Supplementary

New Process for Stabilization of Vertically Aligned GdB₆ nanorods and their Field Emission Properties

Krishna K. Yadav, M. Sreekanth, Ankush, S. Ghosh, Menaka Jha

The Si- substrate utilized for the GdB₆ film fabrication was cleaned with acetone, water, isopropanol, HF and Piranha solutions. First, Si-substrate introduced in preheated acetone at 50 $^{\circ}$ C for 30 min and then cleaned with water and isopropanol. In the second step, piranha solution (3:1 volume ratio of 98 % H₂SO₄ and 30 % H₂O₂) was heated at 80 $^{\circ}$ C, when bubbles evolve at the surface of the solution, the cleaned substrate introduced in the solution for 10 min followed by cleaned with water. In the last step, the substrate has been cleaned with HF and then washed with water, followed by isopropanol washing.

Fig. S1. EDX of Gd(OH)₃

Fig. S2. (a) Refractive index of GdB₆, (b) Viscosity of prepared ink

Fig. S3. (a) cross-sectional SEM of GdB_6 film, (b-c) AFM study for high profile

Synthesis of GdB₆ nanocubes and their field emission

In the present study, for the synthesis of GdB_6 nanocubes, $Gd(OH)_3$ nanorods and $NaBH_4$ were mixed in 1:20 molar ratio and annealed in the presence of argon at 1000 °C for 8 h at a heating rate of 250 °C/h. The PXRD study of the as-obtained sample has been shown in **Fig. S4a**. All the diffraction pattern matched with GdB_6 having JCPDC card number 03-065-1826 with cubic space group (Pm-3m). Further, the TEM study reveals the formation of the irregular cubic particle of size 30-50 nm (**Fig. S4b**). As prepared GdB_6 nanocubes were further deposited on Si- substrate via spin coating method followed by slow drying. The AFM study of GdB_6 film show that the cubes are agglomerated (**Fig. S4c**). Further, the fabricated GdB_6 film has been utilized for the field emission study. J vs E plot of GdB_6 film fabricated using GdB_6 nanoparticles is shown in **Fig. S4d**. The observed turn-on field was ~5.3 V/µm. The F-N plot

(ln J/E² vs 1/E) shows the linear plot at high field, confirms that the emission occurs due to tunnelling of energy barrier when the external electric field applied. However, the observed current density of GdB_6 film fabricated using GdB_6 nanocube was much lower than GdB_6 nanorods (**Fig. S4d**).

Fig. S4. (a) PXRD of GdB₆ nanoparticles, (b) TEM study of GdB₆, (c) AFM study of GdB₆ nanocubes, (d) field emission study of GdB₆ nanocubes (inset F-N plot)