Supplementary Material

Quantification of the amount of mobile components in intact stratum corneum with natural-abundance ¹³C solid-state NMR

Quoc Dat Pham,*^{a,b} Göran Carlström,^c Olivier Lafon,^{d,e} Emma Sparr,^a Daniel Topgaard^a

^a Division of Physical Chemistry, Chemistry Department, Lund University, Lund, Sweden

^b Department of Food Technology, Lund University, Lund, Sweden

^cCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden

^d Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

^e Institut Universitaire de France (IUF).

Estimation of the total amount of lipids in SC:

The total molar amount of lipids in 1 g dry SC obtained from Q-INEPT experiments on intact SC at 50 wt% water and 90 °C is 254 μ mol ω CH₃, 379 μ mol α CH₂ and 150 μ mol CHOL 9 (median values in Fig. 8). At this high temperature, the resonance from α CH₂ lipid acyl chain may overlap with the peaks from proteins and therefore is not employed to estimate the amount of lipids. We then assume that:

• The number of mole of CHOL 9 is equal to the number of mole of cholesterol. The number of mole of ω CH₃ includes ω CH₃ in both ceramides and fatty acids. Each ceramide molecule contains two ω CH₃ segments (Fig. 1B).

• The SC lipids comprise ceramides and fatty acids and we here assume they are present in equimolar proportions.¹

• The mean molecular weight of ceramides is 700 g/mol.² The mean molecular weight of fatty acids was calculated to be 349 g/mol based on a fatty acid mixture³ with composition similar to native SC.⁴ This mixture consists of C16:0, C18:0, C20:0, C22:0, C23:0, C24:0, and C26:0 lipids, where the notation CC:D is used to denote the numbers C of carbon atoms and D of double bonds of the fatty acid, at mole percent of 1.3, 3.3, 6.7, 41.7, 5.4, 36.8, and 4.7, respectively.

Taken together, we estimate that 1 g dry SC contains $254/3 = 85 \ \mu \text{mol}$ fatty acids (corresponding to $85 \cdot 10^{-6} \cdot 349 = 0.030 \text{ g}$), $254/3 = 85 \ \mu \text{mol}$ ceramide (corresponding to $85 \cdot 10^{-6} \cdot 349 = 0.030 \text{ g}$), $254/3 = 85 \ \mu \text{mol}$ ceramide (corresponding to $85 \cdot 10^{-6} \cdot 700 = 0.060 \text{ g}$) and $150 \ \mu \text{mol}$ cholesterol (corresponding to $150 \cdot 10^{-6} \cdot 387 = 0.058 \text{ g}$). The total amount of SC lipids is therefore ca. 0.15 g per 1 g dry SC or 15 wt% of the total weight of dry SC.

Example of changes in chemical composition of the SC mobile lipid domains by adding a hydrophobic chemical:

As an example, a small hydrophobic compound with a molecular weight of 200 g/mol is added to SC at a concentration of 5 wt% or 263 μ mol per 1 g of dry SC. The total amount of mobile ω CH₃ and CHOL segments in SC at 40 wt% water and 32 °C is 153 μ mol (Table S1). If the added hydrophobic compound is dissolved in SC fluid lipids, the SC fluid lipid domains now contain a high amount of this chemical and their chemical-physical properties are likely not the same as the fluid lipid domains in the samples of SC without the added chemical.

Table S1. Fraction of mobile segments (mol%) in SC at 40 wt% water and 32°C, F_{40W} , over the total mole of the same segment. This fraction is calculated from median value of the molar amount of mobile segments in SC at 40 wt% water and 32 °C, C_{40W} (µmol per 1 g dry SC), and median value of the total molar amount of lipids in SC, C_{all} (µmol per 1 g dry SC).

Segments	ωCH ₃	CHOL 9
С _{40W} (µmol)	46	107
C _{all} (µmol)	254	150
F _{40W} (mol%)	18	71

Fig. S1. Theoretical CP (blue) and INEPT (red) signal enhancement as a function of τ_c (rotational correlation time) and $|S_{CH}|$ (C-H bond order parameter) for a CH₂ segment at the experimental conditions used in this study, i.e., 11.72 T magnetic field and 5 kHz MAS (adapted from Nowacka et al.).⁵ White indicates the absence of signal for both CP and INEPT. Corresponding lineshapes and intensities of CP (blue) and INEPT (red) signals in different regimes are also shown.

Fig. S2. Results (median and 90% confidence intervals) obtained from Q-INEPT for DMPC L_{α} phase with 35 wt% water at 27 °C and measured on the 500 MHz (black \Box) and 800 MHz (orange x) spectrometers. (A) ¹H–¹³C through-bond scalar coupling J_{CH} . (B-C) Effective ¹H (B) and ¹³C (C) transverse dephasing rates R_2^H and R_2^C . The J_{CH} values are much lower in the acyl-chains compared to the headgroups as well as the glycerol backbone C_{g2} . The high J_{CH} values are likely due to chemical bond of the ¹³C with oxygen or nitrogen.⁶ The different relaxation rates are lowest for carbons in the outer part of the headgroup and in the end of the acyl-chain, which have faster and more isotropic reorientation than the others carbon in the lipid molecule.⁷ We note that the relaxation rates of C_{g2} and some acyl-chain carbons including C_2 , C_{12} and C_{13} are lower at the lower Larmor frequency.

Fig. S3. Results (median and 90% confidence intervals) obtained from Q-INEPT for SDS H_I phase at 35 °C and measured on the 500 MHz spectrometer. (A) Normalized molar ratio. The spread of the normalized molar ratios over different segments is represented by grey shaded area. (B-D) $^{1}\text{H}-^{13}\text{C}$ through-bond scalar coupling J_{CH} (B), and effective ^{1}H (C) and ^{13}C (D) transverse dephasing rates, R_{2}^{H} and R_{2}^{C} . The J_{CH} value of C₁ of SDS is higher than the others due to its bond with oxygen.⁶

Fig. S4. Experimental (symbol) and fitted (line) data of I_{INEPT}/I_{INEPT}^{eq} of different carbons in DPPC and glycerol for DPPC L_{gel} phase at 35 °C in Q-INEPT experiment obtained on the 500 (black) and 800 MHz (orange) spectrometers. The varied parameters are τ_1 (OD) while $\tau_2 = 1.2$ ms or τ_2 (+) while $\tau_1 = 1.8$ ms.

Fig. S5. Experimental (symbol) and fitted (line) data of I_{INEPT}/I_{INEPT}^{eq} of different carbons in DPPC and glycerol for DPPC L_a phase at 70 °C in Q-INEPT experiments obtained on the 500 (black) and 800 MHz (orange) spectrometers. The varied parameters are τ_1 (OD) while $\tau_2 = 1.2$ ms or τ_2 (+) while $\tau_1 = 1.8$ ms.

Fig. S6. ¹³C MAS NMR spectra (DP: grey, CP: blue, INEPT: red) (i) and ¹³C MAS NMR quantitative DP spectra (Q-DP, recorded at $\tau_R = 50$ s) (ii) for POPC-PDMS-glycerol-water systems at different POPC:PDMS or

POPC:glycerol mixing molar ratios including 0.1 (A), 0.5 (B) and 1.5(C) measured at 32 °C on the 500 MHz spectrometer.

Fig. S7. Normalized molar ratios obtained from Q-INEPT (median (black \Box) and 90% confidence intervals (grey shaded area)) and Q-DP (median (blue \diamond) \pm standard deviation (blue shaded area)) for POPC-PDMS-glycerol-water systems at different POPC:PDMS or POPC:glycerol mixing molar ratios including 0.1 (A), 0.5 (B), 1 (C) and 1.5 (D) measured at 32 °C on the 500 MHz spectrometer. The molar ratios of PDMS and glycerol were normalized against the mixing ratios so that their normalized molar ratios are ideally 1 as the lipid. The 90% confidence intervals in Q-INEPT and the standard deviations in Q-DP of POPC refer to the spread of the normalized molar ratios over different fitted values of C_{INEPT} obtained from Monte Carlo analysis, whereas the standard deviations of these molecules in Q-DP are from the standard deviations of eight values of the molar ratio of these molecules to each of the lipid segment.

Fig. S8. Results (median and 90% confidence intervals) obtained from Q-INEPT for POPC-PDMS-glycerol-water systems at different mixing molar ratios (MR) of POPC:PDMS or POPC:glycerol measured at 32 °C on the 500 MHz spectrometer: ¹H–¹³C through-bond scalar coupling J_{CH} (A) and effective ¹H (B) and ¹³C (C) transverse dephasing rates, R_2^H and R_2^C .

Fig. S9. $I_{INEPT}^{eq}/I_{DP}^{eq}$ ratios (median and 90% confidence intervals) of different segments of POPC, PDMS and glycerol obtained from Q-INEPT and Q-DP in samples of POPC-PDMS-glycerol-water at different POPC:PDMS or POPC:glycerol mixing molar ratios including 0.1 (A), 0.5 (B), 1 (C) and 1.5 (D) measured at 32 °C on the 500 MHz spectrometer.

Fig. S10. ¹³C MAS NMR spectra (DP: grey, CP: blue, INEPT: red) of dry SC (A), SC with 40 wt% PDMS (B), SC with 10 wt% water (C), SC with 10 wt% PDMS and 10 wt% water (D), SC with 40 wt% water (E), and SC with 6.5 wt% PDMS and 40 wt% water (F) at 32 °C. The peak marked with asterisk at ca 41 ppm in sample of SC with 40 wt% PDMS in (B) is a spinning sideband of a very intensive peak of PDMS at ca 1 ppm. The CP peak of PDMS in (B), (D) and (F) is negligible compared to its INEPT and also detected in sample of pure PDMS.

Fig. S11. Experimental (symbol) and fitted (line) data of I_{INEPT}/I_{INEPT} of different carbons in SC-PDMS (0.5 wt%)-water (black) and SC-water (orange) systems at 40 wt% water and 32 °C in Q-INEPT obtained on the 500 MHz spectrometer. The varied parameters are τ_1 (OD) while $\tau_2 = 1.2$ ms or τ_2 (+) while $\tau_1 = 1.8$ ms.

Fig. S12. Results (median and 90% confidence intervals) obtained from Q-INEPT for SC-PDMS (0.5 %wt)-water (\Box) and SC-water (\blacksquare) systems at the same 40 wt% water and at 32 °C and for SC-PDMS (0.5 wt%)-water systems at 50 wt% water and 90 °C (\Box) measured on the 500 MHz spectrometer: ¹H–¹³C through-bond scalar coupling J_{CH} (A), effective ¹H (B) and ¹³C (C) transverse dephasing rates, R_2^H and R_2^C .

Fig. S13. Amount of mobile segments per 1 g dry SC (median and 90% confidence intervals) in samples of SC + 0.5 wt% PDMS (black) and of SC + 0.5 wt% PDMS + 5 wt% glycerol (based on the total weight of SC and glycerol) (blue) at the same water content of 40 wt%. The amount of glycerol added to the mixture of SC-PDMS is 0.571 mmol per 1 g dry SC which is similar to the amount obtained from Q-INEPT using PDMS as a reference, indicating that the amount of PDMS in the mixture of SC-PDMS is 0.5 wt%. The amount of GLY1 segment herein is not normalized against its number of carbon in the molecule (two GLY1 segments per one glycerol molecule as shown in Fig. 3A).

References

1 H. Schaefer and T. E. Redelmeier, in *Skin barrier: Principles of percutaneous absorption*, Karger, Basel, Switzerland, 1996, pp. 43-86.

2 J. A. Bouwstra, F. E. Dubbelaar, G. S. Gooris, A. M. Weerheim and M. Ponec, *Biochim. Biophys. Acta*, 1999, **1419**, 127-136.

3 M. W. de Jager, G. S. Gooris, M. Ponec and J. A. Bouwstra, J. Lipid Res., 2005, 46, 2649-2656.

4 P. W. Wertz and D. T. Downing, in *Physiology, Biochemistry and Molecular Biology of the Skin*, Oxford University Press, Oxford, UK, 2nd edn., 1991, ch. 205-235.

5 A. Nowacka, N. A. Bongartz, O. H. Ollila, T. Nylander and D. Topgaard, J. Magn. Reson., 2013, 230, 165-175.

6 P. E. Hansen, Prog. Nucl. Magn. Reson. Spectrosc., 1981, 14, 175-296.

7 Q. D. Pham, D. Topgaard and E. Sparr, Langmuir, 2015, 31, 11067-11077.