Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary Information

DNA threading intercalation of enantiopure [Ru(phen)₂bidppz]²⁺ induced by hydrophobic catalysis

Bobo Feng^a, Elin Sundin^a, Per Lincoln^a and Anna K. F. Mårtensson^{a,b}*

^aDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden.

^bWallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden.

E-mail: anna.martensson@wlab.gu.se

Figure S1. Absorption spectra of Λ -**Ru-1** in the presence of ctDNA at [base pairs]/[complex] ratio 5 in 50 mM NaCl aqueous buffer solution with 20% (w/w) PEG-400. The color change from light to dark specify spectral change with time (0, 0.5, 1.5, 24 and 48 h; green) after 50°C incubation. The black line shows the complex without the addition of ctDNA. The gray line shows ctDNA alone. The concentration of ctDNA is 80 μ M nucleotides.

Figure S2. Circular dichroism spectra of the Δ (green) and \wedge (red) enantiomers of **Ru-1** at a concentration of 4 μ M in 50 mM NaCl aqueous buffer solution.

Figure S3. Linear dichroism spectra of Λ -**Ru-1** (red) and $\Lambda\Lambda$ -**Ru-2** (dotted black, incubated 1 d at 50°C) in the presence of ctDNA at [base pairs]/[complex] ratio 5 in 50 mM NaCl aqueous buffer solution with 20% (w/w) PEG-400. The color change from light to dark specify spectral change for Λ -**Ru-1** with time (0.5 h, 1.5 h, 1 d, 2 d, and 7 d) after 50°C incubation. The concentration of ctDNA is 150 μ M nucleotides.

Figure S4. Association kinetics of $\Delta\Delta$ - (left) and $\Lambda\Lambda$ -**Ru-2** (right) in the presence of ctDNA, measured at different concentrations of PEG-400. PEG-400 concentrations from left to right are 20, 15, 10, 5 and 0% (w/w). Measurements performed at 50°C in 50 mM NaCl. The concentrations of complex and ctDNA were 15 μ M and 150 μ M nucleotides, respectively.

Figure S5. Excited state lifetime decay fittings curves for **Ru-1** and **Ru-2** enantiomers in the presence of ctDNA and 20% (w/w) PEG-400. The concentrations of complex and ctDNA were 15 μ M and 150 μ M nucleotides, respectively. Measurements were performed at room temperature in 50 mM NaCl.

Figure S6. Absorption spectra of Ru-1 and Ru-2 enantiomers before (red) and after (blue) excited state lifetime measurements.

Table S1. Luminescence decay parameters for Ru-1 and Ru-2 enantiomers in the presence of ctDNA and 20% (w/w) PEG-400 using a triexponential fitting.

Sample ^a	τ ₁ (ns)	α1	τ ₂ (ns)	α ₂	τ₃(ns)	α ₃	$\tau_{avg}^{b}(ns)$
∆- Ru-1	587	0.29	145	0.38	19	0.33	232
∧-Ru-1	227	0.12	77	0.50	16	0.38	72
∆∆- Ru-2	355	0.27	144	0.47	33	0.26	172
∧∧- Ru-2	303	0.08	90	0.52	26	0.40	81

^{*a*}150 µM nucleotides and 15 µM complex in 50 mM NaCl after 50°C incubation. ^{*b*}The average emission lifetime calculated as $\tau_{avg} = \alpha_1 \tau_1 + \alpha_2 \tau_2 + \alpha_3 \tau_3$.

Figure S7. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 0% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S8. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 5% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S9. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 10% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S10. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 15% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S11. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 20% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S12. Fitting of biexponential model to association kinetic curves for $\Delta\Delta$ - and $\Lambda\Lambda$ -**Ru-2** at 40% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S13. Fitting of biexponential model to association kinetic curves for Δ - and Λ -**Ru-1** at 20% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S14. Fitting of biexponential model to association kinetic curves for Δ - and Λ -**Ru-1** at 40% (w/w) PEG-400 concentration (visualized in MATLAB 2017B).

Figure S15. Absorption spectra of $\Delta\Delta$ -**Ru-2** (~4 μ M) in different solvents: MeOH/H2O (1:1) (gray), 40% (w/w) PEG-400 + 50 mM NaCl buffer (red), MilliQ-pure water (black), 15% (w/w) PEG-400 + 50 mM NaCl buffer (green), 50 mM NaCl buffer (blue). All measurements were performed in room-temperature.