Supporting Information for:

Structural Diversity of Four Lanthanide Metal-Organic Frameworks based on

2,6-Naphthalenedicarboxylate: Synthesis, Structures and Photoluminescent Properties

Ana R. K. Chatenever[†], Joe E. Matsuoka[†], Stanley J. Wang[†], Beatriz Ehlke[†], Pierre Le

Maguerès[§], Eric W. Reinheimer[§], Xueling Song[⊥], Honghan Fei[⊥] and Scott R. J. Oliver^{*†}

† University of California, Santa Cruz, Department of Chemistry and Biochemistry, 1156 High

Street, Santa Cruz, California 95064

§ Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381

⊥ Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, China 200092

Table of Contents:

Figure S1. Optical micrographs	Page S2
Figure S2. PXRD of SLUG-49 (La).	Page S3
Figure S3. PXRD of SLUG-50 (Nd)	Page S4
Figure S4. PXRD of SLUG-51 (Eu)	Page S5
Figure S5. PXRD of SLUG-52 (Gd)	Page S6
Figure S6. π -stacking of NDC in SLUG-50 (Nd) and SLUG-51 (Eu)	Page S7
Figure S7. PXRD of SLUG-50 (Nd) (bottom) after aqueous conditions	Page S7
Figure S8. PXRD and FTIR (B) of 2,6-naphthalenedicarboxylic acid	Page S8
Figure S9. Physisorption analysis of SLUG-51(Eu)	Page S8
Table S1. Void volumes calculated using PLATON.	Page S9

Figure S1. Optical micrographs of the powders of A) SLUG-49 (La); B) SLUG-50 (Nd); C) SLUG-51 (Eu); D) SLUG-52 (Gd).

Figure S2. Comparison of the theoretical PXRD of SLUG-49 (La) (bottom) with as-synthesized

(top).

Figure S3. Comparison of the theoretical PXRD of SLUG-50 (Nd) (bottom) with as-synthesized

(top).

Figure S4. Comparison of the theoretical PXRD of SLUG-51 (Eu) (bottom) with as-synthesized

(top).

Figure S5. Comparison of the theoretical PXRD of SLUG-52 (Gd) (bottom, asterisks) with assynthesized (top). An additional as-yet unknown phase is present in the as-synthesized sample.

Figure S6. Observed π -stacking of NDC in SLUG-50 (Nd) and SLUG-51 (Eu).

Figure S7. PXRD of SLUG-50 (Nd) (bottom) as an example after treatment in various aqueous conditions (acidic pH was 4.6 and basic pH was 9.6); all were static for 2 h.

Figure S8. PXRD (A) and FTIR (B) of 2,6-naphthalenedicarboxylic acid.

Figure S9. Physisorption analysis of SLUG-51(Eu).

	SLUG-49	SLUG-50	SLUG-51	SLUG-52
Total unit cell volume	3403.54 Å ³	4263.68 Å ³	4238.51 Å ³	7679.98 Å ³
Volume occupied	2435.91 Å ³ , 71.57%	2981.17 Å ³ , 69.92%	2913.98 Å ³ , 68.75%	5361.39 Å ³ , 69.81%
Void volume	967.63 Å ³ , 28.43%	1282.51 Å ³ , 30.08%	1324.53 Å ³ , 31.25%	2318.59 Å ³ , 30.19%

 Table S1. Void volumes calculated using PLATON