Formation Mechanism and Twist-angle Dependent Optical Properties of Bilayer MoS $\mathbf{M}_{\mathbf{2}}$ Grown by Chemical Vapor Deposition
Jinglei Han, ${ }^{\mathrm{a}} \mathrm{Fa} \mathrm{Cao}^{\mathrm{a}}$ and Xiaohong Ji*a

a. School of Materials Science and Engineering, south China university of Technology, Guangzhou 510641, China.
*E-mail: jxhong@scut.edu.cn

Fig. S1. The stacking configurations with twist angles of (a) 0° (with the nucleation sites of top layers moving along $0^{\circ}, 30^{\circ}$ and 60° direction relative to that of the bottom layers), (b) 30° (with the nucleation sites of top layers moving along $0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ and 120° direction relative to that of the bottom layers) and (c) 60° (along $0^{\circ}, 30^{\circ}$ and 60° direction relative to that of the bottom layers) simulated in our study, regardless of the temperature.

(c)

Fig. S2. The corresponding stacking configurations with twist angles of (a) 0°, (b) 30° and (c) 60° after fully relaxed at 300 K .
(a)

(b)

0°

Fig. S3. The corresponding stacking configurations with twist angles of (a) 0°, (b) 30° and (c) 60° after fully relaxed at 0.3 K .

Table S1 0° stacking configurations simulated in our study at minimized state, 300 K and 0.3 K .

0° stacking configurations	Minimized state	300 K	0.3 K
Structure 1 (along 0° direction)	$A B$ stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 2 (along 0° direction)	$A B$ stacking	$t w i s t e d$	twisted
Structure 3 (along 0° direction)	$A B$ stacking	$A B^{\prime \prime}$	$A B^{\prime \prime}$
Structure 4 (along 0° direction)	$A B$ stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 5 (along 0° direction)	$A B$ stacking	twisted	twisted
Structure 2 (along 30° direction)	$A B$ stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 3 (along 30° direction)	$A B$ stacking	twisted	twisted
Structure 2 (along 60° direction)	$A B$ stacking	$t w i s t e d$	$t w i s t e d$
Structure 3 (along 60° direction)	$A B$ stacking	$A B^{\prime \prime}$	$A B^{\prime \prime}$
Structure 4 (along 60° direction)	$A B$ stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 5 (along 60° direction)	$A B$ stacking	$A B^{\prime \prime}$	$A B^{\prime \prime}$

Table S2 30° stacking configurations simulated in our study at minimized state, 300 K and 0.3 K .

30° stacking configurations	Minimized state	300 K	0.3 K
Structure 1 (along 0° direction)	AC stacking	twisted	twisted
Structure 2 (along 0° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 3 (along 0° direction)	AC stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 4 (along 0° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 5 (along 0° direction)	AC stacking	$A A^{\prime \prime}$	$A A^{\prime \prime}$
Structure 2 (along 30° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 3 (along 30° direction)	AC stacking	$A A^{\prime \prime}$	$A A^{\prime \prime}$
Structure 2 (along 60 ${ }^{\circ}$ direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 3 (along 60° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 4 (along 60 ${ }^{\circ}$ direction)	AC stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 5 (along 60 ${ }^{\circ}$ direction)	AC stacking	twisted	twisted
Structure 2 (along 90° direction)	AC stacking	twisted	twisted
Structure 3 (along 90 ${ }^{\circ}$ direction)	AC stacking	twisted	twisted
Structure 2 (along 120° direction)	AC stacking	$A B^{\prime}$	$A B^{\prime}$
Structure 3 (along 120° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 4 (along 120° direction)	AC stacking	$A A^{\prime}$	$A A^{\prime}$
Structure 5 (along 120° direction)	AC stacking	$A B^{\prime}$	$A B^{\prime}$

Table S3 60° stacking configurations simulated in our study at minimized state, 300 K and 0.3 K .

60° stacking configurations	Minimized state	300 K	0.3 K
Structure 1 (along 0° direction)	AA^{\prime} stacking	AA^{\prime} stacking	AA^{\prime} stacking
Structure 2 (along 0° direction)	AA^{\prime} stacking	AA^{\prime} stacking	AA^{\prime} stacking
Structure 3 (along 0° direction)	AA^{\prime} stacking	AA^{\prime} stacking	AA^{\prime} stacking
Structure 4 (along 0° direction)	AA^{\prime} stacking	AA^{\prime} stacking	AA^{\prime} stacking
Structure 5 (along 0° direction)	AA^{\prime} stacking	AA^{\prime} stacking	AA^{\prime} stacking
Structure 2 (along 30° direction)	AA^{\prime} stacking	$\mathrm{AA}^{\prime \prime}$ stacking	$\mathrm{AA}^{\prime \prime}$ stacking
Structure 3 (along 30° direction)	AA^{\prime} stacking	$\mathrm{AA} A^{\prime}$ stacking	AA^{\prime} stacking
Structure 2 (along 60° direction)	AA^{\prime} stacking	twisted	twisted
Structure 3 (along 60° direction)	AA^{\prime} stacking	twisted	twisted
Structure 4 (along 60° direction)	AA^{\prime} stacking	$\mathrm{AA} A^{\prime}$ stacking	AA^{\prime} stacking
Structure 5 (along 60° direction)	AA^{\prime} stacking	$\mathrm{AA} A^{\prime}$ stacking	AA^{\prime} stacking

