Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

SI1. Selection of crystalline surfaces

Molecular dynamics simulations and Bravais-Friedel Donnay-Harker (BFDH) method were used to predict the crystal habit for α -RDX, β -HMX and ϵ -CL-20 (Fig. S1, Table S1). The final chosen crystalline directions were considered only only about total facet area, but also about the total anisotropy.

Fig. S1 Crystal structure and main growth faces for α -RDX (a), β -HMX (b) and ϵ -CL-20 (c)

hkl	Multiplicity	dhkl	Distance	Total facet	% Total facet
				area	area
RDX(111)	8	6.7513	14.8120	2849.7870	74.08
RDX (2 0 0)	2	6.5910	15.1722	495.7448	12.89
RDX (0 2 0)	2	5.7870	17.2801	277.4410	7.21
RDX (2 1 0)	4	5.7274	17.4598	100.3021	2.61
RDX (0 0 2)	2	5.3545	18.6759	123.5935	3.21
HMX (0 1 1)	4	6.0248	16.5980	2076.4910	39.96
HMX (0 2 0)	2	5.5250	18.0995	686.8502	13.22
HMX(11-1)	4	5.5230	18.1061	1620.2130	31.18
HMX (1 0 0)	2	5.4027	18.5093	563.2068	10.84
HMX (1 1 0)	4	4.8536	20.6032	196.2668	3.78
CL-20 (0 1 1)	4	8.9680	11.1507	1548.8370	56.41
CL-20 (1 0 -1)	2	8.2511	12.1196	510.7743	18.60
CL-20 (1 1 0)	4	7.0236	14.2377	428.9399	15.62
CL-20 (1 1 -1)	4	6.8955	14.5023	117.3673	4.27
CL-20 (0 0 2)	2	6.4067	15.6087	17.5760	0.64

Table S1 Crystal habits for α -RDX, β -HMX and ϵ -CL-20

Fig. S2 Comparison of potential energy evolution for heated energetic composites, including F_{2311} on RDX, HMX and CL-20 surfaces.

Existence	Frequencies: the first 10 primary reactions			
Systems	RDX interfaces	Pure RDX		
F ₂₃₁₁ /RDX(0 0 2)	$61: CO + F \rightarrow COF$	$185: C_3H_6O_6N_6 \rightarrow C_3H_6O_4N_5 + NO_2$		
	$59:C_3H_6O_6N_6 \rightarrow C_3H_6O_4N_5 + NO_2$	$140:C_3H_6O_4N_5\rightarrow C_3H_6O_2N_4+NO_2$		
	$41: CN + F \rightarrow CNF$	$110: C_3H_6O_2N_4 \rightarrow C_3H_6N_3 + NO_2$		
	$24:2F \to F_2$	31 : HNO ₂ \rightarrow OH + NO		
	$23: CNF + F \rightarrow CNF_2$	$29:C_3H_6N_3+NO_2\rightarrow C_3H_5N_3+HNO_2$		
	$21: CHF_2 + F \rightarrow CHF_3$	$26:C_3H_6O_4N_5\rightarrow C_3H_6N_3 + 2NO_2$		
	$20: H + OH \rightarrow H_2O$	$26: H_2NO_2 \rightarrow H_2O + NO$		
	$19: \mathrm{H} + \mathrm{NO}_2 \to \mathrm{HO}_2\mathrm{N}$	$25:C_3H_6O_6N_6\rightarrow C_3H_6O_2N_4+2NO_2$		
	$18: CH_2F + F \rightarrow CH_2F_2$	$18: HNO + NO_2 \rightarrow HNO_2 + NO$		
	$17:C_3H_6O_4N_5 \rightarrow C_3H_6O_2N_4 + NO_2$	$16: HNO_2 + ON \rightarrow HN_2O_3$		
F ₂₃₁₁ /RDX(1 1 1)	$216:C_3H_6O_6N_6 \rightarrow C_3H_6O_4N_5 + NO_2$	$542:C_3H_6O_6N_6 \rightarrow C_3H_6O_4N_5 + NO_2$		
	$118: CO + F \rightarrow COF$	$371:C_3H_6O_4N_5 \rightarrow C_3H_6O_2N_4 + NO_2$		
	$76: CN + F \rightarrow CNF$	$272:C_3H_6O_2N_4 \rightarrow C_3H_6N_3 + NO_2$		
	$59:C_3H_6O_4N_5 \rightarrow C_3H_6O_2N_4 + NO_2$	$126: 2NO \rightarrow N_2O_2$		
	$51:H+NO_2 \rightarrow HNO_2$	$89:H_2NO_2 \rightarrow H_2O + NO$		
	$51:CO_2+F \rightarrow CO_2F$	$73:C_3H_6O_6N_6\rightarrow C_3H_6O_2N_4+2NO_2$		
	$49:HNO_2 \rightarrow HO + NO$	$73:C_3H_6O_4N_5\rightarrow C_3H_6N_3 + 2NO_2$		
	$44:H_2NO_2 {\rightarrow} H_2O + NO$	$67: C_3H_6N_3 + NO_2 \rightarrow C_3H_5N_3 + HO_2N$		
	$43:\mathrm{H}+\mathrm{HO}\!\rightarrow\!\mathrm{H_2O}$	$63 : HNO_2 \rightarrow OH + NO$		
	$43: CHN + F \rightarrow CHNF$	$52:HNO+NO_2 \rightarrow HNO_2 + NO$		
F ₂₃₁₁ /RDX(2 1 0)	$302:C_3H_6O_6N_6\rightarrow C_3H_6O_4N_5+NO_2$	$609:C_3H_6O_6N_6\rightarrow C_3H_6O_4N_5+NO_2$		
	$135: CO + F \rightarrow COF$	$405:C_3H_6O_4N_5 \rightarrow C_3H_6O_2N_4 + NO_2$		
	$103:C_3H_6O_4N_5 \rightarrow C_3H_6O_2N_4 + NO_2$	$283:C_3H_6O_2N_4 \rightarrow C_3H_6N_3 + NO_2$		
	$103 : CN + F \rightarrow CNF$	$102:C_3H_6O_4N_5 \rightarrow C_3H_6N_3 + 2NO_2$		
	$46:HNO_2 \rightarrow HO + NO$	$94:C_3H_6O_6N_6\rightarrow C_3H_6O_2N_4+2NO_2$		
	$45:C_3H_6O_2N_4 \longrightarrow C_3H_6N_3 + NO_2$	$86: C_3H_6N_3 + NO_2 \rightarrow C_3H_5N_3 + HNO_2$		
	$45: \mathrm{CO}_2 + \mathrm{F} \to \mathrm{CO}_2 \mathrm{F}$	$86: H_2NO_2 \rightarrow H_2O + NO$		
	$41: CHN + F \rightarrow CHNF$	$84:HNO_2 \rightarrow OH + NO$		
	$39: \mathrm{H} + \mathrm{NO}_2 \to \mathrm{HNO}_2$	$79: HNO + NO_2 \rightarrow HNO_2 + NO$		
	$37:C_3H_6O_5N_6 \rightarrow C_3H_6O_3N_5 + NO_2$	$51:H_2NO_2 + NO_2 \rightarrow 2HNO_2$		

Table S2 Highest frequent primary reactions for pure RDX and RDX interfaces

	Frequencies: the first 10 primary reactions			
Systems	HMX interfaces	Pure HMX		
F ₂₃₁₁ /HMX(011)	$126: CO + F \rightarrow COF$	$284: C_4H_8O_8N_8 \rightarrow C_4H_8O_6N_7 + NO_2$		
	$89:C_4H_8O_8N_8 \rightarrow C_4H_8O_6N_7 + NO_2$	$193: C_4H_8O_6N_7 \rightarrow C_4H_8O_4N_6 + NO_2$		
	$71: CN + F \rightarrow CNF$	$132: C_4H_8O_4N_6 \rightarrow C_4H_8O_2N_5 + NO_2$		
	$33: COF + F \rightarrow COF_2$	$85:C_4H_8O_2N_5 \rightarrow C_4H_8N_4 + NO_2$		
	$30: H + H_2O \rightarrow H_3O$	$64 : HNO_2 \rightarrow OH + NO$		
	$27:\mathrm{H}+\mathrm{NO}_2 {\rightarrow} \mathrm{HNO}_2$	$53: HNO + NO_2 \rightarrow HNO_2 + NO$		
	$26: CNF + F \rightarrow CNF_2$	$52:C_4H_8O_6N_7 {\rightarrow} C_4H_8O_2N_5 + 2NO_2$		
	$24:C_4H_8O_6N_7 \rightarrow C_4H_8O_4N_6 + NO_2$	$51:C_4H_8O_8N_8 \longrightarrow C_4H_8O_4N_6 + 2NO_2$		
	$22: C_2 + F \rightarrow C_2 F$	$50: H_2NO_2 \rightarrow H_2O + NO$		
	$22: \mathrm{CO}_2 + \mathrm{F} \to \mathrm{CO}_2 \mathrm{F}$	$46:C_4H_8O_4N_6 { \rightarrow } C_4H_8N_4 + 2NO_2$		
F ₂₃₁₁ /HMX(020)	$26: CO + F \rightarrow COF$	$96:C_4H_8O_8N_8 \rightarrow C_4H_8O_6N_7 + NO_2$		
	$13:2F \to F_2$	$66:C_4H_8O_6N_7 \longrightarrow C_4H_8O_4N_6 + NO_2$		
	$12: CNF + F \rightarrow CNF_2$	$52:C_4H_8O_4N_6 \longrightarrow C_4H_8O_2N_5 + NO_2$		
	$12: CF_2 + F \rightarrow CF_3$	$38:C_4H_8O_2N_5 \rightarrow C_4H_8N_4 + NO_2$		
	$9: \mathrm{CO}_2 + \mathrm{F} \to \mathrm{CO}_2 \mathrm{F}$	$28:H_2NO_2 \rightarrow H_2O + NO$		
	$9: \mathrm{COF} + \mathrm{F} \rightarrow \mathrm{COF}_2$	$24:C_4H_8O_6N_7 \longrightarrow C_4H_8O_2N_5 + 2NO_2$		
	$8:C_4H_9O_8N_8 \rightarrow C_4H_9O_6N_7 + NO_2$	$21:C_4H_8O_8N_8 \longrightarrow C_4H_8O_4N_6 + 2NO_2$		
	$8: CN + F \rightarrow CNF$	$17:C_4H_8O_4N_6 \longrightarrow C_4H_8N_4 + 2NO_2$		
	$8: CHF_2 + F \rightarrow CHF_3$	$17:C_4H_8N_4+NO_2 \rightarrow C_4H_7N_4+HNO_2$		
	$6: C_3F_2 + F \rightarrow C_3F_3$	$14: NO_2 + NO \rightarrow N_2O_3$		
F ₂₃₁₁ /HMX(100)	$71: CO + F \rightarrow COF$	$234: C_4H_8O_8N_8 \rightarrow C_4H_8O_6N_7 + NO_2$		
	$44:C_4H_8O_8N_8 \longrightarrow C_4H_8O_6N_7 + NO_2$	$161: C_4H_8O_6N_7 \rightarrow C_4H_8O_4N_6 + NO_2$		
	$43: CN + F \rightarrow CNF$	$102: C_4H_8O_4N_6 \rightarrow C_4H_8O_2N_5 + NO_2$		
	$40: COF + F \rightarrow COF_2$	$47:2NO \rightarrow N_2O_2$		
	$30: CO_2 + F \rightarrow CO_2F$	$43:C_4H_8O_2N_5 \rightarrow C_4H_8N_4 + NO_2$		
	$25:C_4H_9O_8N_8 \longrightarrow C_4H_8O_6N_7 + HO_2N$	$41:HNO+NO_2 \rightarrow HNO_2 + NO$		
	$23: HNO_2 \rightarrow HO + NO$	$39:C_4H_8O_6N_7 \rightarrow C_4H_8O_2N_5 + 2NO_2$		
	$22:H+H_2O \to H_3O$	$34: HNO_2 \rightarrow OH + NO$		
	$22: CNF + F \rightarrow CNF_2$	$33:C_4H_8O_8N_8 \longrightarrow C_4H_8O_4N_6 + 2NO_2$		
	$22:2F \to F_2$	$33:H_2NO_2 \rightarrow H_2O + NO$		

Table S3 Highest frequent primary reactions for pure HMX and HMX interfaces