Displacement Parameters from Density-Functional Theory and their Validation in the Experimental Charge Density of Tartaric Acid

Damian Mroz, Ruimin Wang, Ulli Englert, and Richard Dronskowski

Supporting Information

Tables

Table S1 ADPs for all atoms in **1** in the harmonic and in the quasiharmonic approximation at 100 K (atom numbering according to Fig. S1).

Table S2 ADPs of all atoms in **1** at 100 K, H atoms with ADPs fixed to the values obtained from the SHADE server (atom numbering according to Fig. S3).

 Table S3 Resolution & completeness statistics (cumulative and Friedel pairs averaged).

Table S4 *R*-Value statistics as a function of resolution (in resolution shells).

Table S5 Monopole populations, contraction parameters κ and κ' and net atomic charges.

Table S6 Bond distances in 1 (Å).

Table S7 Bond angles in 1 (°).

Table S8 Hydrogen bond geometry [Å, deg.] in 1.

Table S9 Diagonal components *U* of the displacement tensors, sorted from smallest (min), medium (med) to largest (max) for theory and experiment, given in 10^{-3} Å². Similarity indices (*S*₁₂) are given in percent.

 Table S10 Topological properties of (3,-1) critical points for hydrogen bonds in 1.

Table S11 Topological properties of (3,-1) critical points for covalent bonds in 1.

Figures

Figure S1 Calculated displacement ellipsoids (90%) based on the harmonic approximation and atom numbering for **1** at 100 K.

Figure S2 Scatter plot of experimental main-axis components of displacement tensors from the independent atom model (IAM) versus experimental results from multipole refinement (MM) at 100 K for **1**. Horizontal and vertical lines correspond to 10 standard uncertainties of the experimental values.

Figure S3 Displacement ellipsoids and atom numbering for **1** at 100 K (90%). ADPs for H atoms were obtained from the SHADE server (A. Ø. Madsen. SHADE web server for estimation of hydrogen anisotropic displacement parameters. *J. Appl. Cryst.*, 2006, **39**, 757).

Figure S4 Scatter plots for X-ray refinement result for 1.

Figure S5 H bonds in **1**; the Hirshfeld surface shows a molecule of tartaric acid. Surface colours encode the electrostatic potential (red negative, blue positive).

Figure S6 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O2–H2…O4ⁱ.

Figure S7 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O3–H3…O5ⁱⁱ.

Figure S8 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O4–H4…O1ⁱⁱⁱ.

Figure S9 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O6–H6…O1^{iv}.

Figure S10 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for C3–H3A···O6^v.

Figure S11 Normal probability plot for residuals in the electron density in 1.

Figure S12 Probability distribution histogram for residuals in the electron density in 1.

Figure S13 Fractal dimension plot for residuals in the electron density in 1.

Figure S14 PEANUT plots of differences

ADPs (experiment, MM based) - ADPs (calculated, quasi-harmonic approximation)

Figure S1 Calculated displacement ellipsoids (90%) based on the harmonic approximation and atom numbering for **1** at 100 K.

Table S1 ADPs for all atoms in **1** in the harmonic and in the quasi-harmonic approximation at 100 K (atom numbering according to Fig. S1).

Atom	<i>U</i> ₁₁	U ₂₂	U_{33}	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
01	0.01037	0.01326	0.005063	-0.00025	0.002246	-0.00164
02	0.009121	0.01485	0.007929	-0.00117	0.00351	0.001918
O3	0.007649	0.01294	0.007524	-1.4E-05	0.002525	-0.00212
O4	0.008396	0.00843	0.006653	0.000852	0.002505	-0.00063
O5	0.017388	0.01156	0.008864	-0.00108	0.006502	0.003125
O6	0.015058	0.01282	0.006134	0.00242	0.0041	0.004064
H1	0.020273	0.02332	0.016926	-0.00157	0.00751	0.000822
H2	0.019601	0.02846	0.018897	0.003479	0.00947	-0.00292
H3	0.014352	0.02352	0.023653	0.004677	0.001701	0.001917
H4	0.02605	0.02516	0.013062	0.002194	0.007495	0.002656
H5	0.02543	0.01655	0.018606	0.005367	0.004081	0.002247
H6	0.011914	0.02423	0.019983	0.000326	0.002934	0.001594
C1	0.008582	0.00745	0.005231	-0.00073	0.002655	-0.00045
C2	0.008135	0.00761	0.005082	-1.9E-05	0.002393	-0.00051
C3	0.006622	0.00819	0.004714	-0.00031	0.001868	-0.0002
C4	0.007524	0.00957	0.004654	-0.0004	0.001973	0.000519

Harmonic approximation

Quasiharmonic approximation

Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	<i>U</i> ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
01	0.011445	0.014430	0.005261	-0.000276	0.002399	-0.001567
02	0.009930	0.016970	0.008307	-0.001481	0.003712	0.002023
O3	0.008335	0.014160	0.008005	0.000180	0.002675	-0.002139
O4	0.009167	0.009770	0.007051	0.000829	0.002720	-0.000873
O5	0.019697	0.013380	0.009277	-0.000947	0.007135	0.003920
O6	0.016416	0.014550	0.006369	0.002473	0.004346	0.004521
H1	0.021215	0.025040	0.017209	-0.001852	0.007821	0.001012
H2	0.020461	0.029870	0.019682	0.003836	0.009681	-0.003332
H3	0.015149	0.024840	0.024701	0.004830	0.001870	0.001871
H4	0.027362	0.026760	0.013170	0.002317	0.007600	0.002916
H5	0.026437	0.017950	0.018991	0.005637	0.004133	0.002404
H6	0.012587	0.026180	0.020296	0.000165	0.003031	0.001637
C1	0.009401	0.008460	0.005434	-0.000737	0.002834	-0.000433
C2	0.008825	0.008810	0.005279	0.000084	0.002535	-0.000469
C3	0.007274	0.009630	0.004917	-0.000358	0.002041	-0.000239
C4	0.008359	0.011050	0.004874	-0.000426	0.002192	0.000627

Figure S2 Scatter plot of experimental main-axis components of displacement tensors from the independent atom model (IAM) versus experimental results from multipole refinement (MM) at 100 K for **1**. Horizontal and vertical lines correspond to 10 standard uncertainties of the experimental values.

Figure S3 Displacement ellipsoids and atom numbering for **1** at 100 K (90%). ADPs for H atoms were obtained from the SHADE server (A. Ø. Madsen. SHADE web server for estimation of hydrogen anisotropic displacement parameters. *J. Appl. Cryst.*, 2006, **39**, 757).

Table S2 ADPs of all atoms in 1 at 100 K, H atoms with ADPs fixed to the values obtained
from the SHADE server (atom numbering according to Fig. S3).

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U 13	U ₁₂
01	0.01009(14)	0.01437(16)	0.00518(12)	-0.00036(13)	0.00162(10)	-0.00159(14)
02	0.00818(13)	0.01546(17)	0.00854(14)	-0.00176(12)	0.00329(11)	0.00177(13)
O3	0.00690(13)	0.01397(17)	0.00824(14)	-0.00023(12)	0.00246(10)	-0.00226(13)
O4	0.00763(13)	0.00848(13)	0.00702(13)	0.00145(11)	0.00174(10)	-0.00040(12)
O5	0.01829(19)	0.01317(17)	0.00959(16)	-0.00053(14)	0.00632(13)	0.00596(17)
O6	0.01558(18)	0.01423(17)	0.00621(14)	0.00311(13)	0.00392(12)	0.00515(15)
C1	0.00779(14)	0.00854(15)	0.00591(13)	-0.00093(11)	0.00212(10)	-0.00043(12)
C2	0.00782(13)	0.00785(13)	0.00555(13)	-0.00001(11)	0.00202(9)	-0.00053(12)
C3	0.00679(13)	0.00817(14)	0.00506(13)	-0.00006(11)	0.00134(9)	-0.00014(11)
C4	0.00850(14)	0.00984(15)	0.00508(14)	-0.00031(12)	0.00188(10)	0.00106(13)
H2	0.02073	0.02073	0.02073	0.00000	0.00375	0.00000
H2A	0.03390	0.03390	0.03390	0.00000	0.00614	0.00000
H3	0.01811	0.01811	0.01811	0.00000	0.00328	0.00000
H3A	0.01038	0.01038	0.01038	0.00000	0.00188	0.00000
H4	0.01495	0.01495	0.01495	0.00000	0.00271	0.00000
H6	0.03424	0.03424	0.03424	0.00000	0.00620	0.00000

θ	sinθ/λ (Complete	Expected	Measur	ed Missing
20.82	0.500	1.000	328	328	0
23.01	0.550	1.000	437	437	0
25.24	0.600	1.000	554	554	0
27.51	0.650	1.000	697	697	0
29.84	0.700	1.000	864	864	0
32.21	0.750	1.000	1060	1060	0
34.65	0.800	1.000	1286	1286	0
37.17	0.850	1.000	1533	1533	0
39.77	0.900	1.000	1809	1809	0
42.47	0.950	1.000	2130	2130	0
45.29	1.000	1.000	2475	2475	0
48.27	1.050	1.000	2847	2847	0
51.43	1.100	0.998	3266	3261	5
54.52	1.146	0.978	3694	3611	83

 Table S3 Resolution & completeness statistics (cumulative and Friedel pairs averaged)

The reported completeness refers to the actual *h*,*k*,*l* index range

Table S4 *R*-Value statistics as a function of resolution (in resolution shells).

θ	$sin\theta/\lambda$	#	<i>R</i> 1	wR2	S	Rσ	av(I/SigW)	av(l)	av(SigW)
12.38	0.302	127	0.046	0.127	2.694	0.021	21.03	405.44	19.80
15.68	0.380	128	0.037	0.081	1.631	0.019	19.81	141.34	6.67
18.02	0.435	135	0.025	0.083	1.599	0.019	18.96	124.41	6.07
19.90	0.479	116	0.025	0.097	1.790	0.020	18.36	93.69	4.74
21.51	0.516	124	0.030	0.100	1.760	0.023	17.08	60.37	3.15
22.94	0.548	145	0.034	0.095	1.607	0.027	16.53	44.67	2.46
24.22	0.577	118	0.028	0.078	1.291	0.026	16.09	40.87	2.22
25.40	0.603	128	0.027	0.083	1.388	0.025	16.22	33.26	1.80
26.49	0.628	137	0.024	0.064	1.083	0.022	16.46	33.68	1.74
27.52	0.650	113	0.022	0.066	1.056	0.025	15.34	22.74	1.23
28.49	0.671	126	0.020	0.057	0.997	0.023	17.07	32.41	1.70
29.41	0.691	140	0.023	0.065	1.068	0.028	15.91	21.76	1.21
30.28	0.709	118	0.024	0.069	1.045	0.034	14.49	19.92	1.18
31.12	0.727	124	0.022	0.061	0.889	0.038	13.89	23.87	1.47
31.93	0.744	112	0.023	0.062	0.870	0.038	13.09	22.85	1.42
32.71	0.760	132	0.024	0.062	0.896	0.040	13.77	22.55	1.43
33.46	0.776	116	0.022	0.057	0.831	0.040	14.03	21.40	1.35
34.20	0.791	123	0.025	0.062	0.821	0.047	12.38	17.89	1.22
34.91	0.805	129	0.027	0.066	0.863	0.050	12.15	14.96	1.05
54.52	1.146	3756	0.044	0.101	0.915	0.083	7.84	8.11	0.80

overall $R\sigma = \Sigma(\sigma(I)) / \Sigma(I) = 0.0335$

Refinement

The final MM comprised multipoles up to hexadecapoles for non-H atoms and up to bond-directed dipoles for the H (C-H) atoms, quadrupoles for the H (O-H) atoms. Positional parameters of H atoms were refined freely in a step-wise approach, and their ADPs were fixed to the results obtained from theory in the harmonic approximation.

Figure S4 Scatter plots of X-ray refinement results (MM) for 1.

Atom	Pval	κ	P00	κ'	Net charge
O(1)	6.18(5)	0.984(3)	0.000	1.04(4)	-0.18(5)
O(2)	6.27(5)	0.984(3)	0.000	1.04(4)	-0.27(5)
O(3)	6.41(5)	0.979(3)	0.000	1.12(4)	-0.41(5)
O(4)	6.34(5)	0.979(3)	0.000	1.12(4)	-0.34(5)
O(5)	6.25(6)	0.984(3)	0.000	1.04(4)	-0.25(6)
O(6)	6.19(5)	0.984(3)	0.000	1.04(4)	-0.19(5)
C(1)	4.27(9)	0.974(7)	0.000	0.81(2)	-0.27(9)
C(2)	4.23(9)	0.979(6)	0.000	0.85(2)	-0.23(9)
C(3)	4.13(9)	0.979(6)	0.000	0.85(2)	-0.13(9)
C(4)	4.17(9)	0.974(7)	0.000	0.81(2)	-0.17(9)
H(2)	0.57(3)	1.34(3)	0.000	1.500	+0.43(3)
H(3)	0.59(3)	1.34(3)	0.000	1.500	+0.41(3)
H(4)	0.68(4)	1.34(3)	0.000	1.500	+0.32(4)
H(6)	0.59(4)	1.34(3)	0.000	1.500	+0.41(4)
H(2A)	0.56(4)	1.34(3)	0.000	1.500	+0.44(4)
H(3A)	0.57(4)	1.34(3)	0.000	1.500	+0.43(4)

Table S5 Monopole populations, contraction parameters κ and κ' and net atomic charges.

Figure S5 H bonds in **1**; the Hirshfeld surface shows a molecule of tartaric acid. Surface colours encode the electrostatic potential (red negative, blue positive).

Table S6 Bond distances in 1 (Å).

O1-C1 1.2185(4) O O2-C1 1.3131(4) O O3-C2 1.3993(4) O O4-C3 1.4101(5) O O5-C4 1.2103(5) O O6-C4 1.3183(5) O O2-H2 0.982(9) O O3-H3 0.979(7) O	04-H4 06-H6 C1-C2 C2-C3 C3-C4 C2-H2A C3-H3A	0.977(7) 0.987(8) 1.5186(4) 1.5456(5) 1.5211(4) 1.083(10) 1.085(9)
---	---	--

Table S7 Bond angles in 1 (°).

C1-O2-H2	115.4(5)	O4-C3-C4	112.14(3)
C2-O3-H3	107.4(4)	C2-C3-C4	110.59(3)
C3-O4-H4	109.7(5)	O5-C4-C3	124.46(3)
C4-O6-H6	113.4(5)	O6-C4-C3	109.80(3)
O1-C1-C2	123.47(3)	O5-C4-O6	125.73(3)
O2-C1-C2	111.18(3)	O3-C2-H2A	112.5(5)
01-C1-O2	125.31(3)	C1-C2-H2A	108.5(5)
O3-C2-C1	108.70(2)	C3-C2-H2A	109.2(5)
O3-C2-C3	111.08(3)	O4-C3-H3A	106.8(5)
C1-C2-C3	106.66(3)	C2-C3-H3A	109.9(5)
O4-C3-C2	110.99(3)	C4-C3-H3A	106.3(4)

 Table S8 Hydrogen bond geometry [Å, deg.] in 1.

D(onor)	Hydrogen	A(cceptor)	D-H	Н…А	D…A	D-H…A
02	H2	O4 ⁱ	0.979(9)	1.640(9)	2.6163(4)	174.8(8)
O3	H3	O5″	0.980(8)	1.836(8)	2.8107(4)	173.0(7)
O4	H4	O1 ^{///}	0.976(7)	1.905(8)	2.8579(4)	164.7(7)
O6	H6	01 ^{iv}	0.982(8)	1.712(8)	2.6781(4)	167.2(8)
C3	H3A	06 ^{<i>v</i>}	1.083(9)	2.497(10)	3.0607(5)	111.2(7)

Symmetry operators: i = 2-x, y-0.5, 1-z

ii = 1-*x*, *y*-0.5, 2-*z iii* = 1-*x*, *y*+0.5, 1-*z iv* = *x*, *y*, 1+*z v* = 2-*x*, *y*+0.5, 2-*z*

		Theory		Experiment			
Atom	U _{min}	$U_{ m med}$	U _{max}	U_{\min}	$U_{ m med}$	U_{\max}	S ₁₂
01	4.704	9.664	14.002	4.959	10.178	14.783	0.196
02	5.425	10.206	15.539	5.600	9.515	16.519	0.168
O3	5.743	8.253	13.684	5.482	8.443	15.258	0.366
O4	5.375	8.635	9.040	5.716	7.928	9.567	0.293
O5	5.175	11.780	19.334	6.026	12.068	21.760	0.661
O6	4.901	9.770	18.529	4.617	9.985	20.946	0.220
C1	4.298	7.312	9.131	5.207	7.058	9.106	0.386
C2	4.368	7.399	8.613	4.958	7.102	8.644	0.186
C3	4.177	6.780	8.253	4.728	7.038	7.845	0.276
C4	4.130	7.574	9.716	4.877	7.746	10.231	0.303

Table S9 Diagonal components *U* of the displacement tensors, sorted from smallest (min), medium (med) to largest (max) for theory and experiment, given in 10^{-3} Å². Similarity indices (*S*₁₂) are given in percent.

Table S10 Topological properties of (3,-1) critical points for hydrogen bonds in **1**.

 d_1 (d_2) is the distance from the first (second) atom to the (3, -1) critical point, $R_{ij} = d_1 + d_2$, ρ is the electron density, $\nabla^2 \rho$ is the Laplacian of the electron density. G(a.u.) is the kinetic energy density, V(a.u.) the potential energy density and E(a.u.) the total energy density.

Bond	$R_{ij}(\text{\AA})$	$d_1(\text{\AA})$	$\rho(e{\cdot}\mathrm{\AA}^{-3})$	$\nabla^2 \rho(e \cdot \mathrm{\AA}^{-5})$	G(a.u.)	V(a.u.)	E(a.u.)
$H2 \cdots O4^{i}$	1.6428	0.5353	0.34(9)	1.2(3)	0.028(5)	-0.044(7)	-0.016(9)
$\mathrm{H3}\cdots\mathrm{O5}^{ii}$	1.8480	0.6242	0.18(9)	0.8(2)	0.012(5)	-0.016(6)	-0.004(8)
$\mathrm{H4}\cdots\mathrm{O1}^{iii}$	1.9086	0.6856	0.17(7)	1.5(2)	0.016(4)	-0.017(5)	-0.001(6)
$\mathrm{H6}\cdots\mathrm{O1}^{iv}$	1.7186	0.5604	0.26(9)	1.1(3)	0.020(5)	-0.029(6)	-0.008(8)
$H3A \cdots O6^{v}$	2.5093	1.1028	0.064(3)	0.88(3)	0.0073(12)	-0.0055(11)	0.0018(16)

Figure S6 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O2–H2…O4ⁱ.

Figure S7 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O3–H3…O5ⁱⁱ.

contact	D…A [Å]	D-H [Å]	H…A [Å]	<02-H2…O4 ⁱ	ρ [eÅ -³]
O4-H4⋯O1 ⁱⁱⁱ iii=1-x, y+0.5,1-z	2.8579(4)	0.976(7)	1.905(8)	164.7(7)	0.17(7)

Figure S8 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O4–H4…O1ⁱⁱⁱ.

Figure S9 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for O6–H6…O1^{iv}.

contact	D…A [Å]	D–H [Å]	H…A [Å]	<02-H2…O4 ⁱ	ρ [eÅ -³]
C3-H3A…O6 ^v	3.0607(5)	1.083(9)	2.497(10)	111.2(7)	0.064(3)
v=2-x, y+0.5,2-z					

Figure S10 Gradient trajectory plot, deformation density (contour lines at 0.1 $e^{A^{-3}}$) and Laplacian (isosurface at -2 $e^{A^{-5}}$) of electron density for C3–H3A···O6^v.

Bond	$R_{ij}(\text{\AA})$	$d_1(\text{\AA})$	$\rho(e \cdot \text{\AA}^{-3})$	$\nabla^2 \rho (e \cdot \text{\AA}^{-5})$
O1—C1	1.2182	0.8203	2.82(3)	-2.3(2)
O2-C1	1.3134	0.8739	2.46(3)	-26.5(2)
O2—H2	0.9844	0.7405	2.4(2)	-52.3(9)
O3—C2	1.4004	0.8552	2.06(3)	-21.0(2)
O3—H3	0.9850	0.7220	2.6(2)	-50.4(9)
O4—C3	1.4105	0.8694	1.96(3)	-24.7(2)
O4—H4	0.9844	0.7256	2.6(2)	-43.5(9)
O5-C4	1.2108	0.8124	2.91(4)	-6.3(3)
O6-C4	1.3187	0.8755	2.39(3)	-26.4(2)
O6-H6	0.9856	0.7246	2.5(2)	-45.5(9)
C1-C2	1.5193	0.8289	1.89(3)	-17.74(7)
C1—H2	2.0046	1.7607	2.4(2)	-52.3(9)
C2-C3	1.5474	0.7710	1.77(3)	-14.64(8)
C2— $H2A$	1.0833	0.7262	1.9(2)	-20.9(5)
C3-C4	1.5211	0.7149	1.81(3)	-19.08(7)
С3—НЗА	1.0830	0.7378	2.0(2)	-21.4(5)
C4—H6	1.9875	1.7265	2.5(2)	-45.5(9)

|--|

Figs. S11 - S13 show the residual electron density distribution for 1.

Figure S11 Normal probability plot for residuals in the electron density in 1.

Figure S13 Fractal dimension plot for residuals in the electron density in 1.

Figure S14 PEANUT plots of differences

ADPs (experiment, MM based) - ADPs (calculated, quasi-harmonic approximation) Differences are scaled by a factor of 2 (top) and 4 (bottom), blue positive, red negative.

