Electronic Supplementary Information (ESI) for

An Exceptionally Stable Luminescent Cadmium(II) Metal-Organic Framework as Dual-functional Chemoensor for Detecting Cr(VI) Anions and Nitro-containing Antibiotics in Aqueous Media

5 Liming Fan,*a Dongsheng Zhao, a Bei Li, Xi Chen,^{b,c} Feng Wang, Yuxin Deng, Yulan Niu*b,c, and Xiutang Zhang*a

^a Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P.R. China.

^b Institute of Interface Chemistry and Engineering, Taiyuan Institute of Technology, Taiyuan 030008, P. R. China.

^c School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P. R. China.

E-mail: limingfan@nuc.edu.cn; niuyulan@163.com; xiutangzhang@163.com.

10	Table of Contents
	Fig. S1 The IR spectrum of 1
	Fig. S2 The asymmetric unit of 1 with the coordination environments of ten crystallography independent Cd(II)
	cations (Symmetry codes: A – <i>x</i> , 1– <i>y</i> , – <i>z</i> ; B <i>x</i> , <i>y</i> , –1+ <i>z</i> ; D – <i>x</i> , 1– <i>y</i> , 1– <i>z</i> ; F <i>x</i> , 1+ <i>y</i> , <i>z</i> .)
	Fig. S3 The 3D [Cd ₁₀ (DDB) ₄] _n network in 1
15	Fig. S4 The PXRD patterns of 1 after immersing into the acidic/basic aqueous solutions with the pH range from 3 to
	11 for 6 h, or the boiling water for 6 h
	Fig. S5 TG-DTG curves for 1
	Fig. S6 The fluorescence spectra of free H ₅ DDB and 1 in solid state at room temperature
	Fig. S7 The luminescence intensities of 1 dispersed in the 0.01M K _n X aqueous solutions
20	Fig. S8 The effect on the emission spectra of 1 in aqueous solutions with incremental addition of CrO_4^{2-} anion (a) and
	Cr ₂ O ₇ ²⁻ anion (b)
	Fig. S9 Changes of the emission intensity of 1 in 5 cycles sensing of 0.1 mM CrO ₄ ²⁻ anion (a) and Cr ₂ O ₇ ²⁻ anion (b)4
	Fig. S10 The anti-interferences of 1 in sensing of Cr(VI) anions from normal anions in aqueous solutions
	Fig. S11 The structures of selected ABXs in this work
25	Fig. S12 The luminescence spectra of 1 as chemosensor dispersed in 0.1 mM ABXs aqueous
	solutions5
	Fig. S13 The luminescence of 1 which were dispersed in the aqueous solution with different concentration of MND
	(a), DND (b), OND (c), RND (d), NFT (e), and NFZ (f)
	Fig. S14 The changes of the emission intensity of 1 in 5 cycles sensing of 0.1 mM MND (a), DND (b), OND (c),
30	RND (d), NFT (e), and NFZ (f)
	Fig. S15 PXRD patterns of the mixture of 1 after 5 cycles sensing of Cr(VI) anions and nitro-containing ABXs in
	aqueous solutions
	Fig. S16 The UV-Vis absorbance spectra of anions and ABXs in aqueous solution and the excitation spectra of 16
	Table S1 Selected bond lengths (Å) and angles (°) in 1
35	Table S2 Comparison of various CPs sensors for the detection of $Cr_2O_7^{2-}$ ion
	Table S3 Comparison of various CPs sensors for the detection of nitro-containing ABXs

5 Fig. S2 The asymmetric unit of 1 with the coordination environments of ten crystallography independent Cd(II) cations (Symmetry codes: A -x, 1-y, -z; B x, y, -1+z; D -x, 1-y, 1-z; F x, 1+y, z.).

Fig. S3 The 3D $[Cd_{10}(DDB)_4]_n$ network in 1.

Fig. S4 The PXRD patterns of **1** after immersing into the acidic/basic aqueous solutions with the pH range from 3 to 11 for 6 h, or the boiling water for 6 h.

5

10

Fig. S6 The fluorescence spectra of free H₅DDB and 1 in solid state at room temperature.

Fig. S7 The luminescence intensities of 1 dispersed in the 0.01M K_nX aqueous solutions.

Fig. S8 The effect on the emission spectra of 1 in aqueous solutions with incremental addition of CrO_4^{2-} anion (a) and $Cr_2O_7^{2-}$ anion (b).

5

10

Fig. S10 The anti-interferences of **1** in sensing of Cr(VI) anions from normal anions in aqueous solutions.

4 / 9

Fig. S12 The luminescence spectra of 1 as chemosensor dispersed in 0.1 mM ABXs aqueous solutions.

5 Fig. S13 The luminescence of 1 which were dispersed in the aqueous solution with different concentration of MND (a), DND (b), OND (c), RND (d), NFT (e), and NFZ (f).

Fig. S14 The changes of the emission intensity of 1 in 5 cycles sensing of 0.1 mM MND (a), DND (b), OND (c), 10 RND (d), NFT (e), and NFZ (f).

Fig. S15 PXRD patterns of the mixture of 1 after 5 cycles sensing of Cr(VI) anions and nitro-containing ABXs in aqueous solutions.

Fig. S16 The UV-Vis absorbance spectra of anions and ABXs in aqueous solution and the excitation spectra of 1.

Selected bond lengths (Å)							
Cd1-O12	2.402(3)	Cd2-O6	2.215(3)	Cd3-O7 ⁱⁱ	2.364(3)		
Cd1-O24	2.199(3)	Cd2-O13	2.437(3)	Cd3-O26 ⁱⁱ	2.389(3)		
Cd1-O25	2.355(3)	Cd2-O21	2.361(3)	Cd3-O29	2.207(3)		
Cd1-O36	2.286(5)	Cd2-O28 ⁱ	2.466(4)	Cd3-O42	2.330(5)		
Cd1-N8	2.319(4)	Cd2-N3	2.287(4)	Cd3-N5	2.332(4)		
Cd1-N9	2.380(4)	Cd2-N15	2.337(4)	Cd3-N10	2.392(4)		
Cd4-O3	2.202(3)	Cd5-O1	2.418(3)	Cd6-O2	2.212(3)		
Cd4-O4	2.443(3)	Cd5-O5	2.229(3)	Cd6-O8	2.359(4)		
Cd4-O16	2.333(3)	Cd5-O16	2.406(4)	Cd6-O21 ⁱ	2.462(3)		
Cd4-O23	2.357(4)	Cd5-O23	2.437(3)	Cd6-O28	2.415(4)		
Cd4-N2	2.295(4)	Cd5-N1	2.289(4)	Cd6-N4	2.273(4)		
Cd4-N24	2.297(5)	Cd5-N20	2.333(5)	Cd6-N22	2.358(5)		
Cd7-O31	2.272(3)	Cd8-O14 ^{iv}	2.370(4)	Cd8A-O14 ^{iv}	2.308(8)		
Cd7-O32	2.294(4)	Cd8-O15	2.591(4)	Cd8A-O15	2.338(16)		
Cd7-O34	2.142(8)	Cd8-O17	2.288(4)	Cd8A-O17	2.432(15)		
Cd7-O35 ⁱⁱⁱ	2.303(4)	Cd8-O27 ^{iv}	2.404(4)	Cd8A-O27 ^{iv}	2.348(10)		
Cd7-O44	2.267(5)	Cd8-O41	2.416(5)	Cd8A-N17	2.10(2)		
Cd7-O46	2.316(6)	Cd8-N17	2.328(5)	Cd8A-N19	2.67(2)		
Cd9-O9 ⁱ	2.284(4)	Cd8-N19	2.384(5)	Cd11-O9 ⁱ	2.331(7)		
Cd9-O11	2.271(3)	Cd10-O33	2.221(4)	Cd11-011	2.45(2)		
Cd9-O18 ⁱ	2.508(4)	Cd10-O39	2.202(4)	Cd11-O18 ⁱ	2.479(7)		
Cd9-O19	2.480(4)	Cd10-O40	2.458(5)	Cd11-O19	2.180(16)		
Cd9-N18	2.247(5)	Cd10-O51	2.313(7)	Cd11-N18	2.56(3)		
Cd9-N23	2.405(5)	Cd10-O52	2.227(8)	Cd11-N23	2.163(17)		
Cd10A-O33	2.319(5)	Cd12-O43	2.180(5)				
Cd10A-O39	2.428(5)	Cd12-O47	2.13(3)				
Cd10A-O43	2.473(6)	Cd12-O49	2.241(6)				
Cd10A-O51	2.350(9)	Cd12-O51	2.350(9)				
Cd10A-O53	1.972(11)	Cd12-O53	2.244(10)				
Selected bond and	gles (°)						
O24-Cd1-O12	151.63(13)	O6-Cd2-O13	98.69(13)	O7 ⁱⁱ -Cd3-O26 ⁱⁱ	54.45(11)		
O24-Cd1-O25	100.89(14)	O6-Cd2-O21	85.45(13)	07 ⁱⁱ -Cd3-N10	96.76(13)		
O24-Cd1-O36	98.82(18)	O6-Cd2-O28 ⁱ	79.67(13)	O26 ⁱⁱ -Cd3-N10	141.63(14)		
O24-Cd1-N8	99.93(15)	O6-Cd2-N3	165.25(14)	O29-Cd3-O7 ⁱⁱ	152.59(13)		
O24-Cd1-N9	107.67(14)	O6-Cd2-N15	118.91(14)	O29-Cd3-O26 ⁱⁱ	102.17(13)		
O25-Cd1-O12	54.32(12)	O13-Cd2-O28 ⁱ	125.70(11)	O29-Cd3-O42	99.31(19)		
O25-Cd1-N9	147.79(14)	O21-Cd2-O13	54.39(12)	O29-Cd3-N5	97.73(15)		
O36-Cd1-O12	79.06(17)	O21-Cd2-O28 ⁱ	71.50(12)	O29-Cd3-N10	110.39(14)		
O36-Cd1-O25	107.58(19)	N3-Cd2-O13	90.97(14)	O42-Cd3-O7 ⁱⁱ	80.46(18)		
O36-Cd1-N8	150.86(16)	N3-Cd2-O21	91.24(14)	O42-Cd3-O26 ⁱⁱ	112.91(18)		
O36-Cd1-N9	82.75(17)	N3-Cd2-O28 ⁱ	85.64(14)	O42-Cd3-N5	150.58(17)		
N8-Cd1-O12	94.36(14)	N3-Cd2-N15	70.92(15)	O42-Cd3-N10	81.76(18)		
N8-Cd1-O25	90.52(15)	N15-Cd2-O13	94.84(15)	N5-Cd3-O7 ⁱⁱ	94.98(14)		
N8-Cd1-N9	70.40(14)	N15-Cd2-O21	144.94(15)	N5-Cd3-O26 ⁱⁱ	86.48(15)		
N9-Cd1-O12	100.16(13)	N15-Cd2-O28 ⁱ	133.75(15)	N5-Cd3-N10	69.86(14)		
O3-Cd4-O4	97.67(12)	O1-Cd5-O23	122.72(11)	O2-Cd6-O8	95.11(14)		
O3-Cd4-O16	82.28(13)	O5-Cd5-O1	92.29(12)	O2-Cd6-O21 ⁱ	124.66(12)		
O3-Cd4-O23	87.70(13)	O5-Cd5-O16	90.17(13)	O2-Cd6-O28	87.98(14)		
O3-Cd4-N2	167.94(14)	O5-Cd5-O23	77.90(13)	O2-Cd6-N4	162.34(15)		
O3-Cd4-N24	111.06(17)	O5-Cd5-N1	157.74(14)	O2-Cd6-N22	118.25(16)		
O16-Cd4-O4	126.55(12)	O5-Cd5-N20	118.01(15)	O8-Cd6-O21 ⁱ	124.66(12)		

 Table S1. Selected bond lengths (Å) and angles (°) in 1.

016 Cd4 022	72 47(12)	016 Cd5 01	52 71(11)	08 Cd6 028	54.02(12)	
010-Cd4-023	54 14(11)	016-Cd5-023	<u>69 84(11)</u>	08-Cd6-021 ⁱ	70.70(12)	
N2-Cd4-04	93 65(14)	N1-Cd5-O1	53 71(11)	N4-Cd6-08	98.75(14)	
N2-Cd4-04	86 57(14)	N1-Cd5-016	69.84(11)	N4-Cd6-O21 ⁱ	93.73(14) 83.71(14)	
N2-Cd4-010	03.37(14)	N1-Cd5-023	80.88(14)	N4-Cd6-O28	91.32(14)	
N2 Cd4 N24	73.34(14) 71.35(17)	N1 Cd5 N20	70.67(15)	N4 Cd6 N22	70.43(14)	
N24 Cd4 04	107.70(18)	N20 Cd5 01	107.25(16)	N22 C46 08	70.43(10)	
N24-Cd4-O4	107.70(18) 122.56(17)	N20-Cd5-O16	107.23(10) 148.20(16)	N22-Cd6 021i	122 68(16)	
N24-Cd4-010	122.30(17) 156.45(10)	N20-Cd5-O22	146.20(10) 127.22(16)	N22-Cd6 028	132.00(10) 145.32(19)	
N24-Cd4-O23	130.43(19)	$\frac{1}{1}$	127.55(10) 117.08(12)	$\frac{1}{1}$	143.32(10)	
031-Cd7-032	803.83(14)	$014^{iv}-Cd8-013$	54(2(12))	$014^{\text{iv}} - Cd8A - 013$	152.0(8)	
031-Cd7-035	1/3.90(10)	014^{-1} -Cd8-02/	34.02(12)	014 $-Cd8A-017$	133.0(13)	
031-Cd/-046	90.6(2)	014 ¹¹ -Cd8-N19	88.30(15)	$O14^{iv}$ -Cd8A-O2/ iv	50.1(2)	
032-Cd/-035	87.95(15)	017-Cd8-O14"	163.35(15)	014 ¹ - Cd8A - N19	83.2(5)	
032-Cd/-046	93.1(2)	017-Cd8-O15	53.08(12)	015-Cd8A-01/	54.81(19)	
034-Cd/-031	8/.63(1/)	017-Cd8-O27	108./6(14)	015-Cd8A-02/1V	85.1(3)	
034-Cd7-032	86.74(17)	017-Cd8-O41	74.64(17)	015-Cd8A-N19	144.3(5)	
034-Cd7-035 ^m	89.04(17)	017-Cd8-N17	98.49(16)	017-Cd8A-N19	93.7(8)	
034-Cd7-044	93.5(2)	01/-Cd8-N19	105./2(16)	02/10-Cd8A-O1/	105.9(7)	
034-Cd7-046	178.2(2)	02 ^{/iv} -Cd8-O15	78.66(13)	02/ ^{1v} -Cd8A-N19	123.4(11)	
O35 ^m -Cd7-O46	92.7(2)	027 ^{1v} -Cd8-O41	78.31(18)	N17-Cd8A-O14 ¹	102.9(6)	
O44-Cd7-O31	90.80(16)	041-Cd8-O15	110.06(17)	N17-Cd8A-O15	99.0(10)	
O44-Cd7-O32	177.61(16)	N17-Cd8-O14 ^{IV}	94.63(15)	N17-Cd8A-O17	100.6(3)	
O44-Cd7-O35 ¹¹¹	94.44(17)	N17-Cd8-O15	86.62(15)	N17-Cd8A-O27 ^{1V}	149.9(13)	
O44-Cd7-O46	86.6(3)	N17-Cd8-O27 ^{1V}	130.63(15)	N17-Cd8A-N19	67.9(3)	
O9 ⁱ -Cd9-O18 ⁱ	54.29(12)	N17-Cd8-O41	150.00(19)	09 ⁱ -Cd11-O11	123.2(11)	
<u>O9i-Cd9-O19</u>	130.68(15)	N17-Cd8-N19	70.03(17)	09 ⁱ -Cd11-O18 ⁱ	54.21(17)	
O9 ⁱ -Cd9-N23	83.72(14)	N19-Cd8-O15	146.55(15)	O9 ⁱ -Cd11-N18	102.3(10)	
O11-Cd9-O9 ⁱ	135.10(15)	N19-Cd8-O27 ^{iv}	134.74(15)	011-Cd11-O18 ⁱ	81.7(5)	
O11-Cd9-O18 ⁱ	84.77(13)	N19-Cd8-O41	83.6(2)	O11-Cd11-N18	84.6(11)	
O11-Cd9-O19	54.71(13)	O33-Cd10-O40	93.38(16)	O18 ⁱ -Cd11-N18	135.8(16)	
O11-Cd9-N23	139.12(17)	O33-Cd10-O51	88.1(2)	019-Cd11-O9 ⁱ	147.4(11)	
O19-Cd9-O18 ⁱ	88.72(14)	O33-Cd10-O52	85.3(2)	O19-Cd11-O11	56.0(3)	
N18-Cd9-O9 ⁱ	114.41(17)	O39-Cd10-O33	172.04(19)	O19-Cd11-O18 ⁱ	96.7(5)	
N18-Cd9-O11	96.61(17)	O39-Cd10-O40	92.99(16)	O19-Cd11-N18	109.8(6)	
N18-Cd9-O18 ⁱ	157.73(19)	O39-Cd10-O51	88.7(2)	N23-Cd11-O9 ⁱ	88.2(4)	
N18-Cd9-O19	110.28(17)	O39-Cd10-O52	99.6(2)	N23-Cd11-O11	143.2(6)	
N18-Cd9-N23	70.58(19)	O51-Cd10-O40	76.9(2)	N23-Cd11-O18 ⁱ	135.1(10)	
N23-Cd9-O18 ⁱ	121.73(16)	O52-Cd10-O40	88.5(2)	N23-Cd11-O19	108.6(11)	
N23-Cd9-O19	92.42(17)	O52-Cd10-O51	163.5(3)	N23-Cd11-N18	68.9(4)	
O43-Cd12-O49	160.7(3)	O33-Cd10A-O39	136.7(2)			
O43-Cd12-O51	92.5(3)	O33-Cd10A-O43	163.2(2)			
O43-Cd12-O53	86.0(3)	O33-Cd10A-O51	84.7(2)			
O47-Cd12-O43	86.4(6)	O39-Cd10A-O43	54.49(17)			
O47-Cd12-O49	99.7(6)	O51-Cd10A-O39	82.5(2)			
O47-Cd12-O51	81.2(8)	O51-Cd10A-O43	85.2(2)			
O47-Cd12-O53	142.7(9)	O53-Cd10A-O33	100.0(3)			
O49-Cd12-O51	106.5(3)	O53-Cd10A-O39	107.4(3)			
O49-Cd12-O53	78.1(3)	O53-Cd10A-O43	84.7(3)			
O53-Cd12-O51	135.5(3)	O53-Cd10A-O51	157.5(3)			
Symmetry codes: i –x, 1–y, –z; ii x, y, –1+z; iii 1-x, 2-y, 1-z; iv –x, 1–y, 1–z.						

	Analyte	CPs based Fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (LOD)	Media	Ref
1		$[Co_{1.5}(TBIP)_{1.5}(L)]$	2.09×10^{4}	0.099 µM	H ₂ O	37
2	Cr ₂ O ₇ ^{2–}	$[Cd_3{Ir(ppy-COO)_3}_2]$	3.475×10^{4}	145.1 ppb	H ₂ O	38
3		$[Zn_7(TPPE)_2(SO_4)_7]$	1.09×10^{4}	26.98 ppb	H ₂ O	39
4		$[Cd_3(L)(NTB)_2]$	$3.0 imes 10^{4}$	$5.3 \times 10^{-5} \text{ M}$	H ₂ O	40
5		$[Cd_2(L1)(1,4-NDC)_2]$	5.86×10^{4}	0.031 ppm	H ₂ O	41
6		$[Cd(TIPA)_2(ClO_4)_2]$	7.15×10^{4}	8 ppb	H ₂ O	42

Table S2. Comparison of various CPs sensors for the detection of $Cr_2O_7^{2-}$ ion.

Table S3. Comparison of various CPs sensors for the detection of nitro-containing ABXs.

	Analyte	CPs based Fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (LOD)	Media	Ref
1		[Zn(L)(aip)]	N/A	100 ppm	H ₂ O	
2		[Zn(L)(ip)]	N/A	80 ppm	H ₂ O	48
3	NET	[Zn(L)(HBTC)]	N/A	45 ppm	H ₂ O	
4	19111	$[Mg_2(APDA)_2]$	8.82×10^{4}	126 ppb	H ₂ O	49
5		[Cd ₃ (CBCD) ₂]	6.39× 10 ⁴	N/A	H ₂ O	51
6		[Cd ₃ (TDCPB)]	1.05×10^{5}	N/A	H ₂ O	52
1		[Zn(L)(aip)]	N/A	80 ppm	H ₂ O	
2		[Zn(L)(ip)]	N/A	40 ppm	H ₂ O	48
3	NEZ	[Zn(L)(HBTC)]	N/A	25 ppm	H ₂ O	
4	INIZ	$[Mg_2(APDA)_2]$	9.00×10^{4}	108 ppb	H ₂ O	49
5		$[Cd_3(CBCD)_2]$	9.72×10^{4}	N/A	H ₂ O	51
6		[Cd ₃ (TDCPB)]	7.46×10^{4}	N/A	H ₂ O	52
1	OND	[Cd ₃ (DBPT) ₂]	2.4×10^4	1.10 ppm	H ₂ O	50
1	MND	[Cd ₃ (DBPT) ₂]	2.0×10^{4}	1.71 ppm	H ₂ O	50
1	DMZ	[Cd ₃ (DBPT) ₂]	1.7× 10 ⁴	1.41 ppm	H ₂ O	50
1	2-M-5-MZ	[Cd ₃ (DBPT) ₂]	1.1×10^{4}	1.27 ppm	H ₂ O	50