# Electronic Supplementary Information (ESI)

#### A New 3D Luminescent Ba-Organic Framework with High Open Metal

Sites: CO<sub>2</sub> Fixation, Luminescent Sensing and Dye Sorption<sup>+</sup>

Meng Wang, Jiao Liu, Jing Jin, Dan Wu, Guoping Yang\*, Wen-Yan Zhang and Yao-Yu Wang

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.

E-mail address:\*E-mail: ygp@nwu.edu.cn (G. Yang).

### Contents

**S1.** Materials and Measurements.

 Table S1. Selected bond lengths [Å] and angles [°] for 1.

**Table S2.** A comparison of the luminescent MOFs and **1** used for detecting various ions.

Fig. S1. The coordination modes of  $L^{3-}$  ligands in complex 1.

**Fig. S2.** (a) The distorted dodecahedron of Ba1 and Ba2; (b) A distorted tetrakaidecahedron coordination geometry of Ba3 of complex **1**.

**Fig. S3.** (a) The helical rod SBUs metal chain viewed along the **b** axis; (b) 2D layer structure of complex **1**, the coordinated NMP are omitted for clarity.

Fig. S4. PXRD patterns of complex 1 and complex 1a.

Fig. S5. The TGA curves for complex 1.

Fig. S6. The FT-IR spectra of complex 1.

Fig. S7. PXRD pattern after catalytic experiment of complex 1.

Fig. S8. <sup>1</sup>H NMR spectrum of cyclic carbonate with complex 1.

Fig. S9. Cyclic experiments for the cycloaddition  $CO_2$  of complex 1.

Fig. S10. The solid state emission spectra of free H<sub>3</sub>L ligand and complex 1.

**Fig. S11.** The relative luminescence intensities of different concentrations  $Fe^{3+}$  (a);  $Cr_2O_7^{2-}$  (b);  $CrO_4^{2-} @\mathbf{1}$  (c) and  $[Fe(CN)_6]^{3-}@\mathbf{1}$  (d) in DMF solutions.

**Fig. S12** The linear correlation for the plot of  $(I_0/I)$ -1 vs concentration of Fe<sup>3+</sup> (a); Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> (b); Cr<sub>2</sub>O<sub>4</sub><sup>2-</sup> (c) and [Fe(CN)<sub>6</sub>]<sup>3-</sup> (d) in low concentration range, respectively.

**Fig. S13.** UV-vis adsorption spectra of various  $K_x(A)$  solutions and the excitation spectrum of complex **1**.

**Fig. S14.** UV-vis adsorption spectrum of  $M(NO_3)_x$  DMF solutions and the excitation spectrum of complex **1** in DMF solution.

**Fig. S15.** PXRD patterns of complex **1** treated by different  $M(NO_3)_x$  DMF solutions (a) and anion DMF solutions (b).

**Fig. S16.** (a) The fluorescence intensity of complex **1** after five runs sensing experiment with  $Fe^{3+}(a)$ ;  $Cr_2O_7^{2-}(b)$ ;  $CrO_4^{2-}(c)$  and  $[Fe(CN)_6]^{3-}(d)$ .

Fig. S17. XPS spectra of 1 (black) and  $1@Fe^{3+}$  (red).

Fig. S18. Color differences of the DMF solutions with complex 1 in various dyes.

Fig. S19. PXRD pattern after dye experiment of complex 1.

| 1              |           |                      |            |
|----------------|-----------|----------------------|------------|
| Ba(2)-O(11)#1  | 2.626(5)  | O(11)#1-Ba(2)-O(5)#2 | 109.49(18) |
| Ba(2)-O(5)#2   | 2.686(6)  | O(11)#1-Ba(2)-O(15)  | 101.8(2)   |
| Ba(2)-O(15)    | 2.738(8)  | O(5)#2-Ba(2)-O(15)   | 72.5(2)    |
| Ba(2)-O(9)#3   | 2.756(5)  | O(11)#1-Ba(2)-O(9)#3 | 164.01(16) |
| Ba(2)-O(2)#4   | 2.807(5)  | O(5)#2-Ba(2)-O(9)#3  | 72.89(16)  |
| O(10)-Ba(1)#4  | 2.692(6)  | O(15)-Ba(2)-O(9)#3   | 94.0(2)    |
| O(10)-Ba(3)#4  | 3.038(6)  | O(11)#1-Ba(2)-O(2)#4 | 84.36(17)  |
| O(11)-Ba(2)#11 | 2.626(5)  | O(5)#2-Ba(2)-O(2)#4  | 141.59(19) |
| O(11)-Ba(1)#12 | 2.947(5)  | O(15)-Ba(2)-O(2)#4   | 69.6(2)    |
| Ba(2)-O(1)#4   | 2.848(5)  | O(9)#3-Ba(2)-O(2)#4  | 103.62(17) |
| Ba(2)-O(4)     | 2.868(6)  | O(11)#1-Ba(2)-O(1)#4 | 73.57(16)  |
| Ba(2)-O(3)     | 2.967(6)  | O(5)#2-Ba(2)-O(1)#4  | 171.01(17) |
| Ba(1)-O(10)#6  | 2.692(6)  | O(15)-Ba(2)-O(1)#4   | 115.6(2)   |
| Ba(1)-O(1)#5   | 2.701(5)  | O(5)-Ba(3)-O(6)      | 45.34(17)  |
| Ba(1)-O(13)    | 2.720(7)  | O(14)-Ba(3)-O(6)     | 131.2(2)   |
| Ba(1)-O(8)     | 2.740(5)  | O(16)-Ba(3)-O(8)     | 129.5(3)   |
| Ba(1)-O(14)    | 2.790(7)  | O(7)-Ba(3)-O(8)      | 46.48(16)  |
| Ba(1)-O(11)#8  | 2.947(5)  | O(5)-Ba(3)-O(8)      | 146.52(19) |
| Ba(3)-O(3)#9   | 2.715(6)  | O(14)-Ba(3)-O(8)     | 63.1(2)    |
| Ba(3)-O(16)    | 2.740(10) | O(6)-Ba(3)-O(8)      | 124.86(17) |
| Ba(1)-O(12)#8  | 2.790(6)  | O(16)-Ba(3)-O(10)#6  | 101.9(3)   |
| Ba(3)-O(9)#6   | 2.745(5)  | O(7)-Ba(3)-O(10)#6   | 118.56(16) |
| Ba(3)-O(7)     | 2.761(5)  | O(1)-Ba(1)#7         | 2.701(5)   |
| Ba(3)-O(5)     | 2.818(6)  | O(1)-Ba(2)#6         | 2.848(5)   |
| Ba(3)-O(14)    | 2.838(7)  | O(2)-Ba(2)#6         | 2.807(5)   |
| Ba(3)-O(6)     | 2.839(6)  | O(3)-Ba(3)#2         | 2.714(6)   |
| Ba(3)-O(8)     | 2.850(5)  | O(4)-Ba(1)#5         | 2.704(5)   |
| Ba(3)-O(10)#6  | 3.038(6)  | O(5)-Ba(2)#9         | 2.686(6)   |
| O(9)-Ba(2)#10  | 2.756(5)  | O(9)-Ba(3)#4         | 2.745(5)   |

Table S1 Selected bond lengths [Å] and angles [°] for 1.

Symmetry transformations used to generate equivalent atoms of **1**: #1 x, y, z+1; #2 -x+1/2, -y+1, z+1/2; #3 -x+1/2, -y, z+1/2; #4 x, y-1, z; #5 -x+1, y-1/2, -z+1/2; #6 x, y+1, z; #7 -x+1, y+1/2, -z+1/2; #8 -x+1, y+1/2, -z-1/2; #9 -x+1/2, -y+1, z-1/2; #10 -x+1/2, -y, z-1/2; #11 x, y, z-1; #12 -x+1, y-1/2, -z-1/2; #13 x+3/2, -y+1, z+1/2.

| MOFs                                                                                                       | Quenching constant (K <sub>sv</sub> )/(M <sup>-1</sup> ) | Medium           | Ref.      |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|-----------|--|
|                                                                                                            | Fe <sup>3+</sup>                                         |                  |           |  |
| [Zn(ATAª)(L)]·H <sub>2</sub> O                                                                             | $0.557 \times 10^3$                                      | H <sub>2</sub> O | 1         |  |
| [Cd(ATA <sup>a</sup> )(L)]·2H <sub>2</sub> O                                                               | 3.838 × 10 <sup>3</sup>                                  | H <sub>2</sub> O | 1         |  |
| [Eu <sub>2</sub> (TDC <sup>b</sup> ) <sub>3</sub> (CH <sub>3</sub> OH) <sub>2</sub> ·(CH <sub>3</sub> OH)] | $3.42 \times 10^{3}$                                     | MeOH             | 2         |  |
| FJI-C8 <sup>c</sup>                                                                                        | 2.188 × 10 <sup>3</sup>                                  | DMF              | 3         |  |
| Zn-DTA <sup>d</sup>                                                                                        | $8.4 \times 10^{3}$                                      | H <sub>2</sub> O | 4         |  |
| 1                                                                                                          | 11.7773 × 10 <sup>3</sup>                                | DMF              | This work |  |
| [Zn(BIPA <sup>e</sup> )(tfbdc)] <sub>n</sub>                                                               | $1.32 \times 10^{41}$                                    | DMF              | 5         |  |
| [Cd(BIPA <sup>e</sup> )(tfbdc)(H <sub>2</sub> O)]·DMF                                                      | $1.27 \times 10^4$                                       | DMF              | 5         |  |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup>                                                               |                                                          |                  |           |  |
| [Cd(ATA <sup>a</sup> )(L)]·2H <sub>2</sub> O                                                               | $0.97 \times 10^3$                                       | H <sub>2</sub> O | 1         |  |
| [Zn(ATAª)(L)]·H <sub>2</sub> O                                                                             | $1.485 \times 10^{3}$                                    | H <sub>2</sub> O | 1         |  |
| 1                                                                                                          | $9.15788 \times 10^3$                                    | DMF              | This work |  |
| [Zn(BIPA <sup>e</sup> )(tfbdc <sup>f</sup> )] <sub>n</sub>                                                 | $1.77 \times 10^4$                                       | DMF              | 5         |  |
| [Cd(BIPA <sup>e</sup> )(tfbdc <sup>f</sup> )(H <sub>2</sub> O)]·DMF                                        | $1.98 \times 10^{4}$                                     | DMF              | 5         |  |
| CrO <sub>4</sub> <sup>2-</sup>                                                                             |                                                          |                  |           |  |
| [Zn(ATA <sup>a</sup> )(L)]·H <sub>2</sub> O                                                                | 2.623 × 10 <sup>3</sup>                                  | H <sub>2</sub> O | 1         |  |
| [Cd(ATA <sup>a</sup> )(L)]·2H <sub>2</sub> O                                                               | $3.119 \times 10^{3}$                                    | H <sub>2</sub> O | 1         |  |
| 1                                                                                                          | $3.5927 \times 10^3$                                     | DMF              | This work |  |
| $[Zn_3(L^g)(OH)(H_2O)_5]$ ·NMP·2H <sub>2</sub> O                                                           | $1.3 \times 10^{4}$                                      | H <sub>2</sub> O | 6         |  |

**Table S2** A comparison of the luminescent MOFs and **1** used for detecting various ions.

$$\begin{split} \text{ATA}^a &= 2\text{-aminoterephthalic acid; TDC}^b &= 2,5\text{-thiophenedicarboxylic acid; TDPAT}^c &= 2,4,6\text{-tris}(3,5\text{-dicarboxylphenylamino})-1,3,5\text{-triazine; DTA}^d &= 2,5\text{-di}(1H\text{-imidazol-1-yl})\text{terephthalic acid;}\\ \text{BIPA}^e &= \text{bis}(4\text{-}(1H\text{-imidazol-1-yl})\text{phenyl})\text{amine;} \quad \text{tfbdc}^f &= 2,3,5,6\text{-tetrafluorobenzene} -1,4\text{-dicarboxylic acid;}\\ \text{acid; } L^g &= 2,4\text{-di}(3,5\text{-dicarboxylphenyl})\text{ benzoic acid.} \end{split}$$

#### S1 Materials and Measurements.

All of the reagents and solvents were used directly without further purification, because of they were purchased from commercial sources. The H<sub>3</sub>L ligand was obtained from Beijing Inokai Technology Company. The analysis of C, H and N elements were mainly conducted by the Perkin-Elmer 2400 C elemental analyzer. Fourier transform infrared (FT-IR) analysis was carried on an Equinox-55 FT-IR spectrometer with KBr discs in the range of 4000-400 cm<sup>-1</sup>. Thermogravimetric analyses (TGA) was performed on a NETZSCH STA 449 C microanalyzer analyzer under flowing N<sub>2</sub> with a heating rate of 10 °C min<sup>-1</sup>. Powder X-ray diffraction (PXRD) data was collected using a Bruker D8 ADVANCE X-ray powder diffractometer equipped with Cu-K $\alpha$  ( $\lambda$  = 1.5418 Å and 2 $\theta$  at 5-50°). The luminescence performance data was obtained with Hitachi F4500 fluoresc-ence spectrophotometer at ambient temperature. The X-ray photoelectron spectroscopy (XPS) was performed on an AXIS Ultra spectrometer. The UV-Vis spectra was earned on Hitachi U-3310 spectrometer.



Fig. S1 The coordination modes of  $L^{3-}$  ligands in complex 1.



Fig. S2 (a) The distorted dodecahedron of Ba1 and Ba2; (b) A distorted tetrakaidecahedron coordination geometry of Ba3 of complex 1.



Fig. S3 (a) The helical rod SBUs metal chain viewed along the b axis; (b) 2D layer structure of complex

1, the coordinated NMP are omitted for clarity.











Fig. S6 The FT-IR spectra of complex 1.



Fig. S7 PXRD pattern after catalytic experiment of complex 1.



(b) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with TBAB (Table 2, entry 2).



(c) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 3).



(d) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 4).



(e) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 5).



(f) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 6).



(g) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 7).



(h) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 8).



(i) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 9).



(j) <sup>1</sup>H NMR spectrum of cyclic carbonate and epoxide with complex **1a** and TBAB (Table 2, entry 10).



Fig. S8 <sup>1</sup>H NMR spectrum of cycloaddition of CO<sub>2</sub> and various epoxide.

Fig. S9 Cyclic experiments for the cycloaddition  $CO_2$  of complex 1.



Fig. S10 The solid state emission spectra of free H<sub>3</sub>L ligand and complex 1.



Fig. S11 The relative luminescence intensities of different concentrations  $Fe^{3+}(a)$ ;  $Cr_2O_7^{2-}(b)$ ;  $CrO_4^{2-}(c)$ and  $[Fe(CN)_6]^{3-}(d) @1$  in DMF solutions.







Fig. S13 UV-vis adsorption spectra of various  $K_x(A)$  solutions and the excitation spectrum of complex 1.



Fig. S14 UV-vis adsorption spectrum of  $M(NO_3)_x$  DMF solutions and the excitation spectrum of



Fig. S15 PXRD patterns of complex 1 treated by different  $M(NO_3)_x$  DMF solutions (a) and anion DMF solutions (b).





Fig. S16 (a) The fluorescence intensity of complex 1 after five runs sensing experiment with Fe<sup>3+</sup> (a);



 $Cr_2O_7^{2-}$  (b);  $CrO_4^{2-}$  (c) and  $[Fe(CN)_6]^{3-}$  (d).

Fig. S17 XPS spectra of 1 (black) and 1@Fe<sup>3+</sup> (red).



Fig. S18 Color differences of the DMF solutions with complex 1 in various dyes.



Fig. S19 PXRD pattern after dye experiment of complex 1.

## References

- [1] B. Parmar, Y. Rachuri, K. K. Bisht and E. Suresh, *Inorg. Chem.*, 2017, 56, 10939-10949.
- [2] K. Xu, F. Wang, S. Huang, Z. Yu, J. Zhang, J. Yu, H. Gao, Y. Fu, X. Li and Y. Zhao, *RSC Adv.*, 2016,
   6, 91741-91747.
- [3] C. H. Chen, X. S. Wang, L. Li, Y. B. Huang and R. Cao, Dalton Trans., 2018, 47, 3452-3458.
- [4] L. Deng, Y. Zhang, D. Zhang, S. Jiao, J. Xu, K. Liu and L. Wang, *CrystEngComm*, 2019, 21, 6056-6062.
- [5] Z. J. Wang, F. Y. Ge, G. H. Sun and H. G. Zheng, Dalton Trans., 2018, 47, 8257-8263.
- [6] Y. T. Yan, J. Liu, G. P. Yang, F. Zhang, Y. K. Fan, W. Y. Zhang, Y. Y. Wang, *CrystEngComm*, 2018, 20 477-486.