The role of specific solute-solvent interactions on the photophysical properties of Distyryl Substituted BODIPY derivatives.

Mariagrazia Fortino,*a Elisabetta Collini, b Alfonso Pedone^c and Julien Bloino a

^o Scuola Normale Superiore, Pisa, 56126, Italy. ^{b.} Università degli studi di Padova, Padova, 35122, Italy. ^c Università di Modena e Reggio Emilia, 45125, Modena,Italy.

NO₂-bis-BODIPY-6MeOH E_{excitation}=616.1 nm

E_{excitation}=619.3 nm

Fig.S1 NO₂-bis-BODIPY-6MeOH and the larger solvated model NO₂-bis-BODIPY-12MeOH optimized at MN15/6-311G(d,p) level of theory along with the computed TD-DFT vertical excitation energy.

Fig. S2 Match of optimized structures for bis-BODIPY and bis-BODIPY-4MeOH. Methanol molecules have been obscured to simplify the comparison.

Fig.S3 Computed HOMOs and LUMOs for bis-BODIPY-PCM and bis-BODIPY-4MeOH (upper panel) and NO₂-bis-BODIPY-PCM and NO₂-bis-BODIPY-6MeOH (lower panel).

Table S1. Computed $\Delta E_{HOMO-LUMO}$ values for bis-BODIPY-PCM, bis-BODIPY-4MeOH, NO₂-bis-BODIPY-PCM and NO₂-bis-BODIPY-6MeOH and expressed in eV.

	$\Delta E_{HOMO-LUMO}$ (eV)
bis-BODIPY-PCM	3.17
bis-BODIPY-4MeOH	3.24
NO ₂ -bis-BODIPY-PCM	3.09
NO ₂ -bis-BODIPY-6MeOH	3.14

Table S2. Computed transition energies and transition dipole moments (TDMs) for bis-BODIPY-PCM, bis-BODIPY-4MeOH, NO₂-bis-BODIPY-PCM and NO₂-bis-BODIPY-6MeOH used for the simulation of the 2D electronic spectra.

	Transition Energies (cm ⁻¹)	TDMs (xyz components)
bis-BODIPY-PCM	16312.6	-2.0191; 3.9985; -0.0695
bis-BODIPY-4MeOH	16552.7	-1.9939; 3.788; 0.0251
NO ₂ -bis-BODIPY-PCM	16030.0	-0.0109; -4.7687; 0.0091
NO ₂ -bis-BODIPY-6MeOH	16231.9	2.0381; -3.8059; 0.0801

Equations: Recursion relations.

S1

$$<\bar{v}|\bar{v}>=\frac{1}{\sqrt{2\bar{v}_{i}}}\left[D_{i}\langle\bar{v}|\bar{v}-1_{i}\rangle+\sum_{j=1}^{N}\sqrt{2(\bar{v}_{j}-\delta_{ij})}C_{ij}\langle\bar{v}|\bar{v}-1_{i}-1_{j}\rangle+\sum_{j=1}^{N}\sqrt{\bar{v}_{j}}E_{ij}\langle\bar{v}-1_{j}|\bar{v}-1_{i}\rangle\right]$$

S2

$$<\bar{v}|\bar{v}>=\frac{1}{\sqrt{2\bar{v}_i}}\left[B_i\langle\bar{v}-1_i|\bar{v}\rangle+\sum_{j=1}^N\sqrt{2(\bar{v}_j-\delta_{ij})}A_{ij}\langle\bar{v}-1_i-1_j|\bar{v}\rangle+\sum_{j=1}^N\sqrt{\bar{v}_j}E_{ij}\langle\bar{v}-1_i|\bar{v}-1_j\rangle\right]$$

Example of input file for vibronic computation with internal coordinates, performed by using a locally modified version of GAUSSIAN16

%oldchk=checkpointlowerstate.chk #P MN15/ChkBasis Int=UltraFine SCF=Tight Geom=(check) Freq=(ReadFC,ReadNM,ReadFCHT) NoSymm

Vibronic simulations

01

AH FCHT EMI (or OPA) PrtMat=12 TD=GauHWHM=250 Internal=(Redundant=PIC,NonRedundant=DIC)

checkpointupperstate.chk

Example of input file for 2DES simulation performed by using Spectron 2.7

REGISTRATION KI \$END

\$SYSTEM NUMMODES 1 ES_NUMST 2 ES_EVALS 'name of file containing excitation_energies' ES_EDIPS 'name of file containing transion moments' ES_LAMBDA 'name of file containing lambda values' ELECTRONIC 1 \$END

\$BATH

BATH_MODEL MM_Brownian_spectral_density OSCILLATORS_NUM 1 TEMPERATURE 300 TIMESCALES 'value of timescale in fs' SPECTRAL_DENSITIES 'name of file containing spectral densities' SMOOTHING Gaussian \$END

\$KI

NUM_SHOTS 5000 DEL_TIME2 'value of waiting time' INI_FREQ1 -'initial value of excitation energy' FIN_FREQ1 -'final value of excitation energy' NUM_FREQ1 600 INI_FRE3 'initial value of excitation energy' FIN_FREQ3 'final value of excitation energy' NUM_FREQ3 600 CAL_METHOD SOS_CGF_F OUT_FILE 'name for your output' \$END