(cm $^{\mbox{-}1}$) and band assignments

Observed wavenumbers(cm ⁻¹)				
en. 2HI	EDPbl₄	[(ED)2Pbl4]Cl2	Color-changed [(ED)2Pbl4]Cl2	Assigned to
3142	3064	3090	3091	NH₃ asymmetric stretching
2999	3006	2989	2990	NH₃ symmetric stretching
2912	2925	2920	2920	CH ₂ asymmetric stretching
2785	2880	2850	2850	CH ₂ symmetric stretching
1627	1643	1644	1643	NH ₃ asymmetric deformation
1560	1549	1563	1560	NH ₃ symmetric deformation
1491	1464	1481	1481	CH ₂ scissoring
1348	-	1439	1439	CH ₂ wagging
1311	1317	1307	1307	CH ₂ twisting
-	1177	1154	1155	NH₃ rocking
1026	1026	1019	1018	CN stretching
997	994	957	957	NH₃ rocking
914	875	887	887	CH₂ rocking
787	765	806	806	CH₂ rocking
548,465	460	464	464	*N-C-C-N* bending

Theoretical calculation of weight loss percentage:

The calculation was performed as follows:

For each crystal, we assumed that the following species (listed in Table S3) can remove from the structure. Based on the molecular weight (Mw) of the crystals (according to the Table S1) and Mw of the considered species, the weight loss percentages were calculated. By comparing the loss percentage values obtained from TGA analysis with those calculated theoretically we determined the possible decomposed fragments.

Crystal formula	Considered fragment	Mw of the fragment (Mw _f , gr/mol)	Theoretical weight loss percentage (<u>Mwf</u> <u>Mwcrystal</u>)×100
EDPbI ₄	ED+ 21	315.92	40.63%
[(ED) ₂ PbI ₄]Cl ₂	2(ED)+ 2I+2Cl	448.94	49.34%
	2(ED)+ 3I+ Cl	540.39	59.39%
	2(ED)+ 4I	631.85	69.44%

References:

[1] A. Glushkova, A. Arakcheeva, P. Pattison, M. Kollár, P. Andričević, B. Náfrádi, L. Forró and E. Horváth, *CrystEngComm*, 2018, **20**, 3543