Supporting Information

The novel silver(I) cluster-based coordination polymers as efficient luminescent thermometer

Zhen-Zhen Xue, Xin-Yu Li, Lei Xu, Song-De Han, Jie Pan* and Guo-Ming Wang

[†]College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China

E-mail address: tsingtaopj@163.com

	Co	ompound 1	
Ag1—N2	2.130 (3)	Ag2—Ag1 ⁱ	2.9112 (4)
Ag1—N13	2.160 (3)	Ag2—Ag2 ⁱ	3.0037 (5)
Ag1—N14	2.608 (3)	Ag2—Ag4	2.8938 (4)
Ag1—N1	2.628 (3)	Ag3—O5W	2.174 (3)
Ag1—Ag2 ⁱ	2.9111 (4)	Ag3—N10	2.263 (3)
Ag2—N15 ⁱ	2.161 (3)	Ag3—N11	2.378 (3)
Ag2—N3	2.163 (3)	Ag4—N8	2.215 (3)
Ag2—N5	2.631 (3)	N14—Ag1—Ag2 ⁱ	62.82 (7)
N2—Ag1—N13	167.10 (11)	O5W—Ag3—N11	129.72 (12)
N2—Ag1—N14	121.83 (10)	N10—Ag3—N11	73.07 (11)
N13—Ag1—N14	71.03 (10)	N8—Ag4—N16	154.58 (11)
N2—Ag1—N1	70.05 (11)	N8—Ag4—N18	113.90 (11)
N13—Ag1—N1	105.82 (11)	N16—Ag4—N18	71.96 (11)
N14—Ag1—N1	110.70 (10)	N8—Ag4—N9	70.94 (11)
N2—Ag1—Ag2 ⁱ	93.61 (8)	N13—Ag1—Ag2 ⁱ	93.63 (8)
	Co	ompound 2	
Ag1—N2	2.070 (9)	Ag2—I1 ⁱ	2.8672 (13)
Ag1—N7 ⁱ	2.085 (8)	Ag2—Ag3 ⁱⁱ	3.2554 (17)
Ag2—N6	2.411 (8)	Ag3—N9	2.319 (9)
Ag2—N5	2.465 (9)	Ag3—N8	2.333 (8)
Ag2—N3	2.475 (9)	Ag3—I1 ⁱⁱⁱ	2.6524 (13)
Ag2—I1	2.8138 (13)	Ag3—Ag2 ⁱⁱ	3.2554 (17)
N2—Ag1—N7 ⁱ	170.1 (3)	N6—Ag2—I1 ⁱ	98.6 (2)
N6—Ag2—N5	66.6 (3)	N5—Ag2—I1 ⁱ	122.0 (2)
N6—Ag2—N3	132.8 (3)	N3—Ag2—I1 ⁱ	102.4 (2)
N5—Ag2—N3	66.4 (3)	I1—Ag2—I1 ⁱ	111.25 (3)
N6—Ag2—I1	117.4 (2)	N9—Ag3—N8	73.2 (3)
N5—Ag2—I1	125.64 (19)	N9—Ag3—I1 ⁱⁱⁱ	156.6 (2)
N3—Ag2—I1	93.4 (2)	N8—Ag3—I1 ⁱⁱⁱ	128.8 (2)

Table S1. Selected bond lengths (\AA) and angles $(^{\circ})$ for 1 and 2.

Figure S1. $\pi \cdots \pi$ stacking interactions in compound **1**.

Figure S2. View of the $[Ag_4(bptp)_2(H_2O)]$ subunit in compound 2.

Figure S3. $\pi \cdots \pi$ stacking interactions in compound **2**.

Figure S4. PXRD patterns of simulated from the single-crystal data of compound 1 (black); assynthesized (red).

Figure S5. PXRD patterns of simulated from the single-crystal data of compound 2 (black); assynthesized (red).

Figure S6. TG curves for compounds 1 and 2.

CPs	Range (K)	Ref.
$[Ag_{0.5}(H_2O)][Ag_{1.5}(L)(H_2O)] \cdot 2H_2O$	100-300	1
$[Zn(\mu_4-p-tr_2Ph)(\mu_2-NO_3)]\cdot NO_3$	80-210	2
$[Tb_{0.98}Eu_{0.02}(bdc)_{0.5}(dstp)] \cdot 2H_2O$	125-250	3
$[Tb_{0.99}Eu_{0.01}(bdc)_{0.5}(dstp)] \cdot 2H_2O$	100-200	3
$[Ag_9S(tBuC_6H_4S)_6(dpph)_3(CF_3SO_3)]$	180-300	4
Tb _{0.9} Eu _{0.1} PIA	100-300	5
$\{[Ag_4(bptp)_2(H_2O)] \cdot 3.5H_2O\}$	77-300	This work

 Table S2. Temperature sensing range for 1 and other reported compounds.

Figure S7. Emission spectra of H₂bptp ligand in the solid state.

References

- 1. Y. C. He, N. Xu, X. Zheng, Y. Yu, B. Ling and J. You, Dyes Pigm., 2017, 136, 577-582.
- Y. J. Qi, Y. J. Wang, X. X. Li, D. Zhao, Y. Q. Sun and S. T. Zheng, *Cryst. Growth Des.*, 2018, 18, 7383-7390.
- 3. Y. Wei, R. Sa, Q. Li and K. Wu, Dalton Trans., 2015, 44, 3067-3074.
- X. Y. Li, H. F. Su, R. Q. Zhou, S. Feng, Y. Z. Tan, X. P. Wang, J. Jia, M. Kurmoo, D. Sun and L. S. Zheng, *Chem. Eur. J.*, 2016, **22**, 3019-3028.
- X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, B. Chen and G. Qian, J. Am. Chem. Soc., 2013, 135, 15559-15564.