Supplementary Material

WSi₂ nanodots reinforced Si particles as anodes for high performance lithium-ion batteries

Xiangyang Zhou, Chucheng Luo, Jing Ding, Juan Yang* and Jingjing Tang*

School of Metallurgy and Environment, Central South University, Changsha 410083, China.

* Corresponding author. E-mail address: <u>tangjj@csu.edu.cn</u>.

Fig. S1 XRD patterns of H-WSi₂/Si and L-WSi₂/Si.

Fig. S2 SEM images of SiO_2 (a), p-Si (b), H-WSi₂/Si (c), L-WSi₂/Si (d).

Fig. S3 TEM images of H-WSi₂/Si (a), L-WSi₂/Si (b).

Fig. S4 N₂ adsorption/desorption curve (a) and pore size distributions of WSi₂/Si obtained from desorption data.

Fig. S5 HRTEM image of H-WSi₂/Si (a), L-WSi₂/Si (b).

Fig. S6 Cycling performances at 0.2C of WSi_2/Si with a mass loading of ~1.45 mg cm⁻².

	Weight percent of W in this sample, %	Weight percent of WSi_2 in this sample, %	Main element in this sample
WO ₃ -SiO ₂	4.83	0	Si, O, W
WSi ₂ /Si	5.75	7.51	Si, W
H-WSi ₂ /Si	12.6	16.45	Si, W
L-WSi ₂ /Si	1.75	2.28	Si, W

Table S1 Tungsten content in samples based on ICP

Table S2 Comparison of electrochemical performance of Si-based anodes in previous work and in this work.

Sample	Current density(mA/g)	Voltage range (V)	Cycle No.	charge capacity (mAh/g)	Ref.
TiSi ₂ /Si	500	0.01-1.2	100	1161	[1]
DSM/Si	100	0.01-1.5	100	1137	[2]
Sn_{15}/Si_{85}	200	0.01-1.5	70	1544.7	[3]
SiC/Si	500	0.01-1.2	100	1670	[4]
BHP/Si	840	0.01-1.2	150	1400	[5]
MoSi ₂ /Si	840	0.01-1.2	150	1647.3	[6]
SiC/C/Si	500	0.01-1.5	550	1050	[7]
MgSi ₂ /C	100	0.02-2	500	451.8	[8]
WSi ₂ /Si	840	0.01-1.2	200	1504.8	This work

Table S3 The impendence parameters of the samples before cycling

Sample	$R_{o}(\Omega)$	$R_{ct}(\Omega)$	$D_{Li}^{+}(m^2 s^{-1})$
Si	3.784	244.2	3.45×10 ⁻²²
WSi ₂ /Si	2.094	91.14	3.66×10 ⁻²¹

References

- F. Li, Z. Wang, W. Liu, T. Yan, C. Zhai, P. Wu and Y. Zhou, ACS Applied Energy Materials, 2019, 2, 2268-2275.
 Y. Yang, C. Ni, M. Gao, J. Wang, Y. Liu and H. Pan, Energy Storage Materials, 2018, 14, 279-288.
 Q. Hao, J. Hou, J. Ye, H. Yang, J. Du and C. Xu, Electrochimica Acta, 2019, 306, 427-436.
 J. Zhang, J. Tang, X. Zhou, M. Jia, Y. Ren, M. Jiang, T. Hu and J. Yang, ChemElectroChem, 2019, 6, 450-455.
 Y. Ren, X. Zhou, J. Tang, J. Ding and J. Yang, Inorganic Chemistry, 2019, 58, 4592-4599.
 L. Wu, J. Yang, X. Zhou, I. Tang, Y. Ren and Y. Nie. Acs. Appl. Materials

- 4392-4399.
 L. Wu, J. Yang, X. Zhou, J. Tang, Y. Ren and Y. Nie, Acs Appl Mater Interfaces, 2016, 8, 16862.
 C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang, X. Lin, B. Shen, R. Zhang and F. Wei, Nano letters, 2019, 19, 5124-5132.
 A. G. Tamirat, M. Hou, L. Yao, B. Duan and Y. Xia, Journal of Power Sources, 2018, 384.