Supplementary Information for Monolayer $Bi_2Se_{3-x}Te_x$: novel two-dimensional semiconductors with excellent stability and high electron mobility

Yifan Liu ^{a,‡}, Yuanfeng Xu ^{a,‡,*}, Yanju Ji ^a, Hao Zhang ^{b,*}

^a School of Science, Shandong Jianzhu University, Jinan 250101, Shandong, China

^b Key Laboratory for Information Science of Electromagnetic Waves (MoE),

Key Laboratory of Micro and Nano Photonic Structures

(MoE) and Department of Optical Science and Engineering,

Fudan University, Shanghai 200433, China

Correspondence: xuyuanfeng19@sdjzu.edu.cn

(Yf. Xu); zhangh@fudan.edu.cn (H. Zhang) and

[‡] These authors contributed equally to this work.

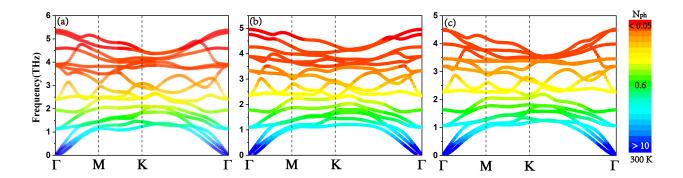


FIG. S1: Phonon dispersion of monolayer (a) Bi₂Se₃, (b) Bi₂Se₂Te and (c) Bi₂SeTe₂, respectively. The phonon occupation number is determined from the Bose-Einstein distribution function at 300 K.

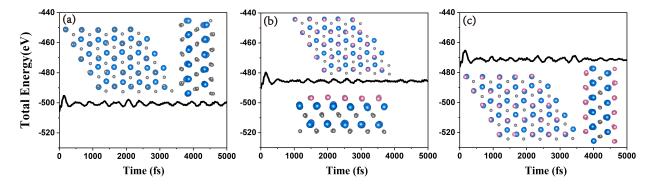


FIG. S2: The AIMD calculations with the total simulation time of 5 ps and an interval of 1 fs of (a) Bi_2Se_3 , (b) Bi_2Se_2Te and (c) Bi_2SeTe_2 at T=300 K. Inserted are the final structures of three monolayer materials from top view and side view.

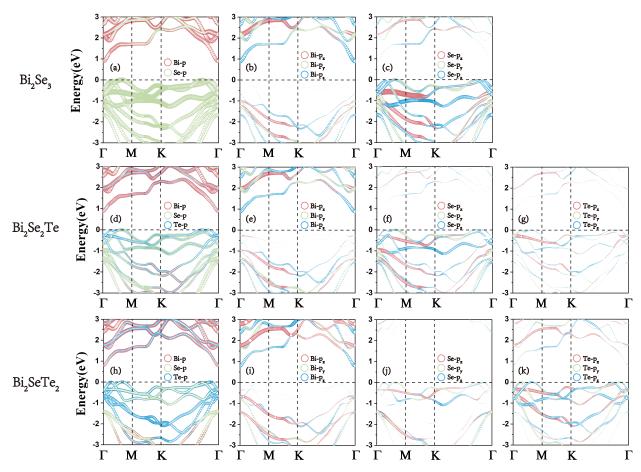


FIG. S3: The site and orbital-projected band structure of monolayer Bi_2Se_3 (a-c), Bi_2Se_2Te (d-g) and Bi_2SeTe_2 (h-k). The red, green and blue circles represent p orbitals of Bi, Se and Te atoms in (a,d,h), while represent p_x , p_y and p_z orbitals in the rest of the diagram.

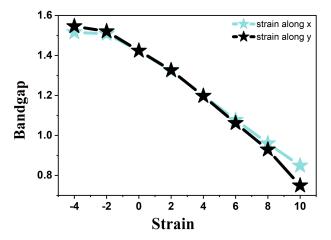


FIG. S4: HSE calculations of the evolution of band gaps for monolayer Bi_2Se_3 as a function of the applied uniaxial strain along the a and b direction.

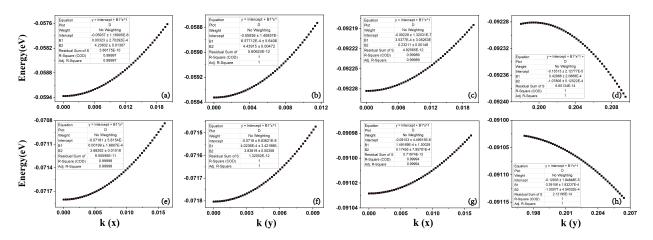


FIG. S5: The m^* fitting diagram of Bi₂Se₃ calculations of PBE in electron (a,b) and hole (c,d), PBE+SOC in electron (e,f) and hole (g,h). The inserted table is the data for the fitting curve.

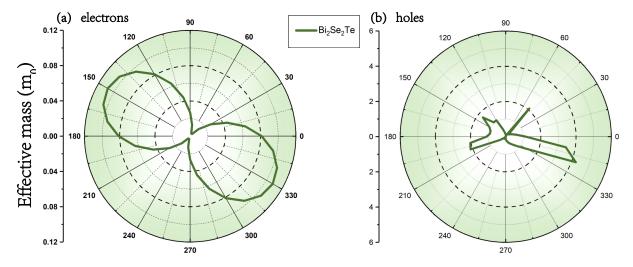


FIG. S6: Angular dependence on the effective masses of (a) electrons and (b) holes for monolayer $\rm Bi_2Se_2Te$.