Supporting Information

A facile one-pot synthesis of Co₂P nanoparticle-encapsulated doped carbon nanotubes as bifunctional electrocatalysts for high-performance rechargeable Znair batteries

Qi Shao, Tianjiao Li, Heng-guo Wang*, Yanhui Li, Zhenjun Si and Qian Duan* School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

Experimental Section

Materials

Phosphonitrilic chloride trimer ($Cl_6N_3P_3$), melamine and cobalt acetylacetonate ($C_{15}H_{21}CoO_6$) were purchased from Aladdin Chemical Reagent Co. Ltd. All materials were used without further purification. De-ionized water was obtained from an ultrapure purification system.

Characterization

The microstructures of the nanomaterials were observed by scanning electron microscopy (SEM Hitachi S-4800) and transmission electron microscope (TEM) recorded on a Tecnai G2 operating at 200 kV. The crystal phases were evaluated by X-ray diffraction (XRD) patterns recorded on a Rigaku-Dmax 2500 diffractometer with Cu Ka radiation. X-ray photoelectron spectroscopy (XPS) analysis conducted with Thermo SCIENTIFIC ESCALAB 250Xi instrument was used to analyze the composition of the nanomaterials. Raman spectra were collected with a Renishaw 2000 model confocal microscopy Raman spectrometer.

Electrochemical Measurements

All electrochemical measurements were conducted on CS350 electrochemical workstation. The ORR/OER properties were taken on a three-electrode system in the corresponding electrolyte. The working electrode was RDE (5.0 mm in diameter), while the reference electrode was saturated calomel electrode (SCE) and the counter electrode was the graphite rod, respectively.

To prepare the working electrode, 1 mL ethanol containing catalyst (5 mg) and Nafion solution (50 μ L) were ultrasonically dispersed to obtain the homogeneous ink. Afterward, 10 μ L ink catalyst was dropped onto RDE and then dried at room temperature. The recorded potentials versus SCE were converted to RHE scale based

on the Nernst equation ($E_{RHE}=E_{SCE}+0.241+0.059$ pH). As for ORR experiment, the CV tests were acquired in N₂- or O₂-saturated 0.1 M KOH solution with a scan rate of 50 mV s⁻¹. LSV measurements were conducted at different speeds from 400 to 1600 rpm in an O₂-saturated solution with a sweep rate of 10 mV s⁻¹ without being *iR*-corrected. According to the LSV curves at the different potentials, the electron transfer number (n) was calculated according to the Koutecky-Levich (K-L) equations.

As for OER experiments, the LSV curves were obtained at a scan rate of 5 mV s⁻¹ with being *iR*-corrected in the O₂-saturated 1 M KOH solution. Before all the electrochemical characterizations, the continuous sweep of corresponding voltage range is measured until the steady voltammogram curve is obtained.

The durability tests of the electrocatalysts for OER and ORR were both evaluated using chronoamperometric (i-t) measurement in corresponding solution at a rotation rate of 1600 rpm.

Supplemental Figures

Fig. S1 SEM image of Co₂P@NPCNTs-900.

Fig. S2 (a) Low and (b) high-resolution SEM images of Co@NCNTs-900.

Fig. S3 (a) Low and (b) high-resolution SEM images of Co₂P@NPC-900.

Fig. S4 SEM images of (a) Co₂P@NPCNTs-800 and (b) Co₂P@NPCNTs-1000.

Fig. S5 (a) Low and (b) high-resolution SEM images of Co₂P@NPCNTs-1.

Fig. S6 (a) Low and (b) high-resolution SEM images of Co₂P@NPCNTs-3.

Fig. S7 Particle size distribution of Co₂P nanoparticles in Co₂P@NPCNTs-900.

Fig. S8 Energy-dispersive spectrometer (EDS) of Co₂P@NPCNTs-900.

Fig. S9 XRD patterns of $Co_2P@NPCNTs-1$, $Co_2P@NPCNTs-900$ and $Co_2P@NPCNTs-3$.

Fig. S10 XRD patterns of Co@NCNTs-900.

Fig. S11 (a) N_2 adsorption-desorption isotherms and (a) pore size distribution of $Co_2P@NPCNTs-900$.

Fig. S12 TG curve of Co₂P@NPCNTs-900.

Fig. S13 High-resolution Co 2p XPS spectrum of Co₂P@NPC-900. (b) High-resolution Co 2p XPS spectrum of Co@NCNTs-900. (c) High-resolution P 2p XPS spectrum of Co₂P@NPC-900.

Fig. S14 High-resolution XPS spectra of O 1 (a) and C 1s (b) of Co₂P@NPCNTs-900.

Fig. S15 CV curve of various samples in O₂-saturated 0.1 M KOH solution.

Fig. S16 ORR LSV curves of $Co_2P@NPCNTs-1$, $Co_2P@NPCNTs-900$ and $Co_2P@NPCNTs-3$.

Fig. S17 The electron transfer number obtained from RDE results of Co₂P@NPCNTs-900.

Fig. S18 Electron transfer number and H_2O_2 yield based on RRDE measurements.

Fig. S19 The ORR Tafel plots of Co₂P@NPCNTs-1, Co₂P@NPCNTs-900 and Co₂P@NPCNTs-3.

Fig. S20 ORR LSV curves of Co₂P@NPCNTs-900 before and after a continuous 5000-

cycle CV scans.

Fig. S21 OER LSV curves of $Co_2P@NPCNTs-1$, $Co_2P@NPCNTs-900$ and $Co_2P@NPCNTs-3$.

Fig. S22 The OER Tafel plots of Co₂P@NPCNTs-1, Co₂P@NPCNTs-900 and Co₂P@NPCNTs-3.

Fig. S23 OER LSV curves of Co₂P@NPCNTs-900 before and after a continuous 5000-

cycle CV scans.

Fig. S24 Open-circuit plots of assembled rechargeable ZABs of Pt/C-RuO₂ catalysts.

Table S1 Elemental contents of C, O, N, P and Co in the Co2P@NPCNTs-900determined by XPS analysis.

Catalyst	C (at%)	P(at%)	N (at%)	O (at%)	Co (at%)
Co ₂ P@NPCNTs-900	77.99	2.63	10.40	7.25	1.72

Catalysta	ORR		OER		
Catalysis	Eonset	E _{1/2}	E ₁₀	Reference	
	(V)	(V)	(V)		
Co ₂ P@NPCNTs	0.94	0.80	1.59	This work	
CoP@SNC			1.58	Nanoscale	
				2018, 10, 14613	
N-GCNT/FeCo	1.03	0.92	1 72	Adv. Energy Mater.	
			1.75	2017, 7, 1602420	
CoFe/N-GCT	0.91	0.79	1.67	Angew. Chem. Int. Ed.	
			1.07	2018, 130, 16398	
	0.07	0.00	1.69	Adv. Funct. Mater.	
CO-IN-CIVIS	0.97	0.90		2018, 28, 1705048	
Co ₂ P/CoN-in-NCN	0.96	0.85	1.65	Adv. Funct. Mater.	
Ts				2018, 28, 1805641	
Co ₃ O ₄ /NPGC	0.97	0.84	1.68	Angew. Chem. Int. Ed.	
			1.00	2016, 55, 4977	
CoS _x @PCN/rGO		0.78	1 57	Adv. Energy Mater.	
		0.70	1.37	2018, 8, 1701642	

 Table S2. A survey of the catalytic performance of various electrocatalysts.