A seven-coordinated Dy^{III} single ion magnet with C_{2v} symmetry

constructed by multidentate Schiff-base ligand

Ruirui Wang, Binling Yao, Feifei Bai, Wen Wang, Licun Li, Yue Ma,* Qinglun Wang, Bin Zhao, Yuanzhu Zhang*

Fig S2 The 3D packing structure of complex 1

Fig S3 The temperature-dependence of the $\chi_M T$ for complex 2

Fig S4 Magnetization curve versus applied field measured at 2 K for complex 1.

Fig S5 Temperature dependence of the χ' and χ'' ac magnetic susceptibility for 1 and 2 under zero dc field.

Fig S6 Temperature dependence of the χ' and χ'' ac magnetic susceptibility for 1 under 1500 Oe dc field.

Fig S7 Temperature dependence of the χ' and χ'' ac magnetic susceptibility for 2 under 1000 Oe and 2500 Oe dc field.

Bond Lengths			
Dy1-O2	2.272(3)	Dy1-O3	2.526(3)
Dy1-O4	2.317(3)	Dy1-O5	2.497(3)
Dy1-Cl6	2.665(1)	Dy1-Cl7	2.621(1)
Dy1 Cl8	2.639(1)	N9-C15	1.306(5)
O2-C4	1.302(5)	O4-C22	1.305(5)
O11-C8	1.395(5)	O11-C40	1.396(5)
O3-C68	1.389(5)	O3-C49	1.425(5)
O5-C36	1.390(5)	O5-C65	1.435(5)
N10-C13	1.421(5)	N10-C25	1.300(5)
N9-C2	1.427(5)		
Bond angles			
Cl7-Dy1-Cl8	87.52(4)	Cl7-Dy1-Cl6	90.15(4)
Cl8-Dy1-Cl6	159.31(4)	O4-Dy1-O3	140.47(10)
O2-Dy1-Cl7	150.11(8)	O4-Dy1-O5	64.87(10)
O2-Dy1-Cl8	89.23(8)	O4-Dy1-Cl6	115.40(8)
O2-Dy1-O4	80.19(10)	O3-Dy1-Cl7	84.72(7)
O2-Dy1-O3	65.50(10)	O3-Dy1-Cl8	79.05(7)
O2-Dy1-O5	128.77(11)	O3-Dy1-Cl6	80.27(7)
O2-Dy1-Cl6	82.61(8)	O5-Dy1-Cl7	77.79(8)
O4-Dy1-Cl7	128.51(8)	O5-Dy1-Cl8	119.10(8)
O4-Dy1-Cl8	81.58(8)	O5-Dy1-O3	153.73(10)
O5-Dy1-Cl6	80.33(8)		

Table S1 Selected bond lengths [Å] and angles [°] for complex 1

Bond Lengths			
Tb1-O2	2.288(2)	Tb1-O3	2.555(3)
Tb1-O4	2.316(2)	Tb1-O5	2.517(3)
Tb1-Cl6	2.6468(13)	Tb1-Cl7	2.6269(11)
Tb1-Cl8	2.6678(12)	O3-C1	1.378(5)
O5-C24	1.444(5)	O3-C28	1.424(5)
O4-C22	1.300(4)	O2-C6	1.302(4)
N9-C7	1.304(5)	O11-C9	1.385(5)
N9-C8	1.421(5)	O11-C14	1.388(5)
N10-C15	1.424(5)	O5-C23	1.377(5)
N10-C20	1.301(5)		
Bond angles			
Cl6-Tb1-Cl8	160.38(4)	O2-Tb1-O4	80.94(9)
Cl7-Tb1-Cl8	90.57(4)	O5-Tb1-Cl8	80.66(8)
Cl7-Tb1-Cl6	88.00(5)	O5-Tb1-Cl6	118.04(8)
O3-Tb1-Cl8	80.73(7)	O5-Tb1-Cl7	77.83(7)
O3-Tb1-Cl6	79.65(7)	O5-Tb1-O3	154.08(9)
O3-Tb1-Cl7	84.48(7)	O4-Tb1-Cl8	114.33(8)
O2-Tb1-Cl8	82.60(8)	O4-Tb1-Cl6	81.30(8)
O2-Tb1-Cl6	88.64(8)	O4-Tb1-Cl7	128.67(7)
O2-Tb1-Cl7	149.15(7)	O4-Tb1-O3	140.84(9)
O2-Tb1-O3	64.75(9)	O4-Tb1-O5	64.22(9)
O2-Tb1-O5	129.91(10)		

Table S2 Selected bond lengths [Å] and angles [°] for complex 2

Table S3 Ln ^{III} ic	on geometry anal	lysis by SHAPE	E software for two	o complexes.
-------------------------------	------------------	----------------	--------------------	--------------

Complexes	C_{2v} -CTPR	$C_{3\nu}$ -COC	D _{5h} -JPBPY
1	1.180	2.912	4.681
2	1.304	3.124	4.410

Energy / cm ⁻¹	Eigenstate
0	51.7% $\pm 7/2 > \pm 15.0\%$ $\pm 5/2 > \pm 11.7\%$ $\pm 9/2 > \pm 5.5\%$ $\pm 11/2 > \pm$
61	43.2% ± 5/2> +23.3% ± 9/2 > +16.9% ± 7/2>9.1% ±3/2>+
64	85.9% ± 13/2> +7.5% ± 11/2 > +4.7% ± 3/2>+
84	45.2% $\pm 13/2$ $+18.5\%$ $\pm 1/2$ $+14.9\%$ $\pm 7/2$ $+8.9\%$ $\pm 9/2$ $+$
89	45.5% $\pm 9/2> +39.4\%$ $\pm 1/2> +1.4\%$ $\pm 13/2> +12.8\%$ $\pm 3/2> +$
141	64.5% $ \pm 11/2 > +11.1\%$ $ \pm 3/2 > +6.9\%$ $ \pm 3/2 > +$
165	$30.2\% \pm 1/2 > +17.9\% \pm 11/2 > +17.4\% \pm 3/2 > +14.4\% \pm 7/2 > +$
179	96.3% $ \pm 13/2 > +2.3\%$ $ \pm 5/2 > +$

Table S4 Energy levels and eigenstates for 1 obtained from fitting the $\chi_M T$ -T and M-Hdata.

TableS5 Crystal field parameters from PHI program fitting for complex 1.

	B_0^2	B_2^2	B_0^4	B_2^4	B_4^4	B_0^6	B_2^6	B_4^6	B_6^6	Residual
1	-36.47	-181.43	11.39	11.93	-43.15	-38.92	-138.38	-153.40	100.17	0.033

Temperature/K	α ₁	α ₂
2.0	0.50	0.80
2.4	0.45	0.79
2.8	0.41	0.77
3.2	0.35	0.76
3.6	0.29	0.74
4.0	0.25	0.72
4.4	0.23	0.71
4.8	0.23	0.70
5.2	0.22	0.69
5.6	0.11	0.68
6.0	0.02	0.68

TableS6 Fitted parameters α with Debye model under 2.0 K-6.0 K for complex **1**.

Table S7 Examples of seven-coordinate Dy^{III} SIMs with low C_{nv} symmetry.

Table S7 Examples of seven-coordinate Dy - Shiris with low C_{nv} symmetry.					
Formula	Symmetry	$U_{e\!f\!f}$	Ref.		
$[(LOEt)Dy((R,R)-Salphen)]_2 \cdot 3H_2O$	C_{2v}	24.6 K(2 KOe)	22a		
[DyH ₄ L/ (SCN) ₂](SCN) ₂	C_{2v}	34.5 K(200 Oe)	22b		
Dy(Hthd) ₃ (MeOH)·2,5-Py	C_{2v}	26.6 K(1 KOe)	14a		
Dy((R,R)-5-Cl-Salcy))·CH ₃ OH·1/8H ₂ O	$C_{2\mathrm{v}}$	13.2 K(2 KOe)	22a		
[(LOEt)Dy(TPP)]·0.25H ₂ O	C_{3v}	8.5 K(2 KOe)	22c		
$[(LOEt)Dy(L)] \cdot 0.25H_2O$	C_{3v}	41.6 K(2 KOe)	22d		
Dy(Hthd) ₃ (Tppo)	C_{3v}	35.9 K(1 KOe)	14a		
Dy(Hthd) ₃ (PyNO)	$C_{3\mathrm{v}}$	42.7 K(1 KOe)	14a		
Dy(Hthd) ₃ (4-PyNO)	C_{3v}	55.8 K(1 KOe)	14a		