Electronic Supplementary Information for

Layered Hybrid Lead Perovskite Single Crystals: Phase

Transformations and Tunable Optical Properties

Jiewu Song, ^a Yangyang Dang, ^{*abc} Xiao long Liu, ^a and Xutang Tao^{*a}

^a State Key Laboratory of Crystal Materials & Institute of Crystal Materials,
Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China.
^b School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, 273165, Qufu, P. R. China.

^c Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Department of Chemistry, School of Sciences, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.

Corresponding Authors:

E-mail: yeung_dang@tju.edu.cn; txt@sdu.edu.cn

Experimental Section

Fig. S1 Fluorescent photo of the monoclinic PEA₂PbI₄ single crystal covered on the surface of triclinic PEA₂PbI₄ single crystal under UV-445 nm irradiation.
Fig. S2 Green emissive PEA₂PbI₄ single crystal obtained by the phase transformation processes induced by CH₃OH solvent.

Fig. S3 Red emissive PEA_2PbI_4 single crystal obtained by the phase transformation processes.

Fig. S4 Calculated and powder XRD patterns of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3).

Fig. S5Thermal properties (TGA/DSC) of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3).

Fig. S6 UV-vis spectra and band gap of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3).

Fig. S7 PL decay lifetime of PEA_2PbI_4 and MA: PEA_2PbI_4 single crystals under UV-445 nm irradiations and emission at 520 nm

Table. S1Crystal data and structure refinements for $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3).

Experimental Section

Single-crystal X-ray diffraction and Powder X-ray diffraction studies. Singlecrystal X-ray diffraction and powder X-ray diffraction measurements were depicted elsewhere.¹

UV-vis-NIR diffuse reflectance spectra measurements. UV-vis-NIR diffuse reflectance spectroscopy was carried out using a Varian Cary 5000 spectrophotometer equipped with an integrating sphere over the spectral range 200-1200 nm. The PEA₂MA_{n-1}Pb_nI_{3n+1} (n =1~3) single crystals were dried and grinded into powders. A BaSO₄ plate was used as the standard (100% reflectance). The absorption spectrum was calculated from the reflectance spectrum using the Kubelka-Munk function: α/S = $(1-R)^2/(2R)$,² where α is the absorption coe \Box cient, *S* is the scattering coe \Box cient, and R is the reflectance.

Thermogravimetric analysis Measurements. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out using a TGA/DSC1/1600HT analyzer (METTLER TOLEDO Instruments). The PEA₂MA_n. ¹Pb_nI_{3n+1} (n=1~3) sample were placed in a platinum crucible, and heated at a rate of 10 °C min-1 from room temperature to 800 °C under flowing nitrogen gas.

PL spectra and PL decay time measurements. The microarea PL images were collected using a Nikon fluorescence microscope and the PL spectra of P PEA₂MA_n. $_{1}Pb_{n}I_{3n+1}$ (n =1~3) were gathered with a Carl Zeiss Jena LSM 780 confocal laser fluorescence microscope. The decay times of as-prepared microcrystals of PEA₂MA_n. $_{1}Pb_{n}I_{3n+1}$ (n =1~3) were measured at room temperature under 445 nm wavelength irradiations.

Fig. S1 Fluorescence photo of the monoclinic PEA_2PbI_4 single crystal covered on the surface of triclinic PEA_2PbI_4 single crystal under UV-445 nm irradiation.

Fig. S2 Green emissive PEA₂PbI₄ single crystal obtained by the phase transformation processes induced by CH₃OH solvent. (a) PEA₂PbI₄ single crystal under polarizing microscope; (b) Green fluorescence of PEA₂PbI₄ single crystal under UV-445 nm irradiation.

Fig. S3 Red emissive PEA₂PbI₄ single crystal obtained by the phase transformation processes. (a) PEA₂PbI₄ single crystal under ordinary light; (b) Red fluorescence of PEA₂PbI₄ single crystal under UV-365 nm irradiation.

Fig. S4 Calculated and powder XRD patterns of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3)

Fig. S5 Thermal properties (TGA/DSC) of PEA₂MA_{n-1}Pb_nI_{3n+1} (n =1~3)

Fig. S6 UV-vis spectra and band gap of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3). (a) Tunable UV-vis spectra of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3); (b) Tunable band gap of $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3) from 2.13 to 1.55 eV.

Fig. S7 PL decay lifetime of Triclinic PEA₂PbI₄ and MA: PEA₂PbI₄ under 445 nm irradiations and emission at 520 nm.

-1~3)					
Empirical	$C_{16}H_{24}N_2P\overline{bI_4}$		$C_{16}H_{24}N_2PbI_4$	$C_{17}H_{30}N_3Pb_2I$	$C_{18}H_{36}N_4Pb_3I$
formula				7	10
Formula	959.16		959.16	1579.12	2199.08
weight/ g·mol-					
1					
Temperature/K			296(2)		
Wavelength/ Å			0.71073		
Crystal color	Orangish	Orangish	Reddish	Brownish	Blackish
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	C2/m (no.12)	<i>P</i> -1 (no. 2)	<i>P</i> -1 (no. 2)	<i>P</i> -1 (no. 2)	<i>P</i> -1 (no. 2)
a/Å	32.824(6)	8.7350(16)	8.7497(8)	8.8092(5)	8.8201(14)
b/Å	6.1669(11)	8.7359(16)	8.7510(8)	8.8168(4)	8.8198(14)
c/Å	6.2114(11)	16.673(3)	16.6830(15)	22.8196(12)	29.038(5)
$\alpha/^{\circ}$	90	99.694(5)	99.7643(10)	97.072(4)	93.198(2)
β/°	93.205(2)	95.220(6)	95.2258(10)	93.983(4)	95.495(2)
γ/°	90	90.393(5)	90.3394(10)	90.199(4)	90.123(2)
Volume/Å ⁻³	1255.4(4)	1248.6(4)	1253.4(2)	1754.52(15)	2245.0(6)
Crystal size	0.22 x 0.15 x	0.2 x 0.1 x	0.3 x 0.2 x	0.2 x 015 x	0.2 x 015 x
(mm ³)	0.1	0.05	0.15	0.15	0.15
Z	2	2	2	2	2
Density/g·cm ⁻³	2.537	2.551	2.422	2.989	3.253
$\mu(\text{mm}^{-1})$	11.639	11.703	11.651	15.752	18.112
F (000)	856	856	808	1376	1896
Completeness	99.1%	99.9%	99.8%	99.76%	99.8%
to theta					
GOF on F ²	1.204	1.175	1.090	1.052	1.107
Absorption	Semi-empirical from equivalents				
correction	1 1				
Extinction	0.0142(8)	0.00005(19)	0.0033(3)	0.00075(9)	0.00106(7)
coefficient					()
Refinement	Full-matrix least-squares on F^2				
method	•				
Data /	1565/0/95	4403/0/239	4421/0/230	8472/0/164	7904/0/420
restraints /					
parameters					
$R_1, WR_2 [I >$	0.0328,	0.0525,	0.0467,	0.0546,	0.0607,
2σ (I)]	0.0899	0.1418	0.1302	0.1443	0.1573
R_1 , w R_2 (all	0.0371,	0.0682,	0.0514,	0.0747,	0.0830,
data)	0.1051	0.1482	0.1382	0.1592	0.1734
Min/Max Δρ	-1.174/ 2.020	-1.600/3.513	-1.393/6.894	-1.896/2.705	-1.438/2.354
/eÅ-3	••••	· - · - -			
CCDC	1815922	1815926	1815923	1815925	1815924

Table. S1 Crystal data and structure refinements for $PEA_2MA_{n-1}Pb_nI_{3n+1}$ (n =1~3)

References

[1] Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia and X. Tao, *CrystEngComm* 2015, 17, 665.

[2] W. M. Wendlandt and H. G. Hecht, *Reflectance Spectroscopy, Interscience, New York*, 1966, **62.**