Electronic Supplementary Information

Structure and C…N tetrel-bonding of the isopropylamine-CO₂ complex studied by microwave spectroscopy and theoretical calculations

Tao Lu, Jiaqi Zhang, Qian Gou, and Gang Feng*

School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.

Contents:

Fig. S1 The ω B97XD/jun-cc-pVTZ calculated equilibrium structures of isomers **I**, **IV** and **V** of the CO₂…IPA complex in the *ab*-, *ac*-, and *bc*-planes.

Fig. S1 QTAIM analyses of the most stable isomers of the complexes of CO_2 with MA, EA and NPA. The BCPs are indicated with orange dots. The bond paths are shown in gold lines.

Table S1. Spectroscopic parameters of the six most stable isomers of CO_2 ...IPA adduct calculated at $\omega B97XD/jun-cc-pVTZ$ level of theory.

Table S2. Spectroscopic parameters of the six most stable isomers of CO_2 ...IPA adduct calculated at MP2/6-311++G(2d,p) level of theory.

Table S3. Spectroscopic parameters of the six most stable isomers of CO₂…IPA adduct calculated at B3LYP-D3(BJ)/jun-cc-pVTZ level of theory.

Table S4. Spectroscopic parameters of the six most stable isomers of CO₂…IPA adduct calculated at B2PLYP-D3(BJ)/jun-cc-pVTZ level of theory.

Table S5. Experimental transition frequencies of the observed parent species of isomer I of CO₂…IPA.

Table S6. Experimental transition frequencies of the observed parent species of isomer II of CO₂…IPA.

Table S7. Experimental transition frequencies of the observed ¹⁴N1 isotopic species of isomer I of CO₂…IPA.

Table S8. Experimental transition frequencies of the observed ¹³C2 isotopic species of isomer I of CO₂…IPA.

Table S9. Experimental transition frequencies of the observed ¹³C4 and ¹³C5 isotopic species of isomer I of

 CO_2 ···IPA.

Table S10. Experimental transition frequencies of the observed ${}^{13}C14$ isotopic species of isomer I of CO₂...IPA.

Table S11. Intensities (in arbitrary units) of the two isomers for several μ_a -type selected transitions.

Table S12. The percentage differences between the experimental and theoretical rotational constants of the isomers I and II of CO₂…IPA adduct.

Table S13. Experimental (r_s and r_0) and theoretical (r_e) coordinates of the four C and one N atoms for the isomer I of CO₂...IPA adduct.

Table S14. Partial *r*⁰ and calculated geometries at ωB97XD/jun-cc-pVTZ level of isomer I.

Table S15. Partial r₀ and calculated geometries at ωB97XD/jun-cc-pVTZ level of isomer II.

Table S16. Stabilization energy contributions (≥ 0.21 kJ/mol) for the isomer I of the CO₂…IPA adduct.

Table S17. Stabilization energy contributions (≥ 0.21 kJ/mol) for the isomer II of the CO₂…IPA adduct.

Table S18. Results of the SAPT analysis for the isomers **I** and **II** of CO_2 ...IPA, and compared with the complexes of CO_2 with eight nitrogen-containing compounds.

Table S19. NPA charges for the isomers **I** and **II** of CO_2 ...IPA adduct and CO_2 and IPA isolated molecules. Bold values highlight the values of the sulfur and fluorine atoms involved in the charge transfer.

Fig. S1. The ω B97XD/jun-cc-pVTZ calculated equilibrium structures of isomers **I**, **IV** and **V** of the CO₂...IPA complex in the *ab*-, *ac*-, and *bc*-planes.

Fig. S2. QTAIM analyses of the most stable isomers of the complexes of CO_2 with MA, EA and NPA. The BCPs are indicated with orange dots. The bond paths are shown in gold lines.

Parameters ^a	Ι	II	III	IV	V	VI
A(MHz)	3881	4804	3879	3781	4368	4357
B(MHz)	1249	1113	1169	1208	1016	1024
C(MHz)	1191	1040	1043	1050	1006	1011
χ _{aa} (MHz)	-1.464	-3.525	-1.766	-2.285	0.790	0.216
(Xbb-Xcc) (MHz)	-2.599	-0.656	3.497	1.879	-4.919	5.243
$ \mu_{\rm a} $ (D)	1.4	1.7	0.9	0.9	0.8	0.6
$ \mu_{\rm b} $ (D)	1.0	0.6	0.2	0.0	1.0	0.0
$ \mu_{\rm c} $ (D)	0.0	0.1	0.8	0.7	0.0	1.0
$P_{\rm cc}({\rm u}{\rm \AA}^2)$	55.26	36.66	39.03	35.35	55.38	54.82
$\Delta E_0 (\mathrm{cm}^{-1})$	0	142	725	795	803	809
$\Delta E_{0,BSSE}$ (cm ⁻¹)	0	141	717	789	793	799
$\Delta G_{298.15k} ({\rm cm}^{-1})$	0	379	823	989	999	859
E_{D}	13.0	12.3	4.5	3.6	3.6	4.5

Table S1. Spectroscopic parameters of the six most stable isomers of CO_2 ...IPA adduct calculated at $\omega B97XD/jun-cc-pVTZ$ level of theory.

Parameters ^a	Ι	II	III	IV	V	VI
A(MHz)	3851	4777	3873	3732	4323	4310
B(MHz)	1257	1133	1176	1215	1021	1025
<i>C</i> (MHz)	1195	1061	1050	1056	1008	1009
χ _{aa} (MHz)	-1.554	-3.595	-1.713	-2.393	0.733	0.187
(Xbb-Xcc) (MHz)	-2.260	-0.307	3.396	1.556	-4.601	5.059
$ \mu_a $ (D)	1.4	1.7	0.9	1.0	0.8	0.7
$ \mu_{\rm b} $ (D)	0.9	0.5	0.3	0.0	1.2	0.0
$ \mu_{\rm c} $ (D)	0.0	0.1	0.9	0.8	0.0	1.1
$P_{\rm cc}({\rm u}{\rm \AA}^2)$	55.19	37.76	39.46	36.39	55.26	54.72
$\Delta E_0 (\mathrm{cm}^{-1})$	0	187	688	710	768	930
$\Delta E_{0,BSSE}$ (cm ⁻¹)	0	188	588	605	616	779
$\Delta G_{298.15k} ({\rm cm}^{-1})$	0	183	541	968	531	721
E_{D}	10.1	10.0	3.0	2.8	2.7	2.9

Table S2. Spectroscopic parameters of the six most stable isomers of CO_2 ...IPA adduct calculated at MP2/6-311++G(2d,p) level of theory.

Parameters ^a	Ι	II	III	IV	V	VI
A(MHz)	3878	4788	3868	3760	4344	4329
B(MHz)	1265	1127	1170	1208	1018	1021
C(MHz)	1207	1050	1045	1050	1008	1008
χ _{aa} (MHz)	-1.479	-3.563	-1.744	-2.323	0.807	0.215
(Xbb-Xcc) (MHz)	-2.654	-0.689	3.535	1.913	-5.003	5.281
$ \mu_a $ (D)	1.5	1.8	0.8	0.8	0.8	0.5
$ \mu_{\rm b} $ (D)	1.0	0.6	0.2	0.0	1.1	0.0
$ \mu_{\rm c} $ (D)	0.0	0.1	0.8	0.7	0.0	1.0
$P_{\rm cc}({\rm u}{\rm \AA}^2)$	55.56	36.33	39.49	35.73	55.71	55.18
$\Delta E_0 (\mathrm{cm}^{-1})$	0	98	717	720	783	964
$\Delta E_{0,BSSE}$ (cm ⁻¹)	0	99	709	714	772	853
$\Delta G_{298.15k} (\mathrm{cm}^{-1})$	0	27	542	496	647	717
$E_{\rm D}$	14.1	14.1	5.6	5.5	4.8	5.1

Table S3. Spectroscopic parameters of the six most stable isomers of CO₂…IPA adduct calculated at B3LYP-D3(BJ)/jun-cc-pVTZ level of theory.

Parameters ^a	Ι	II	III	IV	V	VI
A(MHz)	3874	4788	3875	3757	4342	4323
B(MHz)	1257	1123	1164	1204	1010	1015
C(MHz)	1198	1041	1042	1046	998	1000
χ _{aa} (MHz)	-1.440	-3.503	-1.731	-2.272	0.797	0.195
(Xbb-Xcc) (MHz)	-2.546	-0.600	3.380	1.790	-4.818	5.098
$ \mu_{a} $ (D)	1.4	1.7	0.9	0.9	0.8	0.6
$ \mu_{\rm b} $ (D)	0.9	0.5	0.2	0.0	1.1	0.0
$ \mu_{\rm c} $ (D)	0.0	0.1	0.8	0.7	0.0	1.0
$P_{\rm cc}({\rm u}{\rm \AA}^2)$	55.33	35.05	39.79	35.56	55.19	54.72
$\Delta E_0 (\mathrm{cm}^{-1})$	0	132	683	693	747	858
$\Delta E_{0,BSSE}$ (cm ⁻¹)	0	134	669	679	717	829
$\Delta G_{298.15k} ({ m cm}^{-1})$	0	34	453	358	503	635
$E_{\rm D}$	12.6	12.6	4.6	4.5	4.1	4.3

Table S4. Spectroscopic parameters of the six most stable isomers of CO₂…IPA adduct calculated at B2PLYP-D3(BJ)/jun-cc-pVTZ level of theory.

	.				** **	TT *			
J'	K_a'	K_c'	F'	J''	K_a''	K_c''	$F^{\prime\prime}$	$v_{\rm obs}({ m MHz})$	$\Delta v_{\text{obs-calc}}$ (MHz)
3	0	3	2	2	0	2	1	7244.0735	0.0008
3	0	3	3	2	0	2	2	7244.1268	0.0003
3	0	3	4	2	0	2	3	7244.1548	0.0008
3	1	3	2	2	1	2	1	7166.9553	-0.0032
3	1	3	3	2	1	2	2	7166.8913	-0.0012
3	1	3	4	2	1	2	3	7167.0298	0.0010
3	1	2	2	2	1	1	1	7326.5527	0.0041
3	1	2	3	2	1	1	2	7326.3719	0.0003
3	1	2	4	2	1	1	3	7326.4826	0.0011
3	2	2	2	2	2	1	1	7247.1798	0.0015
3	2	2	3	2	2	1	2	7246.5030	0.0012
3	2	2	4	2	2	1	3	7246.9320	-0.0047
3	2	1	2	2	2	0	1	7250.4239	0.0004
3	2	1	3	2	2	0	2	7249.7611	0.0003
3	2	1	4	2	2	0	3	7250.1799	-0.0045
4	0	4	3	3	0	3	2	9654.8795	-0.0029
4	0	4	4	3	0	3	3	9654.8963	0.0025
4	0	4	5	3	0	3	4	9654.9185	-0.0010
4	1	4	4	3	1	3	3	9554.8124	0.0023
4	1	4	5	3	1	3	4	9554.8779	0.0020
4	1	3	4	3	1	2	3	9767.4044	0.0010
4	1	3	5	3	1	2	4	9767.4537	0.0012
4	1	3	3	3	1	2	2	9767.4637	-0.0041
4	2	3	3	3	2	2	2	9661.6874	0.0010
4	2	3	5	3	2	2	4	9661.6387	0.0002
4	2	3	4	3	2	2	3	9661.4537	0.0015
4	2	2	3	3	2	1	2	9669.8008	0.0022
4	2	2	4	3	2	1	3	9669.5856	0.0034
4	2	2	5	3	2	1	4	9669.7554	0.0024
5	0	5	4	4	0	4	3	12062.3086	-0.0056
5	0	5	5	4	0	4	4	12062.3162	0.0075
5	0	5	6	4	0	4	5	12062.3346	-0.0006
5	1	5	4	4	1	4	3	11941.7629	0.0031
5	1	5	5	4	1	4	4	11941.7515	-0.0018
5	1	5	6	4	1	4	5	11941.7957	0.0026
5	1	4	4	4	1	3	3	12207.4029	-0.0041
5	1	4	5	4	1	3	4	12207.3733	-0.0004
5	1	4	6	4	1	3	5	12207.4029	0.0006
5	2	4	5	4	2	3	4	12075.5280	0.0009
5	2	4	6	4	2	3	5	12075.6260	-0.0005
5	2	4	4	4	2	3	3	12075.6433	0.0066

Table S5. Experimental transition frequencies of the observed parent species of isomer I of CO_2 . IPA.

5	2	3	4	4	2	2	3	12091.8390	0.0056
5	2	3	5	4	2	2	4	12091.7475	0.0021
5	2	3	6	4	2	2	5	12091.8231	-0.0022
5	3	3	4	4	3	2	3	12079.2884	0.0007
5	3	3	5	4	3	2	4	12079.0289	-0.0030
5	3	3	6	4	3	2	5	12079.2350	-0.0020
5	3	2	4	4	3	1	3	12079.4532	-0.0022
5	3	2	5	4	3	1	4	12079.1960	-0.0040
5	3	2	6	4	3	1	5	12079.4015	-0.0033
6	0	6	5	5	0	5	4	14465.6174	0.0110
6	0	6	6	5	0	5	5	14465.5918	0.0005
6	0	6	7	5	0	5	6	14465.6174	-0.0024
6	1	6	5	5	1	5	4	14327.5495	0.0054
6	1	6	6	5	1	5	5	14327.5442	0.0043
6	1	6	7	5	1	5	6	14327.5675	-0.0004
6	1	5	5	5	1	4	4	14646.0392	-0.0016
6	1	5	6	5	1	4	5	14646.0235	0.0046
6	1	5	7	5	1	4	6	14646.0392	0.0002
6	2	5	5	5	2	4	4	14488.6996	0.0007
6	2	5	6	5	2	4	5	14488.6372	-0.0005
6	2	5	7	5	2	4	6	14488.6996	0.0010
6	2	4	5	5	2	3	4	14516.9456	0.0028
6	2	4	6	5	2	3	5	14516.9089	0.0020
6	2	4	7	5	2	3	6	14516.9456	0.0010
6	3	4	5	5	3	3	4	14495.5432	-0.0053
6	3	4	6	5	3	3	5	14495.4092	-0.0014
6	3	4	7	5	3	3	6	14495.5316	0.0019
6	3	3	5	5	3	2	4	14495.9917	-0.0040
6	3	3	6	5	3	2	5	14495.8576	-0.0010
6	3	3	7	5	3	2	6	14495.9776	0.0006
7	0	7	6	6	0	6	5	16864.0545	-0.0052
7	0	7	7	6	0	6	6	16864.0366	-0.0013
7	0	7	8	6	0	6	7	16864.0713	0.0026
7	1	7	6	6	1	6	5	16711.9920	-0.0008
7	1	7	7	6	1	6	6	16711.9920	0.0034
7	1	7	8	6	1	6	7	16712.0049	-0.0055
7	1	6	6	6	1	5	5	17083.0523	-0.0015
7	1	6	8	6	1	5	7	17083.0523	-0.0008
7	2	6	6	6	2	5	5	16900.6648	0.0023
7	2	6	7	6	2	5	6	16900.6237	0.0001
7	2	6	8	6	2	5	7	16900.6648	-0.0002
7	2	5	6	6	2	4	5	16945.5901	0.0058
7	2	5	8	6	2	4	7	16945.5901	0.0013
7	3	5	6	6	3	4	5	16912.0299	0.0012
-	-	-	-	~	-	•	-		

7	3	5	7	6	3	4	6	16911.9463	-0.0006
7	3	5	8	6	3	4	7	16912.0166	-0.0052
7	3	4	6	6	3	3	5	16913.0358	0.0016
7	3	4	7	6	3	3	6	16912.9534	-0.0003
7	3	4	8	6	3	3	7	16913.0244	-0.0030
8	0	8	7	7	0	7	6	19257.0898	-0.0040
8	0	8	8	7	0	7	7	19257.0630	-0.0040
8	0	8	9	7	0	7	8	19257.1024	0.0021
8	1	8	7	7	1	7	6	19094.9448	0.0044
8	1	8	8	7	1	7	7	19094.9378	0.0022
8	1	8	9	7	1	7	8	19094.9493	-0.0047
8	1	7	7	7	1	6	6	19518.1102	-0.0005
8	1	7	9	7	1	6	8	19518.1102	-0.0001
8	2	7	7	7	2	6	6	19311.3427	0.0059
8	2	7	8	7	2	6	7	19311.3111	0.0016
8	2	7	9	7	2	6	8	19311.3427	0.0027
8	2	6	7	7	2	5	6	19378.1187	0.0084
8	2	6	8	7	2	5	7	19378.1187	0.0038
8	2	6	9	7	2	5	8	19378.1187	0.0033
8	3	6	7	7	3	5	6	19328.6835	-0.0018
8	3	6	8	7	3	5	7	19328.6337	0.0002
8	3	6	9	7	3	5	8	19328.6835	0.0002
8	3	5	7	7	3	4	6	19330.6936	-0.0005
8	3	5	8	7	3	4	7	19330.6488	0.0045
8	3	5	9	7	3	4	8	19330.6936	0.0013
2	2	1	1	1	1	0	0	12745.4507	-0.0029
2	2	1	2	1	1	0	1	12744.7936	0.0032
2	2	1	3	1	1	0	2	12744.8937	0.0023
2	2	0	1	1	1	1	0	12798.3126	-0.0034
2	2	0	2	1	1	1	1	12799.3281	-0.0005
2	2	0	3	1	1	1	2	12798.7596	0.0031
3	1	3	2	2	0	2	1	9734.6831	-0.0080
3	1	3	3	2	0	2	2	9734.4170	-0.0026
3	1	3	4	2	0	2	3	9734.6831	-0.0049
3	2	2	2	2	1	1	1	15107.1305	0.0030
3	2	2	3	2	1	1	2	15106.9090	-0.0021
3	2	2	4	2	1	1	3	15107.0502	-0.0001
3	2	1	2	2	1	2	1	15270.1172	-0.0007
3	2	1	3	2	1	2	2	15271.0340	-0.0018
3	2	1	4	2	1	2	3	15270.4455	0.0022
4	0	4	3	3	1	3	2	7164.2625	-0.0015
4	0	4	4	3	1	3	3	7164.6003	-0.0005
4	0	4	5	3	1	3	4	7164.3876	0.0022
4	1	4	3	3	0	3	2	12045.4488	0.0036

4	1	4	4	3	0	3	3	12045.1037	0.0006
4	1	4	5	3	0	3	4	12045.4060	-0.0040
4	2	3	3	3	1	2	2	17442.2657	0.0003
4	2	3	4	3	1	2	3	17441.9923	0.0007
4	2	3	5	3	1	2	4	17442.2061	-0.0011
4	2	2	3	3	1	3	2	17772.9596	0.0015
4	2	2	4	3	1	3	3	17773.7247	-0.0008
4	2	2	5	3	1	3	4	17773.1682	0.0007
4	3	1	3	4	2	2	3	13223.0214	0.0006
4	3	1	5	4	2	2	5	13223.1034	0.0003
4	3	1	4	4	2	2	4	13223.4259	0.0029
5	0	5	4	4	1	4	3	9671.7458	-0.0056
5	0	5	5	4	1	4	4	9672.0989	-0.0004
5	0	5	6	4	1	4	5	9671.8480	0.0033
5	1	5	4	4	0	4	3	14332.3234	0.0008
5	1	5	5	4	0	4	4	14331.9602	-0.0025
5	1	5	6	4	0	4	5	14332.2820	-0.0016
5	2	4	4	4	1	3	3	19750.4321	-0.0022
5	2	4	5	4	1	3	4	19750.1172	0.0018
5	2	4	6	4	1	3	5	19750.3815	0.0003
5	3	2	4	5	2	3	4	13210.6395	-0.0034
5	3	2	5	5	2	3	5	13210.8765	-0.0012
5	3	2	6	5	2	3	6	13210.6827	0.0001
6	0	6	5	5	1	5	4	12195.5920	-0.0060
6	0	6	6	5	1	5	5	12195.9399	0.0026
6	0	6	7	5	1	5	6	12195.6746	0.0032
6	1	6	5	5	0	5	4	16597.5565	0.0040
6	1	6	6	5	0	5	5	16597.1920	-0.0019
6	1	6	7	5	0	5	6	16597.5137	-0.0026
7	0	7	6	6	1	6	5	14732.1111	-0.0025
7	0	7	7	6	1	6	6	14732.4291	-0.0062
7	0	7	8	6	1	6	7	14732.1759	0.0037
7	1	7	6	6	0	6	5	18843.9416	0.0027
7	1	7	7	6	0	6	6	18843.5872	-0.0040
7	1	7	8	6	0	6	7	18843.9038	-0.0031
8	0	8	7	7	1	7	6	17277.2121	-0.0025
8	0	8	8	7	1	7	7	17277.5109	-0.0028
8	0	8	9	7	1	7	8	17277.2584	-0.0037

7/	<i>V</i> '	<i>V</i> '		T 11	<i>V</i> "	<i>V</i> "			
J'	K_{a}'	K_{c}'	F'	$J^{\prime\prime}$	$K_{a}^{\prime\prime}$	K_c''	<i>F'''</i>	$v_{\rm obs}({ m MHz})$	$\Delta \mathcal{V}_{\text{obs-calc}}$ (MHz)
3	0	3	2	2	0	2	1	6358.8134	-0.0018
3	0	3	3	2	0	2	2	6358.9694	-0.0014
3	0	3	4	2	0	2	3	6359.0130	0.0010
3	1	3	2	2	1	2	1	6224.6841	0.0010
3	1	3	3	2	1	2	2	6224.4170	-0.0005
3	1	3	4	2	1	2	3	6224.7053	-0.0011
3	1	2	3	2	1	1	2	6504.9427	-0.0022
3	1	2	4	2	1	1	3	6505.2248	-0.0023
3	2	2	2	2	2	1	1	6366.6801	0.0021
3	2	2	3	2	2	1	2	6365.0850	0.0021
3	2	2	4	2	2	1	3	6366.1052	-0.0029
3	2	1	2	2	2	0	1	6373.6907	0.0013
3	2	1	3	2	2	0	2	6372.1004	0.0021
3	2	1	4	2	2	0	3	6373.1159	-0.0044
4	0	4	4	3	0	3	3	8470.2226	-0.0012
4	0	4	3	3	0	3	2	8470.1590	-0.0016
4	0	4	5	3	0	3	4	8470.2509	-0.0016
4	1	4	4	3	1	3	3	8297.1415	0.0010
4	1	4	3	3	1	3	2	8297.2299	0.0089
4	1	4	5	3	1	3	4	8297.2691	-0.0015
4	1	3	4	3	1	2	3	8671.2018	-0.0015
4	1	3	3	3	1	2	2	8671.2942	-0.0019
4	1	3	5	3	1	2	4	8671.3282	-0.0009
4	2	3	3	3	2	2	2	8486.5206	-0.0019
4	2	3	5	3	2	2	4	8486.4111	0.0005
4	2	3	4	3	2	2	3	8485.9755	0.0004
4	2	2	3	3	2	1	2	8504.0344	-0.0002
4	2	2	4	3	2	1	3	8503.4889	-0.0033
4	2	2	5	3	2	1	4	8503.9219	-0.0014
5	0	5	5	4	0	4	4	10574.3476	-0.0003
5	0	5	4	4	0	4	3	10574.3148	-0.0014
5	0	5	6	4	0	4	5	10574.3671	-0.0032
5	1	5	5	4	1	4	4	10367.8956	0.0000
5	1	5	4	4	1	4	3	10367.9295	0.0017
5	1	5	6	4	1	4	5	10367.9688	0.0010
5	1	4	5	4	1	3	4	10835.3933	-0.0006
5	1	4	4	4	1	3	3	10835.4360	0.0029
5	1	4	6	4	1	3	5	10835.4633	0.0000
5	2	3	4	4	2	2	3	10640.4036	-0.0038
5	2	3	5	4	2	2	4	10640.1655	0.0034
5	2	3	6	4	2	2	5	10640.3876	0.0027

Table S6. Experimental transition frequencies of the observed parent species of conformer II of CO_2 ...IPA.

5	3	3	4	4	3	2	3	10614.9807	0.0008
5	3	3	5	4	3	2	4	10614.3703	0.0008
5	3	3	6	4	3	2	5	10614.8636	0.0039
5	3	2	4	4	3	1	3	10615.4053	-0.0022
5	3	2	5	4	3	1	4	10614.7975	0.0002
5	3	2	6	4	3	1	5	10615.2890	0.0017
6	0	6	6	5	0	5	5	12669.7414	0.0026
6	0	6	7	5	0	5	6	12669.7552	-0.0027
6	1	6	6	5	1	5	5	12436.3314	-0.0059
6	1	6	5	5	1	5	4	12436.3558	0.0034
6	1	6	7	5	1	5	6	12436.3822	-0.0007
6	1	5	6	5	1	4	5	12996.9947	0.0012
6	1	5	5	5	1	4	4	12997.0066	-0.0067
6	1	5	7	5	1	4	6	12997.0371	-0.0001
6	2	5	5	5	2	4	4	12722.8506	-0.0011
6	2	5	6	5	2	4	5	12722.7144	-0.0014
6	2	5	7	5	2	4	6	12722.8506	-0.0013
6	2	4	5	5	2	3	4	12783.6810	0.0010
6	2	4	6	5	2	3	5	12783.5456	-0.0059
6	2	4	7	5	2	3	6	12783.6810	0.0002
6	3	4	5	5	3	3	4	12739.4654	-0.0013
6	3	4	6	5	3	3	5	12739.1358	0.0013
6	3	4	7	5	3	3	6	12739.4230	0.0010
6	3	3	5	5	3	2	4	12740.6060	-0.0012
6	3	3	6	5	3	2	5	12740.2780	0.0027
6	3	3	7	5	3	2	6	12740.5644	0.0019
7	0	7	6	6	0	6	5	14755.0193	-0.0042
7	0	7	7	6	0	6	6	14755.0371	0.0051
7	0	7	8	6	0	6	7	14755.0421	-0.0070
7	1	7	6	6	1	6	5	14502.1295	-0.0004
7	1	7	7	6	1	6	6	14502.1154	-0.0066
7	1	7	8	6	1	6	7	14502.1492	-0.0043
7	1	6	7	6	1	5	6	15155.3785	-0.0011
7	1	6	8	6	1	5	7	15155.4077	-0.0021
7	2	6	6	6	2	5	5	14838.2714	0.0091
7	2	6	7	6	2	5	6	14838.1818	0.0010
7	2	6	8	6	2	5	7	14838.2714	0.0022
7	2	5	6	6	2	4	5	14934.7610	-0.0016
7	2	5	7	6	2	4	6	14934.6897	0.0003
7	2	5	8	6	2	4	7	14934.7735	0.0034
7	3	5	6	6	3	4	5	14864.7556	-0.0025
7	3	5	7	6	3	4	6	14864.5584	0.0005
7	3	5	8	6	3	4	7	14864.7487	0.0074
7	3	4	6	6	3	3	5	14867.3152	-0.0086

14/30

7	3	4	7	6	3	3	6	14867.1285	0.0043
7	3	4	8	6	3	3	7	14867.3152	0.0080
8	0	8	7	7	0	7	6	16829.2436	0.0053
8	0	8	8	7	0	7	7	16829.2436	0.0020
8	0	8	9	7	0	7	8	16829.2592	0.0017
8	1	8	7	7	1	7	6	16564.9599	0.0073
8	1	8	8	7	1	7	7	16564.9491	0.0012
8	1	8	9	7	1	7	8	16564.9683	-0.0028
8	1	7	7	7	1	6	6	17309.8545	-0.0048
8	1	7	8	7	1	6	7	17309.8545	0.0027
8	1	7	9	7	1	6	8	17309.8738	-0.0005
8	2	7	7	7	2	6	6	16951.3473	-0.0068
8	2	7	8	7	2	6	7	16951.3017	0.0004
8	2	7	9	7	2	6	8	16951.3658	0.0031
8	2	6	7	7	2	5	6	17094.2211	-0.0040
8	2	6	8	7	2	5	7	17094.1868	0.0054
8	2	6	9	7	2	5	8	17094.2394	0.0052
8	3	6	7	7	3	5	6	16990.7886	-0.0060
8	3	6	8	7	3	5	7	16990.6626	-0.0026
8	3	6	9	7	3	5	8	16990.7886	-0.0010
8	3	5	7	7	3	4	6	16995.9195	-0.0029
8	3	5	8	7	3	4	7	16995.7912	-0.0025
8	3	5	9	7	3	4	8	16995.9195	0.0021
2	2	1	1	1	1	0	0	15349.5083	-0.0017
2	2	1	2	1	1	0	1	15349.7011	0.0067
2	2	1	3	1	1	0	2	15349.2377	0.0045
2	2	0	2	1	1	1	1	15445.0716	-0.0024
2	2	0	3	1	1	1	2	15444.4423	0.0032
3	1	3	2	2	0	2	1	9803.2208	-0.0038
3	1	3	3	2	0	2	2	9803.6129	-0.0038
3	1	3	4	2	0	2	3	9803.4828	0.0001
3	2	2	2	2	1	1	1	17377.3694	0.0029
3	2	2	3	2	1	1	2	17378.0231	0.0019
3	2	2	4	2	1	1	3	17377.6029	0.0024
3	2	1	2	2	1	2	1	17666.4535	-0.0034
3	2	1	3	2	1	2	2	17667.4035	-0.0013
3	2	1	4	2	1	2	3	17666.7981	0.0033
4	1	4	3	3	0	3	2	11741.6306	0.0003
4	1	4	4	3	0	3	3	11741.7834	-0.0030
4	1	4	5	3	0	3	4	11741.7433	0.0021
4	2	3	3	3	1	2	2	19358.6495	-0.0005
4	2	3	4	3	1	2	3	19359.0551	0.0037
4	2	3	5	3	1	2	4	19358.7888	0.0047
4	2	2	3	3	1	3	2	19945.7985	-0.0099

4	2	2	4	3	1	3	3	19946.4778	-0.0017
4	3	1	3	4	2	2	3	18565.6218	-0.0018
4	3	1	5	4	2	2	5	18565.8325	0.0011
4	3	1	4	4	2	2	4	18566.6377	-0.0018
5	0	5	4	4	1	4	3	7302.8522	0.0058
5	0	5	6	4	1	4	5	7302.8886	0.0071
5	1	5	4	4	0	4	3	13639.3977	0.0001
5	1	5	5	4	0	4	4	13639.4571	-0.0010
5	1	5	6	4	0	4	5	13639.4571	0.0005
6	1	6	6	5	0	5	5	15501.4495	0.0020
6	1	6	7	5	0	5	6	15501.4659	-0.0033
7	0	7	7	6	1	6	6	11923.3298	0.0065
7	0	7	8	6	1	6	7	11923.3348	-0.0029
7	1	7	6	6	0	6	5	17333.8470	0.0052
7	1	7	7	6	0	6	6	17333.8262	-0.0045
7	1	7	8	6	0	6	7	17333.8640	-0.0009
8	0	8	8	7	1	7	7	14250.4408	-0.0021
8	0	8	9	7	1	7	8	14250.4408	-0.0009

J'	K_a'	K_c'	$J^{\prime\prime}$	K_a''	K_c''	vobs (MHz)	$\Delta v_{\text{obs-calc}}$ (MHz)
4	0	4	3	0	3	9632.8299	-0.0043
4	1	4	3	1	3	9526.7292	-0.0027
4	1	3	3	1	2	9753.3548	-0.0016
5	0	5	4	0	4	12033.8352	0.0014
5	1	5	4	1	4	11906.4172	0.0032
5	1	4	4	1	3	12189.5504	0.0023

Table S7. Experimental transition frequencies of the observed ${}^{14}N1$ isotopic species of isomer I of CO₂…IPA.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	vobs (MHz)	$\Delta v_{\text{obs-calc}}$ (MHz)
4	1	4	4	3	1	3	3	9478.3893	0.0027
4	1	4	5	3	1	3	4	9478.4491	-0.0033
5	0	5	4	4	0	4	3	11966.0464	-0.0012
5	0	5	5	4	0	4	4	11966.0464	0.0041
5	0	5	6	4	0	4	5	11966.0671	-0.0015
5	1	5	4	4	1	4	3	11846.2447	-0.0086
5	1	5	5	4	1	4	4	11846.2447	-0.0022
5	1	5	6	4	1	4	5	11846.2926	0.0059
4	1	3	4	3	1	2	3	9689.4442	0.0037
4	1	3	5	3	1	2	4	9689.4860	-0.0036

Table S8. Experimental transition frequencies of the observed ${}^{13}C2$ isotopic species of isomer I of CO₂…IPA.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	vobs (MHz)	$\Delta v_{obs-calc}$ (MHz)
3	0	3	2	2	0	2	1	7169.5697	0.0079
3	0	3	3	2	0	2	2	7169.6122	-0.0046
3	0	3	4	2	0	2	3	7169.6372	-0.0061
4	0	4	3	3	0	3	2	9556.1484	0.0101
4	0	4	4	3	0	3	3	9556.1484	-0.0027
4	0	4	5	3	0	3	4	9556.1705	-0.0051
4	1	4	4	3	1	3	3	9464.7273	-0.0015
4	1	4	5	3	1	3	4	9464.7918	-0.0025
5	0	5	4	4	0	4	3	11939.8438	-0.0031
5	0	5	5	4	0	4	4	11939.8438	0.0008
5	0	5	6	4	0	4	5	11939.8641	-0.0039
5	1	5	4	4	1	4	3	11829.3839	-0.0057
5	1	5	5	4	1	4	4	11829.3839	0.0004
5	1	5	6	4	1	4	5	11829.4210	-0.0021
6	0	6	5	5	0	5	4	14320.0324	-0.0044
6	0	6	7	5	0	5	6	14320.0564	0.0061
6	1	6	5	5	1	5	4	14193.0358	0.0049
6	1	6	6	5	1	5	5	14193.0358	0.0087
6	1	6	7	5	1	5	6	14193.0572	0.0025
4	1	3	4	3	1	2	3	9657.9217	-0.0040
4	1	3	5	3	1	2	4	9657.9707	-0.0038
5	1	4	4	4	1	3	3	12070.8167	0.0017
5	1	4	5	4	1	3	4	12070.7837	0.0016
5	1	4	6	4	1	3	5	12070.8167	0.0064
5	2	4	5	4	2	3	4	11950.7697	0.0033
5	2	4	6	4	2	3	5	11950.8666	0.0011
5	2	4	4	4	2	3	3	11950.8666	-0.0092

Table S9. Experimental transition frequencies of the observed ${}^{13}C4({}^{13}C5)$ isotopic species of isomer I of CO₂…IPA.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	vobs (MHz)	$\Delta v_{\text{obs-calc}}$ (MHz)
4	0	4	3	3	0	3	2	9560.9942	0.0062
4	0	4	4	3	0	3	3	9560.9942	-0.0055
4	0	4	5	3	0	3	4	9561.0210	-0.0041
4	1	4	4	3	1	3	3	9462.4334	0.0000
4	1	4	5	3	1	3	4	9462.4967	-0.0024
5	0	5	4	4	0	4	3	11945.1605	0.0006
5	0	5	5	4	0	4	4	11945.1605	0.0058
5	0	5	6	4	0	4	5	11945.1790	-0.0019
5	1	5	4	4	1	4	3	11826.3354	-0.0047
5	1	5	5	4	1	4	4	11826.3354	0.0017
5	1	5	6	4	1	4	5	11826.3777	0.0042
5	1	4	4	4	1	3	3	12087.6199	-0.0036
5	1	4	5	4	1	3	4	12087.5934	0.0032
5	1	4	6	4	1	3	5	12087.6199	0.0012

Table S10. Experimental transition frequencies of the observed ${}^{13}C14$ isotopic species of isomer I of CO_2 ...IPA.

Transitions	F'←F"	Conformer	Frequencies	Intensities
2 . 2	4. 2	Ι	7244.1548	0.057
<i>3</i> ₀₃ <i>←2</i> ₀₂	4←3	II	6359.0155	0.023
4	5.4	Ι	9654.9196	0.157
4 ₀₄ ←3 ₀₃	3←4	Π	8470.2508	0.052
4	5.4	Ι	9554.8774	0.040
4 ₁₄ ← 5 ₁₃	3←4	Π	8297.2692	0.025
5 . 1	(Ι	12062.3343	0.105
305←404	6→0	Π	10574.3360	0.058
7 . (Q. 7	Ι	16712.0049	0.008
/ ₁₇ ←0 ₁₆	8←7	II	14502.1502	0.002
0.7	0. 9	Ι	19257.1024	0.016
ð08← / 07	9←8	Π	16829.2515	0.004

Table S11. Intensities (in arbitrary units) of the two isomers for several μ_a -type selected transitions.

	Isomer I							Isomer II			
Methods	Basis sets	A (MHz)	B (MHz)	C (MHz)	Ave ^b (%)	A (MHz)	B (MHz)	C (MHz)	Ave ^b (%)		
Exp.		3854.6000	1234.5063	1181.3414	-	4778.4169	1107.7740	1014.2971	-		
	6-311++G(d,p)	3831(0.6%)	1260(-2.0%)	1197(-1.3%)	1.3	4724(1.1%)	1125(-1.5%)	1083(-6.8%)	3.2		
	6-311++G(2d,p)	3850(0.1%)	1262(-2.2%)	1200(-1.6%)	1.3	4777(0.0%)	1133(-2.3%)	1061(-4.6%)	2.3		
	6-311++G(2df,2pd)	3872(-0.4%)	1275(-3.3%)	1212(-2.6%)	2.1	4802(-0.5%)	1144(-3.3%)	1074(-5.9%)	3.2		
MP2	6-311++G(3df,3pd)	3860(-0.1%)	1285(-4.1%)	1220(-3.3%)	2.5	4786-(0.2%)	1148(-3.6%)	1091(-7.6%)	3.8		
	def2-TZVP	3882(-0.7)	1268(-2.7%)	1207(-2.2%)	1.9	4788(-0.2%)	1132(-2.2%)	1054(-3.9%)	2.1		
	jun-cc-PVTZ	3862(-0.2%)	1266(-2.6%)	1203(-1.9%)	1.5	4789(-0.2%)	1134(-2.4%)	1058(-4.3%)	2.3		
	aug-cc-PVTZ	3865(-0.3%)	1292(-4.7%)	1227(-3.8%)	2.9	4800(-0.4%)	1152(-4.0%)	1070(-5.5%)	3.3		
	6-311++G(d,p)	3873(-0.5%)	1291(-4.6%)	1232(-4.3%)	3.1	4780(0.0%)	1142(-3.1%)	1067(-5.2%)	2.8		
	6-311++G(2d,p)	3872(-0.5%)	1277(-3.5%)	1219(-3.2%)	2.4	4789(-0.2%)	1134(-2.4%)	1057(-4.2%)	2.3		
	6-311++G(2df,2pd)	3878(-0.6%)	1271(-3.0%)	1213(-2.7%)	2.1	4793(-0.3%)	1133(-2.3%)	1057(-4.2%)	2.3		
B3LYP-D3(BJ)	6-311++G(3df,3pd)	3870(-0.4%)	1274(-3.2%)	1215(-2.9%)	2.2	4793(-0.3%)	1131(-2.1%)	1055(-4.0%)	2.1		
	def2-TZVP	3879(-0.6%)	1275(-3.3%)	1217(-3.0%)	2.3	4806(-0.6%)	1132(-2.2%)	1035(-2.1%)	1.6		
	jun-cc-PVTZ	3873(-0.5%)	1267(-2.7%)	1209(-2.3%)	1.8	4788(-0.2%)	1127(-1.7%)	1050(-3.6%)	1.8		
	aug-cc-PVTZ	3875(-0.5%)	1270(-2.9%)	1212(-2.6%)	2.0	4792(-0.3%)	1130(-2.0%)	1047(-3.2%)	1.8		
	6-311++G(d,p)	3856(0.0%)	1275(-3.3%)	1214(-2.8%)	2.0	4772(0.1%)	1129(-1.9%)	1056(-4.1%)	2.0		
	6-311++G(2d,p)	3862(-0.2%)	1267(-2.7%)	1207(-2.2%)	1.7	4784(-0.1%)	1128(-1.8%)	1049(-3.4%)	1.8		
	6-311++G(2df,2pd)	3872(-0.5%)	1265(-2.5%)	1205(-2.0%)	1.7	4795(-0.3%)	1130(-2.0%)	1051(-3.6%)	2.0		
B2PLYP-D3(BJ)	6-311++G(3df,3pd)	3862(-0.2%)	1272(-3.1%)	1211(-2.5%)	1.9	4793(-0.3%)	1130(-2.0%)	1052(-3.7%)	2.0		

Table S12. The percentage differences between the experimental and theoretical rotational constants of the isomers I and II of CO_2 ... IPA adduct at the different levels of theory.^{a)}

	1	1							
	def2-TZVP	3873(-0.5%)	1266(-2.6%)	1206(-2.1%)	1.7	4803(-0.5%)	1126(-1.6%)	1024(-1.0%)	1.0
	jun-cc-PVTZ	3865(-0.3%)	1259(-2.0%)	1199(-1.5%)	1.2	4788(-0.2%)	1123(-1.3%)	1041(-2.6%)	1.4
	aug-cc-PVTZ	3866(-0.3%)	1269(-2.8%)	1208(-2.3%)	1.8	4798(-0.4%)	1130(-2.0%)	1036(-2.1%)	1.5
	6-311++G(d,p)	3880(-0.7%)	1289(-4.4%)	1229(-4.0%)	3.0	4809(-0.6%)	1138(-2.8%)	1060(-4.5%)	2.6
	6-311++G(2d,p)	3879(-0.6%)	1275(-3.3%)	1215(-2.8%)	2.2	4813(-0.7%)	1129(-1.9%)	1052(-3.7%)	2.1
	6-311++G(2df,2pd)	3890(-0.9%)	1265(-2.5%)	1207(-2.2%)	1.9	4815(-0.8%)	1128(-1.9%)	1052(-3.8%)	2.1
ωB97XD	6-311++G(3df,3pd)	3878(-0.6%)	1270(-2.9%)	1210(-2.5%)	2.0	4810(-0.7%)	1118(-0.9%)	1044(-2.9%)	1.5
	def2-TZVP	3888(-0.9%)	1256(-1.8%)	1199(-1.5%)	1.4	4813(-0.7%)	1114(-0.6%)	1038(-2.3%)	1.2
	jun-cc-PVTZ	3881(-0.7%)	1249(-1.2%)	1191(-0.8%)	0.9	4804(-0.5%)	1113(-0.5%)	1040(-2.5%)	1.2
	aug-cc-PVTZ	3885(-0.8%)	1252(-1.4%)	1194(-1.1%)	1.1	4806(-0.6%)	1115(-0.6%)	1041(-2.6%)	1.3
CCSD	6-311++G(d,p)	3836(0.5%)	1236(-0.1%)	1178(0.3%)	0.3	4750(0.6%)	1102(0.5%)	1043(-2.9%)	1.3
	6-311++G(2d,p)	3853(0.1%)	1231(0.3%)	1173(0.7%)	0.3	4781(-0.1%)	1104(0.3%)	1028(-1.4%)	0.6

a) The values in parentheses are percentage differences defined as: 100% ×(experimental-theoretical)/experimental.

b) Average absolute percentage error for each level.

2				
Atom		<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)
N1	rs	±0.534(3) ^{a)}	±1.164(11)	0.000 ^{b)}
	r_0	-0.558(7)	1.166(8)	0.000
	r _e	-0.546	1.158	0.000
C2	rs	±1.819(1)	±0.412(34)	0.000 ^{b)}
	r_0	-1.822(6)	0.424(10)	0.000
	r _e	-1.804	0.407	0.000
C4	rs	±1.866(2)	±0.434(8)	±1.256(3)
	r_0	-1.872(5)	-0.455(3)	-1.271(1)
	r _e	-1.871	-0.446	-1.257
C5	rs	±1.866(2)	±0.434(8)	±1.256(3)
	r_0	-1.872(5)	-0.455(3)	1.271(1)
	r _e	-1.871	-0.446	1.257
C14	rs	±2.028(1)	±0.283(31)	0.000 ^{b)}
	r_0	2.013(1)	-0.238(1)	0.000
	r _e	2.002	-0.237	0.000

Table S13. Experimental (r_s and r_0) and theoretical (r_e) coordinates of the four C and one N atoms for the isomer I of CO₂···IPA adduct.

a) Constain's errors expressed in parentheses in units of the last digit.

b) *c*-coordinates are fixed at zero by symmetry.

Bond leng	gths (Å)	Valence	angles (°)	Dihedral ang	les (°)
C2N1	1.465				
H3C2	1.099	H3C2N1	111.4		
C4C2	1.546(8) ^{a)}	C4C2H3	109.1(9)	C4C2H3N1	-119.6
C5C2	1.546(8)	C5C2H3	109.1(9)	C5C2H3N1	119.6
H6C4	1.090	H6C4C2	110.7	H6C4C2H3	-58.1
H7C4	1.092	H7C4C2	111.1	H7C4C2H3	61.6
H8C4	1.090	H8C4C2	110.2	H8C4C2H3	-178.4
H9C5	1.090	H9C5C2	110.7	H9C5C2H3	-58.1
H10C5	1.092	H10C5C2	111.1	H10C5C2H3	-61.6
H11C5	1.090	H11C5C2	110.2	H11C5C2H3	178.4
H12N1	1.012	H12N1C2	110.8	H12N1C2H3	59.1
H13N1	1.012	H13N1C2	110.8	H13N1C2H3	-59.1
C14N1	2.929(13)	C14N1C2	121.0(9)	C14N1C2H3	180.0
O15C14	1.157	O15C14N1	92.8(6)	O15C14N1C2	0.0
O16C14	1.157	O16C14O15	175.9	016C14O15C2	180.0

Table S14. Partial *r*⁰ and calculated geometry at ωB97XD/jun-cc-pVTZ level of isomer **I**.

a) Error in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their theoretical values are 1.521 Å, 108.0 $^{\circ}$, 1.521 Å, 108.0 $^{\circ}$, 2.905 Å, 120.5 $^{\circ}$ and 94.1 $^{\circ}$, respectively.

Bond ler	ngths (Å)	Valence a	ngles (°)	Dihedral a	ngles (°)
C2N1	1.464				
H3C2	1.093	H3C2N1	106.3		
C4C2	1.528	C4C2H3	108.5	C4C2H3N1	-122.5
C5C2	1.521	C5C2H3	108.1	C5C2H3N1	116.7
H6C4	1.091	H6C4C2	111.3	H6C4C2N1	-177.1
H7C4	1.091	H7C4C2	111.0	H7C4C2N1	-56.8
H8C4	1.093	H8C4C2	110.4	H8C4C2N1	63.0
H9C5	1.090	H9C5C2	110.9	H9C5C2C4	-56.7
H10C5	1.089	H10C5C2	110.8	H10C5C2C4	-177.3
H11C5	1.093	H11C5C2	110.5	H11C5C2C4	62.7
H12N1	1.013	H12N1C2	110.3	H12N1C2C4	-65.5
H13N1	1.012	H13N1C2	110.6	H13N1C2C4	52.2
C14N1	2.916(4) ^{a)}	C14N1C2	111.3	C14N1C2C4	169.1
O15C14	1.158	O15C14N1	90.6	O15C14N1C2	-14.5(12) ^{a)}
O16C14	1.157	O16C14O15	176.5	O16C14O15N1	178.5

Table S15. Partial r_0 and calculated geometry at ω B97XD/jun-cc-pVTZ level of isomer **II**.

a) Error in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their theoretical values are 2.877 Å and -22.3 °, respectively.

Donor NBO	Acceptor NBO	E(2) [kJ/mol]						
	From IPA to CO ₂							
BD (1) C2 – N4	RY*(1) C5	0.21						
LP (1) N4	RY* (4) C5	0.29						
LP (1) N4	RY* (3) O7	0.25						
LP (1) N4	BD*(1) C5 – O6	0.33						
LP (1) N4	BD*(3) C5 – O6	6.99						
	From CO ₂ to IPA							
BD (1) C5 – O6	RY*(3) N4	0.33						
BD (3) C5 – O6	BD*(1) C2 – N4	0.59						
LP (1) O7	RY*(3) H10	0.25						
LP (1) O7	RY*(3) H13	0.25						
LP (2) O7	BD*(1) C1 – H10	0.46						
LP (2) O7	BD*(1) C3 – H13	0.46						

Table S16. Stabilization energy contributions ($\geq 0.21 \text{ kJ/mol}$) for the isomer I of the CO₂…IPA adduct.

Donor NBO	Acceptor NBO	E(2) [kJ/mol]
	From IPA to CO ₂	
BD (1) C2 – N4	RY*(1) C5	0.25
LP (1) N4	RY* (4) C5	0.29
LP (1) N4	RY* (5) C5	0.29
LP (1) N4	RY* (3) O6	0.25
LP (1) N4	RY* (3) O7	0.21
LP (1) N4	BD*(1) C5 – O7	0.38
LP (1) N4	BD*(3) C5 – O7	8.28
	From CO ₂ to IPA	
BD (3) C5 – O7	RY*(1) N4	0.25
BD (3) C5 – O7	BD*(1) C2 – N4	0.29
LP (2) O6	BD*(1) C1 – C2	0.38
LP (3) O6	BD*(1) C3 – H12	0.21

Table S17. Stabilization energy contributions (≥ 0.21 kJ/mol) for the isomer II of the CO₂…IPA adduct.

	Isomer I	Isomer II	Trans	Gauche	CO_2
С	-0.585	-0.591	-0.581	-0.592	
С	-0.031	-0.038	-0.032	-0.034	
С	-0.585	-0.582	-0.581	-0.581	
Ν	-0.851	-0.842	-0.840	-0.831	
Н	0.194	0.196	0.195	0.196	
Н	0.202	0.201	0.200	0.199	
Н	0.208	0.192	0.203	0.191	
Н	0.147	0.176	0.144	0.169	
Н	0.194	0.209	0.195	0.210	
Н	0.208	0.189	0.203	0.189	
Н	0.202	0.203	0.200	0.199	
Н	0.352	0.345	0.348	0.339	
Н	0.353	0.350	0.348	0.346	
С	1.009	1.008			0.987
0	-0.507	-0.512			-0.493
0	-0.509	-0.505			-0.493

Table S18. NPA charges for the isomers **I** and **II** of CO_2 ...IPA adduct and CO_2 and IPA isolated molecules. Bold values highlight the values of the sulfur and fluorine atoms involved in the charge transfer.

Complexes	NCIs b)	Distances	$E_{ m elec}$	$E_{ m ind}$	$E_{ m disp}$	E_{ex}	$E_{ m t}$
CO ₂ …IPA- I	C…N	2.929 ^{c)}	-30.6(61%) ^{d)}	-4.4(9%)	-15.0(30%)	29.1	-20.9
CO ₂ …IPA-II	C…N	2.916 ^{c)}	-30.5(61%)	-4.7(9%)	-14.5(29%)	28.9	-20.8
CO ₂ …HCN	C…N	2.998 ^{c)}	-10.7(58%)	-1.6(9%)	-6.3(34%)	7.9	-10.7
CO ₂ …NH ₃	C…N	2.9875 ^{c)}	-24.4(67%)	-3.5(10%)	-8.5(23%)	20.4	-16.0
CO ₂ ···MA ^{e)}	C…N	2.881 ^{f)}	-29.2(64%)	-4.4(10%)	-11.8(26%)	26.3	-19.1
CO ₂ ···EA ^{e)}	C…N	2.881 ^{f)}	-29.9(62%)	-4.6(9%)	-14.1(29%)	28.3	-20.3
CO ₂ …NPA ^{e)}	C…N	$2.878^{\text{ f})}$	-30.0(61%)	-4.7(9%)	-14.8(30%)	28.8	-20.7
CO ₂ …Py	C…N	2.7977 ^{c)}	-31.3(62%)	-5.0(10%)	-14.5(29%)	26.5	-24.3
CO ₂ …FM-I	С…О	2.836 ^{c)}	-32.7(61%)	-7.1(13%)	-13.8(26%)	27.4	-26.2
CO ₂ FM- II	С…О	2.789 ^{c)}	-26.6(62%)	-4.9(11%)	-11.6(27%)	21.0	-22.1

Table S19. Results of the SAPT analysis for the isomers I and II of CO₂…IPA, and compared with the complexes of CO₂ with eight nitrogen-containing compounds ^a).

a) All the values are given in kJ mol⁻¹. b) NCIs represent the type of non-covalent interactions occurring in the complex. c) the values (in unit of Å) derive from the corresponding r_0 structures. d) The values in parenthesis are the contribution of each component with respect to the total attractive interaction $(E_{\text{elec}} + E_{\text{ind}} + E_{\text{disp}})$. e) only the most stable conformer is considered for these two conformers. f) Calculated at the ω B97XD/aug-cc-pVTZ level.