A facile template method to fabricate strongly coupled 1D sandwich-like

C@Fe₃O₄@C/Ni coaxial microtubes with enhanced catalytic performance

Qian Niu^a, Min Zhang*^a, Libin Liu^b, Jing Zheng^a, Qunling Fang^c , Jingli Xu^a

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China. Email: zhangmin@sues.edu.cn

^bSchool of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

^cSchool of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China

Fig.S1 SEM and TEM images of MoO₃ (A, B).

Fig.S2 XRD patterns of the as-prepared MoO₃ (a), MoO₃@PPy (b), MoO₃@PPy@FeOOH (c) and PPy@FeOOH@RF-Ni²⁺(d).

Fig.S3 (A) EDX spectrum of C@Fe₃O₄@C/Ni-500 and the text inserted is the content of the element; (B) Size distribution of Ni nanoparticles distributed on coaxial microtubes.

Fig.S4 (A) SEM and TEM images of PPy@FeOOH@RF (a, b) and C@Fe₃O₄@C (c, d); (B) XRD pattern of PPy@FeOOH@RF (a) and C@Fe₃O₄@C (b).

Fig.S5 SEM images of C@Fe₃O₄@C/Ni-900(A, B).

Fig.S6 Recyclability of the C@Fe₃O₄@C/Ni-500 as the catalyst (A); SEM image of C@Fe₃O₄@C/Ni-500 after cycle (B).

Table S1. ICP data of different samples and comparison to	or the reduction of 4-NP
---	--------------------------

Samples	Ni content (µg/mg)	K (×10 ⁻³ s ⁻¹)	$\Box \Box \Box \kappa (mg^{-1}s^{-1})$
C@Fe ₃ O ₄ @C/Ni-500	28.6	10.9	0.381
C@Fe ₃ O ₄ @C/Ni-700	30.5	5.4	0.177