Halogen bonding matters: visible light-induced photoredox catalyst-free aryl radical formation and its applications<br>Rong Miao, ${ }^{\text {a }}$ Dan Wang, ${ }^{\text {a }}$ Jianliang Xiao, ${ }^{\text {a }}$ Jiani Ma, ${ }^{\text {b }}$ Dong Xue, ${ }^{* a}$ Fengyi Liu, ${ }^{* a}$ and Yu Fang*a<br>${ }^{\text {a }}$ Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education<br>${ }^{\text {a }}$ School of Chemistry and Chemical Engineering<br>${ }^{\text {a Shaanxi Normal University, Xi'an 710062, People's Republic of China. }}$<br>${ }^{\mathrm{b}}$ College of Chemistry and Materials Science,<br>${ }^{\text {b }}$ Northwest University, Xi'an 710127, People's Republic of China.<br>Email: xuedong_welcome@snnu.edu.cn; FengyiLiu@snnu.edu.cn; yfang@snnu.edu.cn

## Table of Contents

1. General Information ..... 2
1.1 Materials .....  2
1.2 Characterization Details .....  .2
2. Synthesis .....  2
2.1 Reactor .....  2
2.2 General Procedure for Visible-Light-Driven Synthesis .....  3
3. Computation Details .....  4
3.1 General Information for Computation .....  4
3.2 Photocleavage of C-X Bond in aryl- Cl and aryl-I without $\mathrm{Et}_{3} \mathrm{~N}$ .....  5
3.3 Photo Activation of C-X Bond in aryl-X $\cdots \mathrm{Et}_{3} \mathrm{~N}$ Complex .....  6
4. Supplement Data. .....  8
4.1 Supplementary Figures for Theoretical Calculations ..... 8
4.2 Cartesian Coordinates of Important Stationary Points ..... 13
4.3 Studies on Phosphorescence of 4-I-COMe with/without $\mathrm{Et}_{3} \mathrm{~N}$ ..... 16
4.4 Ns-TA spectra of 4-I-COMe with/without $\mathrm{Et}_{3} \mathrm{~N}$ ..... 17
4.5 Application of 4-I-COMe in ${ }^{1} \mathrm{O}_{2}$ Photosensitizer. ..... 18
4.6 HRMS Analysis of TEMPO-Trapped Intermediate ..... 19
4.7 GC-MS Analysis of Photoreduction of 4-Iodoacetophenone. ..... 20
4.8 Supplementary Data for Study on Reaction Condition. ..... 21
5. Characterization Data ..... 23
6. NMR Spectra ..... 31
7. References ..... 49

## 1. General Information

1.1 Materials Commercial grade reagents (including aryl halides, pyrroles, and 2, 2, 6, 6-tetramethylpiperidinoxyl) were purchased from Sigma-Aldrich, Alfa Aesar, Tokyo Chemical Industry, J \& K Chemicals, Macklin at the highest commercial quality and used without further purification, unless otherwise stated.
1.2 Characterization Details The NMR spectra were recorded at $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $150 \mathrm{MHz}{ }^{13} \mathrm{C}$. The chemical shift ( $\delta$ ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents $\left(\mathrm{CHCl}_{3} @ 7.26 \mathrm{ppm}{ }^{1} \mathrm{H}\right.$ NMR and $77.16 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR, DMSO- $\mathrm{d}_{6}$ @ $2.50 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR and $39.51 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR, tetramethylsilane @ 0 ppm ). High resolution mass spectra (HRMS) were obtained from the liquid chromatography coupled time-of-flight mass spectrometer with electrospray ionization (ESI), MAXIS, Brooker. Gas chromatography coupled to mass spectrometry (GC-MS) analysis was performed on GCMS-QP2010UItra (Hitachi) using $\mathrm{N}_{2}$ gas as carrier. UV-vis measurements were carried out on a U-3900 (Hitachi) spectrophotometer.

## 2. Synthesis

2.1 Reactor Visible-light-driven C-C coupling reactions were performed on a homemade photochemical reactor (Figure S1) with purple LEDs (Tianhui, TH-UV395T3WL- 3535-60 purple LEDs, 3-4 V, 500 mA ) as light source, except for reaction condition optimization under visible light of different wavelengths. Wavelength of the purple LEDs was checked on a UV-vis spectrometer as mentioned earlier, and the result is depicted in Figure S2. It is seen that the peak wavelength of
the emission from the LED is $\sim 400 \mathrm{~nm}$ with a peak width of $\sim 10 \mathrm{~nm}$.


Figure S1. Photograph of the homemade photochemical reactor. The photochemical reactor as used contains four parts: the reactor with LEDs was kept around ice to avoid thermal effect of working LEDs (a), a magnetic stirring apparatus (b), a current control system made up of resistances (c), and a regulated power supply (d).


Figure S2. Emission spectra of the purple LED (black). Red: background.
2.2 General Procedure for Visible-Light-Driven Synthesis Respective aryl halide ( $0.1 \mathrm{mmol}, 1$ equiv) was dissolved in 2 mL MeCN in a 5 mL vial with magnetic stirring bar. The solution was degassed by $\mathrm{N}_{2}$ via a syringe needle for 20 min , and 2 equiv $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L})$ was added during the degassing process. Corresponding pyrrole
was added into the mixture when the degassing is completed. Then, the vial was sealed up and the reaction mixture was irradiated through the bottom side of the vial using LED light. The reaction was monitored by thin-layer chromatography (TLC) analysis. When the reaction is completed, the reaction mixture was transferred into a 25 mL round-bottom flask and then concentrated in vacuum at $30^{\circ} \mathrm{C}$. Purification of the crude product was achieved by column chromatography using petrol ether/ethyl acetate on silica gel column.

## 3. Computation Details

3.1 General Information for Computation The singlet and triplet ground-state ( $\mathrm{S}_{0}$ and $T_{1}$, respectively) minima and potential energy curves (PECs) were optimized at density functional theory (DFT) ${ }^{1-3}$ level. A M062X ${ }^{4}$ functional with Grimme's D3 dispersion corrections ${ }^{5}$ (M062X-D3) were employed to consider both the weak interactions and the dispersion effects. For all atoms, the valent-splitted def2-SVPD basis sets ${ }^{6}$ from EMSL Basis Set Exchange Library ${ }^{7}$ were used in DFT calculations as well as Effective Core Potential (ECP) was applied for the I atom. The solvent contribution to energy and geometry was studied with SMD solvation model ${ }^{8}$ using acetonitrile as solvent $(\mathcal{\varepsilon}=35.69)$. The $\mathrm{S}_{0^{-}}$and $\mathrm{T}_{1}$-PECs were constructed from a series of constraint geometries along the C-I distance. The excited-state $\mathrm{S}_{1}$-PEC was obtained using the same strategy except for a time-dependent (TD) ${ }^{9,10}$ M062X-D3 functional was employed.

Multi-state (MS) CASPT2 ${ }^{11}$ single-point calculations with Douglas-Kroll Hamiltonian and ANO-RCC-VDZP ${ }^{12}$ basis sets were carried out on top of the
(TD)DFT-optimized geometries, to provide the high-level energy correction for spinfree states, as well as to consider the spin-orbit coupling between singlet and triplet wave functions. In CASPT2 calculations, an active space of 14 electrons distributed in 10 orbitals, namely, $\operatorname{CAS}(14 e, 10 o)$, were used. The active orbitals include the C-X $\sigma / \sigma^{*}$ pair, lone-pair orbital on I atom, as well as the frontier $\pi$ and $\pi^{*}$ orbitals on the benzene moiety. The spin-orbit treatments were done using the RASSI(SO) algorithm ${ }^{13}$ implemented in MOLCAS 8.0 within the framework of Atomic Mean Filed Integrals (AMFI) approach ${ }^{14}$.

The (TD)DFT and MS-CASPT2/RASSI-SO calculations were carried out by Gaussian $09^{15}$ and MOLCAS 8.0 program ${ }^{14}$, respectively.
3.2 Photocleavage of C-X Bond in aryl-Cl and aryl-I without $\mathrm{Et}_{3} \mathrm{~N}$ : As discussed in the manuscript, previous multireference $a b$ initio calculations suggested that the repulsive $\left(\pi, \pi^{*}\right)$ and $(\pi, \sigma *)$ states, i.e., the $S_{1}$ and $T_{1}$ mentioned in this study, go downhill towards longer C-I distance, until energetically degenerate with the ground state $\left(\mathrm{S}_{0}\right)$, and neither $\mathrm{S}_{1}$ nor $\mathrm{T}_{1}$ intermediate has been located. While in our DFT calculations, as shown in Figure $\mathrm{S} 3(\mathrm{a})$, the aryl- Cl does not show an evident downhill MEP with the elongation of $\mathrm{C}-\mathrm{Cl}$ distance, therefore it is not able to support a favorable $\mathrm{C}-\mathrm{Cl}$ bond cleavage process; for aryl-I in $\mathrm{S} 3(\mathrm{c})$, the $\mathrm{T}_{1}$-MEP shows a slight downhill trend, and in right ending of the investigated range, the optimized $\mathrm{T}_{1^{-}}$and $S_{0}$-PECs are not fully degenerate, instead, the $T_{1}$ becomes slightly energetically favorable than $\mathrm{S}_{1}$ (It is possibly because the previous calculations were carried out with a $C_{2 \mathrm{v}}$ symmetric constraints, therefore the full relaxation of $\mathrm{T}_{1}$ towards an out-of-
plane bending structure, as seen in Figure 2, is not allowed). The MS-CASPT2 energy correction does not change the topology of the C-X bond dissociation path (Figure S4a and 4c). Moreover, for aryl-Cl, in the MS-CASPT2/RASSI(SO) calculations, the $\mathrm{S}_{1} / \mathrm{S}_{0} / \mathrm{T}_{1}$ state mixing along the C - Cl energy profile (Figure S 5 a , bottom panel) is negligible, showing too weak spin-orbital coupling between the $\mathrm{S}_{1} / \mathrm{T}_{1}$ state to facilitate a $\mathrm{S}_{1} \rightarrow \mathrm{~T}_{1}$ intersystem crossing. For the case of aryl-I (shown in figure S 5 c ), the $\mathrm{S}_{1} / \mathrm{T}_{1}$ state mixing is observed in rather long C-I distance of 3.2-3.6 $\AA$, which is also too late for the efficient formation of radical complex. In both cases, although a minimum can be obtained on the flat $\mathrm{T}_{1}-\mathrm{PEC}$, its rather low kinetic and thermodynamic stabilities do not support the aryl radical as a long lifetime intermediate that can be utilized in organic synthesis.
3.3 Photo Activation of C-X Bond in aryl-X…Et $\mathbf{H}_{3} \mathbf{N}$ Complex: Figure S3 and S4 also shows the DFT-optimized C-X dissociative PECs (S3b, S3d) and the corresponding energy corrections at the MS-CASPT2 level (S4b, S4d). At the DFT level, the $\mathrm{T}_{1}$-PECs are nearly degenerate with $\mathrm{S}_{1}$ state in the $\left(\pi, \pi^{*}\right)$ with short $\mathrm{C}-\mathrm{X}$ distance, then goes downhill along the $\left(\pi, \sigma^{*}\right)$ state at long C-X region. Comparisons with the base-free aryl-X case (Figure S3a and S3c) reveal that the Lewis acid $\mathrm{Et}_{3} \mathrm{~N}$ prefer to stabilize the $T_{1}$ state in both cases. Further explorations of $T_{1}$-PEC find a triplet intermediate ( $\mathrm{T}_{1}-\mathrm{min}$ ). At $\mathrm{T}_{1}$-min, the atomic charge distributions beside the C I bond does not change with respect to those in $\mathrm{S}_{0}$ (see Table S 1 ), thus a homolytic cleavage is supported.

It is also noted that after MS-CASPT2 energy correction, the aryl- $\mathrm{Cl}+\mathrm{Et}_{3} \mathrm{~N}$
energy profile (Figure S4b) show a barrier at 2.4 angstrom, which is unfavorable for the formation of the $\mathrm{T}_{1}-\mathrm{min}$; while for aryl- $\mathrm{I}+\mathrm{Et}_{3} \mathrm{~N}$, no barrier is observed. Meanwhile, from Figure S 5 b and 5 d , it is seen that along the $\mathrm{T}_{1}-\mathrm{PEC}$, the $\mathrm{S}_{1}$ and $\mathrm{T}_{1}$ states are close in energy in an extended range, which may suggest a high probability of $S_{1} \rightarrow T_{1}$ intersystem crossing (ISC). The narrow $\mathrm{S}_{1}-\mathrm{T}_{1}$ energy gap, as well as the large magnitude of SOC, support an efficient $\mathrm{S}_{1} \rightarrow \mathrm{~T}_{1}$ ISC process, as has been observed experimentally.

The frontier molecular orbital (FMO), natural transition orbitals (NTOs) and spin density of the singlet and triplet minima are plotted in Figure S6 and S7. The NTOs at $\mathrm{S}_{0}$-min reveal the same $\left(\pi, \pi^{*}\right)$ nature of both $\mathrm{S}_{1}$ and $\mathrm{T}_{1}$ states at short C-X distance, while the single-occupied MOs and spin density at $\mathrm{T}_{1}$-min suggest the biradical nature of the formed complex.

## 4. Supplement Data

### 4.1 Supplementary Figures for Theoretical Calculations



Figure S3. The $S_{1}, S_{0}$ and $T_{1}$ energy profiles optimized at M062X-D3/def2-SVPD (ECP) level along the $\mathrm{C}-\mathrm{X}$ distance in acetonitrile solution for (a) aryl- Cl , (b) aryl- $\mathrm{Cl}+\mathrm{Et}_{3} \mathrm{~N}$, (c) aryl-I and (d) aryl-I $+\mathrm{Et}_{3} \mathrm{~N}$. The optimized minima on the MEPs are emphasized by purple circles.


Figure S4. The MS-CASPT2/ANO-RCC-VDZP-calculated $\mathrm{S}_{1}, \mathrm{~S}_{0}$ and $\mathrm{T}_{1}$ energy profiles on top of the M062X-D3/def2-SVPD (ECP) optimized structures along the C-X distance in acetonitrile solution for (a) aryl- Cl , (b) aryl- $\mathrm{Cl}+\mathrm{Et}_{3} \mathrm{~N}$, (c) aryl-I and (d) aryl-I $+\mathrm{Et}_{3} \mathrm{~N}$. The optimized minima on the MEPs are emphasized by purple circles.


Figure S5. The MS-CASPT2-corrected $\mathrm{T}_{1}$ energy profiles calculated on top of the M062Xoptmized geometries and their vertical projection on $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ states $\left(\mathrm{S}_{0} / / \mathrm{T}_{1}\right.$ and $\mathrm{S}_{1} / / \mathrm{T}_{1}$, respectively) for (a) aryl- Cl , (b) aryl- $\mathrm{Cl}+\mathrm{Et}_{3} \mathrm{~N}$, (c) aryl-I and (d) aryl- $\mathrm{I}+\mathrm{Et}_{3} \mathrm{~N}$. The weight of the spin-free $S_{0}, S_{1}$ and $T_{1}$ states along the $S O C T_{1}$-PECs are shown in the bottom of each figures.


Figure S6. The natural transition orbitals (NTO) of $\mathrm{S}_{0}-\mathrm{min} . \mathrm{S}_{1}$ and $\mathrm{T}_{1}$ states, both correspond to the electron transition from NTO 72 to NTO 74 and show a $\left(\pi, \pi^{*}\right)$ nature.


Figure S7. The singly occupied orbitals (SOMO 66 and SOMO 69) and spin density of $\mathrm{T}_{1}$-min for aryl-..$- \mathrm{Et}_{3} \mathrm{~N}$ complex, which suggest that the two unpaired electrons are localized at the p orbital of I and aryl-C atoms, respectively

Table S1. Natural Bond Orbital (NBO) charges distribution (in e) of $\mathrm{S}_{0}-\mathrm{min}$ and $\mathrm{T}_{1}-$ min structures.

|  | $\boldsymbol{Q}\left(\mathbf{S}_{\mathbf{0}}-\mathbf{m i n}\right)$ | $\boldsymbol{Q}\left(\mathbf{T}_{\mathbf{1}}-\mathbf{m i n}\right)$ |
| :---: | :---: | :---: |
| The fragment partition method 1 |  |  |
| $\mathbf{E t}_{\mathbf{3}} \mathbf{N}$ | 0.043 | 0.490 |
| $\mathbf{I - B e n z}$ | -0.043 | -0.490 |
| The fragment partition method 2 |  |  |
| $\mathbf{E t}_{3} \mathbf{N} \cdots \mathbf{I}$ | 0.231 | 0.000 |
| $\cdot \mathbf{B e n z}^{r}$ The fragment partition method 3 |  |  |
| $\mathbf{I}$ |  |  |
| Et3 | -0.231 | 0.000 |
| $\mathbf{N}$ | 0.188 | -0.491 |

4.2 Cartesian Coordinates of Important Stationary Points

| $\mathrm{S}_{\mathbf{0}} \mathbf{- m i n}(\mathbf{I}+\mathbf{E t 3 N})$ |  |  |  | $\mathrm{T}_{1}-\mathrm{min}(\mathrm{I}+\mathrm{Et} 3 \mathrm{~N})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -973.5680239 |  |  |  | -973.493239 |  |  |  |
| N | -3.642672 | -0.037080 | 0.003334 | N | 1.335447 | 1.385023 | 0.196393 |
| C | -4.132631 | 1.130367 | -0.728948 | C | 2.185979 | 2.264173 | -0.611588 |
| C | -4.075654 | -0.006913 | 1.400263 | C | 1.510725 | 1.548680 | 1.642416 |
| C | -4.042828 | -1.283241 | -0.650175 | C | -0.066790 | 1.339287 | -0.231845 |
| H | -3.694436 | 1.105120 | -1.733432 | H | 2.175741 | 1.882347 | -1.637107 |
| H | -5.234425 | 1.061412 | -0.856317 | H | 1.705189 | 3.260052 | -0.626247 |
| C | -3.781762 | 2.465413 | -0.088287 | C | 3.618491 | 2.390359 | -0.126732 |
| H | -3.644846 | 0.886571 | 1.867201 | H | 2.551542 | 1.307865 | 1.878529 |
| H | -5.180139 | 0.104174 | 1.450906 | H | 1.360530 | 2.620468 | 1.870042 |
| C | -3.655050 | -1.221704 | 2.215215 | C | 0.583595 | 0.701475 | 2.493074 |
| H | -3.543430 | -2.109806 | -0.131163 | H | -0.524308 | 0.457383 | 0.229956 |
| H | -5.136091 | -1.440231 | -0.528516 | H | -0.567071 | 2.228730 | 0.195197 |
| C | -3.685484 | -1.361378 | -2.127480 | C | -0.276774 | 1.306711 | -1.733884 |
| H | -4.012451 | 3.273875 | -0.792754 | H | 4.188219 | 2.945403 | -0.880851 |
| H | -4.350778 | 2.654157 | 0.829857 | H | 3.691087 | 2.938170 | 0.819531 |
| H | -2.709834 | 2.512367 | 0.146883 | H | 4.078623 | 1.401118 | -0.005861 |
| H | -3.843567 | -1.023186 | 3.277359 | H | 0.902936 | 0.782414 | 3.538540 |
| H | -4.216134 | -2.123409 | 1.942557 | H | -0.459444 | 1.033739 | 2.431914 |
| H | -2.582683 | -1.423532 | 2.089247 | H | 0.640928 | -0.352717 | 2.193193 |
| H | -3.831414 | -2.390526 | -2.477539 | H | -1.349917 | 1.202946 | -1.929101 |


|  | -4 | -0 | -2.745890 |  | 0.059598 | 2.229733 | -2.219064 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -2.633004 | -1.091170 | -2. | H | 0.241609 | 2 | -2 |
|  | -0.6 | 0.034385 | -0. |  | 2.309334 | 9 | -0.309400 |
| C | 1.469748 | 0.050171 | -0.0 | C | -1. | -2 | 0.474756 |
| C | 2.168943 | -1.15 | -0.0 | C | -1. | 5 | -0. |
|  | 2.155623 | . 26 | . 00 | C | -1. | 0 | 1.596728 |
|  | 3.562 | -1.1 | -0.00 |  |  | 8 | -1.023269 |
|  | 1.63233 | -2.105767 | -0.00 |  | -1. | -2, | -1. |
|  | 3.54612 | 2705 | 0025 | C | -2.8 | -0.7 | 1.378262 |
|  | 1.606318 | 2098 | . 00452 | H | -1.5080 | 1.921125 |  |
|  | 4.262806 | 66 | -0.000905 | C | -3 | 0.39 | 0.074798 |
|  | 4.098882 | -2.0931 | -0.007882 | H | -2.9441 | 784086 | -2.03 |
|  | 4.09512 | 211 | 00 | H | -3.3040 | -0.209882 | 2.21850 |
|  | 5.76283 | 0.1 | . 0001 | C | -4.27 | 0.672605 | -0.107 |
|  | 6.341002 | 1.182192 | 0.004543 | O | -4.7816 | . 206118 | 0.860 |
|  | 6.518687 | -1.187104 | -0.003850 | C | -4.661657 | . 064666 | -1.50723 |
|  | 6.250266 | -1.782872 | 0.880013 | H | -3.777568 | 1.425730 | -2.051362 |
|  | 6.250618 | -1.777539 | -0.891367 | H | -5.049514 | 0.193075 | -2.052131 |
|  | 7.592405 | -0.982393 | -0.002974 | H | -5.422262 | 1.848714 | 1.46 |

## $\mathrm{S}_{\mathbf{0}}-\mathrm{min}(\mathbf{C l}+\mathbf{E t 3 N})$

-1135.994958

| N | -3.699427 | -0.027261 | 0.004772 |
| :--- | ---: | ---: | ---: |
| C | -4.244122 | 1.072777 | -0.781869 |
| C | -4.157422 | 0.030521 | 1.388193 |
| C | -3.992866 | -1.321829 | -0.600025 |
| H | -3.830112 | 1.000652 | -1.793840 |
| H | -5.348073 | 0.970249 | -0.880004 |
| C | -3.910342 | 2.452719 | -0.232349 |
| H | -3.842266 | 0.992918 | 1.807613 |
| H | -5.269660 | 0.013556 | 1.426199 |
| C | -3.605148 | -1.076630 | 2.274886 |
| H | -3.478030 | -2.091784 | -0.013609 |
| H | -5.081388 | -1.543085 | -0.531397 |
| C | -3.543990 | -1.451668 | -2.049045 |
| H | -4.160463 | 3.213639 | -0.982037 |
| H | -4.471027 | 2.691721 | 0.679379 |
| H | -2.836398 | 2.527361 | -0.012790 |
| H | -3.821880 | -0.843658 | 3.324818 |
| H | -4.051297 | -2.053896 | 2.054833 |
| H | -2.515610 | -1.153547 | 2.157178 |
| H | -3.597225 | -2.504532 | -2.352578 |
| H | -4.175014 | -0.876793 | -2.737367 |

## $\mathrm{T}_{1}-\min (\mathrm{Cl}+\mathrm{Et} 3 \mathrm{~N})$

-1135.906914

| N | -2.086727 | -0.699272 | 0.510408 |
| :--- | ---: | ---: | ---: |
| C | -3.000815 | -1.677176 | -0.046707 |
| C | -2.553775 | 0.191883 | 1.553844 |
| C | -0.661747 | -0.844136 | 0.278392 |
| H | -2.763610 | -1.759753 | -1.112886 |
| H | -2.726259 | -2.642246 | 0.417048 |
| C | -4.472355 | -1.381488 | 0.149664 |
| H | -3.478308 | 0.650303 | 1.186463 |
| H | -2.835756 | -0.458837 | 2.401895 |
| C | -1.567451 | 1.253440 | 1.988817 |
| H | -0.258566 | 0.166777 | 0.139048 |
| H | -0.238886 | -1.225161 | 1.226548 |
| C | -0.286810 | -1.740412 | -0.882613 |
| H | -5.039023 | -2.178515 | -0.344162 |
| H | -4.757877 | -1.367584 | 1.207644 |
| H | -4.739565 | -0.426148 | -0.318372 |
| H | -2.055568 | 1.869043 | 2.752435 |
| H | -0.659193 | 0.824298 | 2.427632 |
| H | -1.297330 | 1.897049 | 1.142484 |
| H | 0.805491 | -1.785202 | -0.936338 |
| H | -0.658076 | -2.763317 | -0.755003 |


| H | -2.504658 | -1.113592 | -2.161402 | H | -0.662413 | -1.327686 | -1.827480 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| C | 1.120726 | 0.054304 | -0.004204 | C | 1.280382 | 2.522548 | -0.205329 |
| C | 1.816653 | -1.152439 | -0.009621 | C | 1.560614 | 1.832415 | -1.364391 |
| C | 1.788195 | 1.280125 | 0.003515 | C | 1.647808 | 2.145415 | 1.069423 |
| C | 3.208746 | -1.128399 | -0.006555 | C | 2.286832 | 0.644494 | -1.225540 |
| H | 1.276995 | -2.098145 | -0.015827 | H | 1.234401 | 2.177702 | -2.345556 |
| C | 3.177236 | 1.288316 | 0.006660 | C | 2.359250 | 0.949118 | 1.184725 |
| H | 1.223044 | 2.211163 | 0.007541 | H | 1.390181 | 2.733846 | 1.950641 |
| C | 3.900543 | 0.088520 | 0.001645 | C | 2.682556 | 0.199706 | 0.043938 |
| H | 3.750828 | -2.072662 | -0.010673 | H | 2.529182 | 0.064193 | -2.115173 |
| H | 3.720385 | 2.232660 | 0.013232 | H | 2.672910 | 0.584219 | 2.162645 |
| C | 5.400531 | 0.144703 | 0.005989 | C | 3.428418 | -1.091333 | 0.221806 |
| O | 5.970193 | 1.217952 | 0.015088 | O | 3.650109 | -1.520156 | 1.337410 |
| C | 6.164548 | -1.150411 | -0.000706 | C | 3.884167 | -1.829365 | -1.006709 |
| H | 5.898775 | -1.750038 | 0.881362 | H | 3.014581 | -2.133999 | -1.606172 |
| H | 5.900963 | -1.740180 | -0.889996 | H | 4.502090 | -1.174934 | -1.636593 |
| H | 7.236964 | -0.939137 | 0.001887 | H | 4.454410 | -2.713166 | -0.708934 |
| Cl | -0.625302 | 0.034746 | -0.006219 | Cl | -2.502885 | 1.234977 | -1.655051 |


| S $\mathbf{0}$-min (I) |  |  |  |
| :--- | ---: | ---: | ---: |
| -681.497971 |  |  |  |
| I | 2.574171 | -0.026287 | -0.000007 |
| C | 0.467882 | 0.014475 | 0.000009 |
| C | -0.243641 | -1.184653 | -0.000213 |
| C | -0.190280 | 1.246669 | 0.000253 |
| C | -1.636894 | -1.146191 | -0.000173 |
| H | 0.277725 | -2.140643 | -0.000427 |
| C | -1.580428 | 1.269085 | 0.000243 |
| H | 0.375412 | 2.177426 | 0.000443 |
| C | -2.316086 | 0.077405 | 0.000040 |
| H | -2.187901 | -2.085632 | -0.000346 |
| H | -2.113285 | 2.219661 | 0.000412 |
| C | -3.816206 | 0.150612 | 0.000001 |
| O | -4.372269 | 1.230787 | -0.000558 |
| C | -4.595253 | -1.135205 | 0.000406 |
| H | -4.337363 | -1.732762 | -0.885381 |
| H | -4.336862 | -1.732701 | 0.886077 |
| H | -5.665221 | -0.911612 | 0.000639 |


| $\mathbf{T}_{\mathbf{1}}-\mathbf{m i n}(\mathbf{I})$ |  |  |  |
| :--- | ---: | ---: | ---: |
| -681.4017444 |  |  |  |
| C | 0.131028 | 2.401656 | 0.499594 |
| C | 0.214475 | 1.450414 | 1.494564 |
| C | 0.830387 | 2.388854 | -0.689578 |
| C | 1.092636 | 0.380624 | 1.269555 |
| H | -0.363207 | 1.513851 | 2.417413 |
| C | 1.698590 | 1.313553 | -0.890259 |
| H | 0.718458 | 3.168311 | -1.444032 |
| C | 1.832677 | 0.310171 | 0.081593 |
| H | 1.185521 | -0.394606 | 2.029818 |
| H | 2.279900 | 1.238757 | -1.809546 |
| C | 2.761443 | -0.837896 | -0.193664 |
| O | 3.430545 | -0.851083 | -1.207873 |
| C | 2.828926 | -1.958622 | 0.806442 |
| H | 3.164176 | -1.576537 | 1.780972 |
| H | 1.830717 | -2.396013 | 0.950636 |
| H | 3.524104 | -2.722416 | 0.448563 |
| I | -2.040095 | -0.466325 | -0.169440 |

## $\mathbf{S}_{\mathbf{0}}$-min (Cl)

-843.9300457
C $\quad 1.695267$-0.015121 0.000083

## $\mathrm{T}_{1}-\min (\mathrm{Cl})$

-843.7899945
C $\quad-1.713245$-0.010174 0.000012

| C | 0.979575 | -1.208779 | -0.000128 | C | -0.956059 | -1.252838 | 0.000071 |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: | ---: |
| C | 1.058137 | 1.225116 | 0.000212 | C | -1.041044 | 1.267084 | -0.000060 |
| C | -0.411838 | -1.155571 | -0.000157 | C | 0.391387 | -1.218692 | 0.000036 |
| H | 1.500293 | -2.165032 | -0.000258 | H | -1.497332 | -2.198432 | 0.000144 |
| C | -0.330601 | 1.260669 | 0.000162 | C | 0.307629 | 1.312187 | -0.000085 |
| H | 1.642239 | 2.144287 | 0.000357 | H | -1.637735 | 2.178963 | -0.000092 |
| C | -1.077535 | 0.075620 | -0.000025 | C | 1.110911 | 0.067150 | -0.000053 |
| H | -0.972284 | -2.089072 | -0.000314 | H | 0.958791 | -2.147035 | 0.000085 |
| H | -0.854690 | 2.215749 | 0.000269 | H | 0.843725 | 2.258376 | -0.000135 |
| C | -2.577194 | 0.164307 | -0.000102 | C | 2.545647 | 0.155062 | -0.000097 |
| O | -3.121171 | 1.250391 | -0.000373 | O | 3.094093 | 1.274552 | -0.000118 |
| C | -3.368883 | -1.113547 | 0.000068 | C | 3.363053 | -1.113176 | 0.000133 |
| H | -3.116365 | -1.713394 | -0.885727 | H | 3.136313 | -1.723929 | 0.886222 |
| H | -3.116139 | -1.713407 | 0.885783 | H | 3.136316 | -1.724253 | -0.885733 |
| H | -4.436704 | -0.879990 | 0.000172 | H | 4.425887 | -0.855194 | 0.000094 |
| Cl | 3.442438 | -0.070496 | 0.000119 | Cl | -3.421670 | -0.072031 | 0.000036 |

### 4.3 Studies on Phosphorescence of 4-I-COMe with/without $\mathrm{Et}_{3} \mathrm{~N}$



Figure S8. Pictures of frozened 4-I-COMe solution without (left in each picture)/with (right in each picture) $\mathrm{Et}_{3} \mathrm{~N}$ under 365 nm light (a) and after the light was turned off immediately (b-d). Concentration of 4-I-COMe was 0.1 M and 2 eqv. $\mathrm{Et}_{3} \mathrm{~N}$ was added. The solution was frozened by immersing in liquid nitrogen for 5 min .

### 4.4 NS-TA spectra of 4-I-COMe with and without $\mathrm{Et}_{3} \mathrm{~N}$




Figure S9. Ns-TA Spectra of 4-I-COMe with (purple) and without (blue) $\mathrm{Et}_{3} \mathrm{~N}$. Excitation wavelength: 360 nm ; Solvent: acetonitrile; concentration of 4-I-COMe: $0.1 \mathrm{M} ; \mathrm{Et}_{3} \mathrm{~N}: 0.2 \mathrm{M}$.

### 4.5 Application of 4-I-COMe in ${ }^{1} \mathbf{O}_{2}$ Photosensitizer



Figure S10. Photoxidation of DHN. a, UV-vis absorption changes during the oxidation of DHN with 4-I-COMe. b, Plots of absorbance at $427 \mathrm{~nm} v s$ photoxidation time under different conditions. $c(\mathrm{DHN})=3.3 \times 10^{-4} \mathrm{M} ; c(4-\mathrm{I}-\mathrm{COMe})=3.3 \times 10^{-5} \mathrm{M}$. Note: S represents 4-I-COMe.

### 4.6 High Resolution Mass Spectrum (HRMS) analysis of TEMPO-Trapped

 intermediate Procedure for coupling of TEMPO-trapped intermediate was similar as for 4-iodoacetophenone reduction, except that 4 equiv TEMPO was added together with 1 equiv 4-iodoacetophenone (Figure S 4 ). After 12 h , the reaction mixture was analyzed by HRMS. Exact molecular ion was found, which proves formation of coupling product of TEMPO-trapped intermediate.

Figure S11. HRMS of TEMPO-trapped intermediate. Note: Experimental result (a, 298.1785) and calculated result (b, 298.1778) for the species of $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Na}^{+}$.
4.7 GC-MS Analysis of Photoreduction of 4-iodoacetophenone 0.1 mmol of 4-iodoaceto-phenone was dissolved in 2 mL MeCN in a 5 mL vial with magnetic stirring bar. The solution was degassed by $\mathrm{N}_{2}$ via a syringe needle for 25 min , and 2 equiv $\mathrm{Et}_{3} \mathrm{~N}$ was added during the degassing process. When degassing is completed, the vial was sealed up and the reaction mixture was irradiated through the bottom side of the vial using 400 nm LED light for 12 h . Afterwards, the reaction mixture was diluted and analyzed using GC-MS analysis. It was found that abundance of
dehalogenation product, acetophenone, was found by GC-MS analysis (Figure S13). Two groups of compounds were found in the GC result, which had retention time of 7.210 min and 12.855 min respectively (FigureS13a). Further MS analysis reveals that the compound with retention time of 7.210 min was acetophenone (FigureS13b) and the compound with retention time of 12.855 was 4-iodoaceto-phenone (FigureS31c).


Figure S12. GC-MS analysis of photoreduction of 4-iodoacetophenone. a. GC result of the reaction mixture. b. MS result of the corresponding compounds showed in a with retention time of 7.210 min : the upper shows MS spectrum of the compound found; the lower shows the standard MS spectrum of acetophenone. c. MS result of the corresponding compounds showed in a with retention time of 12.855 min : the upper shows MS spectrum of the compound found; the lower shows the standard MS spectrum of 4-iodoacetophenone.

### 4.8 Supplementary Data for Study on Reaction Condition

Table S2. Effect of Base on the reaction.

|  |  |  |
| :---: | :---: | :---: |
| Entry | Base | Yield (\%) |
| 1 | 2 eqv. NaOH | 73 |
| 2 | 2 eqv. NaAc | 66 |
| 3 | 2 eqv. PrNH 2 | 96 |
| 4 | 2 eqv. $\mathrm{KO}^{t} \mathrm{Bu}$ | 23 |
| 5 | 2 eqv. $\mathrm{Et}_{3} \mathrm{~N}$ | 99 |
| 6 | None | 0 |
| 7 | 1 eqv. $\mathrm{Et}_{3} \mathrm{~N}$ | 50 |
| 8 | 4 eqv. $\mathrm{Et}_{3} \mathrm{~N}$ | 45 |

Reaction time for all entries is 12 h and the yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture with internal standard after the reaction.

Table S3. Effect of solvent on the reaction.


| Entry | Solvent | Yield (\%) |
| :---: | :---: | :---: |
| 1 | toluene | 75 |
| 2 | dioxane | 65 |
| 3 | THF | 70 |
| 4 | DMF | 96 |
| 6 | MeCN | 99 |

Reaction time for all entries is $12 \mathrm{~h}, 2$ eqv. $\mathrm{Et}_{3} \mathrm{~N}$ was added and the yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture with internal standard after the reaction.

Table S4. Effect of trapping agent amount on the reaction.


| Entry | N-methylpyrrole | Yield (\%) |
| :---: | :---: | :---: |
| 1 | 1 eqv. | 15 |
| 2 | 8 eqv. | 70 |
| 3 | 16 eqv. | 85 |
| 4 | 24 eqv. | 99 |
| 5 | 32 eqv. | 99 |

Reaction time for all entries is $12 \mathrm{~h}, 2$ eqv. $\mathrm{Et}_{3} \mathrm{~N}$ was added and the yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture with internal standard after the reaction.

## 5. Characterization Data

4-(1H-pyrrol-2-yl)acetophenone (1a). The compound was prepared according to a general procedure, using 4-iodoacetophenone (24.9 mg), pyrrole (167 $\mu \mathrm{L}$ ) and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 16.7 mg 1a was obtained (yield: $90 \%$ ). HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NONa}\right]^{+}$: 208.0733; found: 208.0739 .
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 11.54(1 \mathrm{H}), 8.00-7.93(2 \mathrm{H}), 7.56-7.51(2 \mathrm{H}), 6.94(1 \mathrm{H})$, $6.68(1 \mathrm{H}), 6.34(1 \mathrm{H}), 2.60(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 197.4,137.1,134.5,130.8,129.7,123.4,120.8$, 110.8, 108.1, 26.2.

4-(1-Methyl-1H-pyrrol-2-yl)acetophenone (1b). The compound was prepared according to the procedures described already, using 4-iodoacetophenone ( 24.9 mg ), N-methylpyrrole $(226 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 16.9 mg 1 b was obtained (yield: $85 \%$ ). HRMS calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NONa}\right]^{+}: 222.0889$; found:222.0892.
${ }^{1} \mathbf{H}$ NMR (600 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.99-7.98(2 \mathrm{H}), 7.49-7.51(2 \mathrm{H}), 6.77(1 \mathrm{H}), 6.35(1 \mathrm{H})$, $6.23(1 \mathrm{H}), 3.72(3 \mathrm{H}), 2.62(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 197.5,138.0,135.0,133.4,128.6,128.0,125.3,110.3$, 108.4, 35.6, 26.6.

4-(1-Phenyl-1H-pyrrol-2-yl)acetophenone (1c). The compound was prepared according to the procedures described already, using 4-iodoacetophenone ( 24.9 mg ), N-pheynlpyrrole ( 57 mg ) and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified
by chromatography on silica gel and 14.4 mg 1 c was obtained (yield: 55\%). HRMS calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NONa}\right]^{+}$: 284.1046; found: 284.1059.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.81-7.76 (2H), 7.37-7.33 (2H), 7.32-7.31 (1H), 7.20$7.17(4 \mathrm{H}), 6.99(1 \mathrm{H}), 6.57(1 \mathrm{H}), 6.40(1 \mathrm{H}), 2.55(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 197.6,140.3,137.6,134.6,132.6,129.3,128.3,127.7$, 126.0, 125.8, 112.3, 109.8, 26.5.

4-(1H-pyrrol-2-yl)methyl benzonate (2a). The compound was prepared according to the procedures described already, using methyl 4-iodobenzoate ( 26.2 mg ), pyrrole $(167 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 18.7 mg 2a was obtained (yield: 93\%). HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 224.0684$; found:224.0682.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 8.52(1 \mathrm{H}), 8.04-8.02(2 \mathrm{H}), 7.53-7.52(2 \mathrm{H}), 6.93(1 \mathrm{H})$, $6.66(1 \mathrm{H}), 6.33(1 \mathrm{H}), 3.92(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 170.0,136.9,131.0,130.4,127.3,123.2,120.3,110.7$, 108.0, 52.0.

4-(1-Methyl-1H-pyrrol-2-yl)methyl benzonate (2b). The compound was prepared according to the procedures described already, using methyl 4-iodobenzoate (26.2 mg ), N-methylpyrrole ( $226 \mu \mathrm{~L}$ ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 19.6 mg 2 b was obtained (yield: $91 \%$ ). HRMS calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 238.0838$; found: 238.0841.
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 8.06-8.05 (2H), 7.48-7.47(2H), $6.76(1 \mathrm{H}), 6.34(4 \mathrm{H})$, $6.22(1 \mathrm{H}), 3.93(3 \mathrm{H}), 3.71(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.0,137.8,133.5,129.8,128.0,127.9,125.1,110.1$, 108.3, 52.1, 35.4.

4-(1-Phenyl-1H-pyrrol-2-yl)methyl benzonate (2c). The compound was prepared according to the procedures described already, using methyl 4-iodobenzoate (26.2 mg ), N-phenylpyrrole ( 57 mg ) and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 16.6 mg 2 c was obtained (yield: $60 \%$ ). HRMS calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}$: 300.0995 ; found: 300.1005 .
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.87-7.85 (2H), 7.35-7.33(2H), 7.31-7.29(2H), 7.18$7.16(4 \mathrm{H}), 6.98(1 \mathrm{H}), 6.55(4 \mathrm{H}), 6.38(1 \mathrm{H}) .3 .88(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 166.7,140.3,137.4,132.7,129.4,129.2,127.6,127.5$, 127.0, 125.8, 125.7, 112.1, 109.7, 52.0.

4-(1H-pyrrol-2-yl)benzaldehyde (3a). The compound was prepared according to the procedures described already, using 4-iodobenzaldehyde ( 23.2 mg ), pyrrole ( $167 \mu \mathrm{~L}$ ) and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 15.6 mg 3a was obtained (yield: 88\%). HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NONa}\right]^{+}: 194.1394$; found:194.0976.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 9.96(1 \mathrm{H}), 8.60(1 \mathrm{H}), 7.88-7.87(2 \mathrm{H}), 7.62-7.60(2 \mathrm{H})$, $6.96(1 \mathrm{H}), 6.71(1 \mathrm{H}), 6.36(1 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta$ 191.9, 138.5, 133.06, 130.3, 129.9, 123.2, 121.6, 109.9, 108.7.

4-(1-Methyl-1H-pyrrol-2-yl)benzaldehyde (3b). The compound was prepared according to the procedures described already, using 4-iodobenzaldehyde ( 23.2 mg ),

N -methylpyrrole ( $226 \mu \mathrm{~L}$ ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 15.7 mg 3 b was obtained (yield: $85 \%$ ). HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NONa}\right]^{+}: 208.0733$; found: 208.0734 .
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 10.02(1 \mathrm{H}), 7.91-7.89(2 \mathrm{H}), 7.58-7.56(2 \mathrm{H}), 6.79(1 \mathrm{H})$, $6.39(1 \mathrm{H}), 6.24(1 \mathrm{H}), 3.74(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 191.7,139.3,134.3,133.3,130.0,128.2,125.8,110.8$, 108.7, 35.5 .

4-(1-Phenyl-1H-pyrrol-2-yl)benzaldehyde (3c). The compound was prepared according to the procedures described already, using 4-iodobenzaldehyde ( 23.2 mg ), N-phenylpyrrole ( 57 mg ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 13.2 mg 3 c was obtained (yield: 53\%). HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NONa}\right]^{+}: 270.0889$; found: 270.0895 .
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.92(1 \mathrm{H}), 7.71-7.69(2 \mathrm{H}), 7.38-7.35(2 \mathrm{H}), 7.33-7.31$
$(1 \mathrm{H}), 7.27(1 \mathrm{H}), 7.25(1 \mathrm{H}), 7.19-7.18(2 \mathrm{H}), 7.00(1 \mathrm{H}), 6.60(1 \mathrm{H}), 6.40(1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 191.7,140.3,138.9,133.9,132.4,129.6,129.3,128.0$, 127.2, 126.4, 125.8, 112.8, 109.9.

4-(1H-Pyrrol-2-yl)benzonitrile (4a). The compound was prepared according to the procedures described already, using 4-iodophenylacetonitrile (24.3 mg), pyrrole (167 $\mu \mathrm{L})$ and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 16.0 mg 4 a was obtained (yield: 95\%). HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 191.0580$; found: 191.0583 .
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 8.56(1 \mathrm{H}), 7.64-7.62(2 \mathrm{H}), 7.54-7.52(2 \mathrm{H}), 6.95(1 \mathrm{H})$,
$6.77(1 \mathrm{H}), 6.35(1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 136.9,132.8,130.1,123.7,121.0,119.2,111.1,108.8$, 108.7.

4-(1-Methyl-1H-Pyrrol-2-yl)benzonitrile (4b). The compound was prepared according to the procedures described already, using 4-iodophenylacetonitrile (24.3 mg ), N -methylpyrrole $(226 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 16.9 mg 4 b was obtained (yield: $93 \%$ ). HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 205.0736$; found: 205.0739.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.67-7.66(2H), 7.50-7.49 (2H), $6.78(1 \mathrm{H}), 6.34(1 \mathrm{H})$, $6.23(1 \mathrm{H}), 3.71(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 137.8,132.6,132.3,128.3,125.9,119.0,110.8,109.7$, 108.6, 35.5.

4-(1-Phenyl-1H-Pyrrol-2-yl)benzonitrile (4c). The compound was prepared according to the procedures described already, using 4-iodophenylacetonitrile (24.3 mg ), N-phenylpyrrole ( 57 mg ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 15.4 mg 4 c was obtained (yield: $63 \%$ ). HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}$: 267.0893; found: 267.0898.
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.46-7.45 (2H), 7.38-7.36 (2H), 7.34-7.32 (1H), 7.19$7.15(4 \mathrm{H}), 6.99(1 \mathrm{H}), 6.56(1 \mathrm{H}), 6.39(1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 140.1,137.3,131.9,131.8,129.4,128.0,127.3,126.4$, $125.8,119.1,112.7,109.9,109.3$.

3-(1-Methyl-1H-Pyrrol-2-yl)benzonitrile (5a, 8a, 10a). The compound was
prepared according to the procedures described already, using 3-iodophenylacetonitrile $\quad(24.3 \mathrm{mg}) / 3$-bromophenylacetonitrile $\quad(19.6 \mathrm{mg}) / 3$-chlorophenylacetonitrile ( 15.1 mg ), pyrrole ( $167 \mu \mathrm{~L}$ ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 14.5 mg 5 (yield: $86 \%$ ), 14.6 mg 8a (yield: 90\%), 14.0 mg 10a (yield: $83 \%$ ) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}$: 191.0580 ; found: 191.0583 .
${ }^{1} \mathbf{H}$ NMR ( 600 MHz, DMSO-d6) $\delta 11.46$ (1H), 8.07 (1H), 7.95-7.93 (2H), 7.57-7.52 $(2 \mathrm{H}), 6.93(1 \mathrm{H}), 6.70(1 \mathrm{H}), 6.16(1 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta$ 134.1, 129.9, 128.9, 128.5, 127.6, 126.3, 120.6, $118.9,111.9,109.5,107.4$.

3-(1H-Pyrrol-2-yl)benzonitrile (5b, 8b, 10b). The compound was prepared according to the procedures described already, using 3-iodophenylacetonitrile (24.3 $\mathrm{mg}) / 3$-bromophenylacetonitrile $(19.6 \mathrm{mg}) / 3$-chlorophenylacetonitrile $(15.1 \mathrm{mg}), \mathrm{N}$ methylpyrrole $(226 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 15.1 mg 5 (yield: $83 \%$ ), 16.0 mg 8 b (yield: $88 \%$ ), 13.8 mg 10b (yield: $76 \%$ ) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 205.0736$; found: 205.0743 .
${ }^{1} \mathbf{H}$ NMR ( 600 MHz, DMSO-d6) $\delta 7.90(1 \mathrm{H}), 7.80-7.78$ ( 1 H ), 7.74-7.72 (1H), 7.62$7.59(1 \mathrm{H}), 6.91(1 \mathrm{H}), 6.32(1 \mathrm{H}), 6.10(1 \mathrm{H}), 3.69(3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta 134.1,132.3,130.7,128.5,129.8,129.7,125.6$, 118.7, 111.8, 109.8, 107.7, 35.0.

3-(1-Phenyl-1H-Pyrrol-2-yl)benzonitrile (5c, 8c, 10c). The compound was prepared
according to the procedures described already, using 3-iodophenylacetonitrile (24.3 $\mathrm{mg}) / 3$-bromophenylacetonitrile ( 19.6 mg )/3-chlorophenylacetonitrile ( 15.1 mg ), N phenylpyrrole ( 57 mg ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 14.4 mg 5 c (yield: $59 \%$ ), 12.9 mg 8 c (yield: $53 \%$ ), 12.0 mg 10c (yield: 49\%) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 267.0893$; found: 267.0897.
${ }^{1} \mathbf{H}$ NMR ( 600 MHz, DMSO-d6) $\delta$ 7.62-7.61 (1H), 7.52 (1H), 7.43-7.40 (3H), 7.38$7.36(1 \mathrm{H}), 7.31-7.30(1 \mathrm{H}), 7.21-7.19(2 \mathrm{H}), 7.15(1 \mathrm{H}), 6.61(1 \mathrm{H}), 6.35(1 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta$ 139.5, 133.7, 132.0, 130.6, 129.6, 129.4, 129.3, $127.2,126.0,125.7,118.6,112.2,111.4,109.7$.

2-(1-Methyl -1H-Pyrrol-2-yl)benzonitrile (6a, 7a, 9a). The compound was prepared according to the procedures described already, using 2-iodophenylacetonitrile (24.3 $\mathrm{mg}) / 2$-bromophenylacetonitrile $(19.6 \mathrm{mg}) / 2$-chlorophenylacetonitrile $(15.1 \mathrm{mg})$, pyrrole $(167 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 16.1 mg 6 a (yield: $96 \%$ ), 14.5 mg 7 a (yield: $86 \%$ ), 15.6 mg 9 a (yield: 93\%) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 191.0580$; found: 191.0587
${ }^{1} \mathbf{H}$ NMR ( 600 MHz, DMSO-d6) $\delta 11.50(1 \mathrm{H}), 7.82-7.81(1 \mathrm{H}), 7.73-7.69(2 \mathrm{H}), 7.37-$ $7.34(1 \mathrm{H}), 7.01(1 \mathrm{H}), 6.85(1 \mathrm{H}), 6.23(1 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta 135.8,134.1,133.1,128.2,126.7,125.9,120.9$, 120.2, 110.4, 110.3, 106.1.

2-(1H-Pyrrol-2-yl)benzonitrile ( $\mathbf{6 b}, \mathbf{7 b}, \mathbf{9 b}$ ). The compound was prepared according
to the procedures described already, using 2-iodophenylacetonitrile $(24.3 \mathrm{mg}) / 2$ bromophenylacetonitrile (19.6 mg)/2-chlorophenylacetonitrile (15.1 mg), N methylpyrrole $(226 \mu \mathrm{~L})$ and triethylamine $(30 \mu \mathrm{~L})$. The crude product was purified by chromatography on silica gel and 17.5 mg 6 b (yield: $96 \%$ ), 16.0 mg 7 b (yield: $88 \%$ ), 16.4 mg 9 b (yield: 90\%) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 205.0736$; found: 205.0739 .
${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.74-7.73 (1H), 7.62-7.59 (1H), 7.44-7.39 (2H), 6.79 $(1 \mathrm{H}), 6.40(1 \mathrm{H}), 6.25(1 \mathrm{H}), 3.61(3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 137.0,133.5,132.3,130.9,130.0,127.4,124.8,118.6$, 112.9, 111.5, 108.3, 34.8.

2-(1-Phenyl-1H-Pyrrol-2-yl)benzonitrile (6c, 7c, 9c). The compound was prepared according to the procedures described already, using 2-iodophenylacetonitrile (24.3 mg )/2-bromophenylacetonitrile ( 19.6 mg )/2-chlorophenylacetonitrile ( 15.1 mg ), N phenylpyrrole ( 57 mg ) and triethylamine ( $30 \mu \mathrm{~L}$ ). The crude product was purified by chromatography on silica gel and 14.2 mg 6 c (yield: $58 \%$ ), 12.0 mg 7 c (yield: 49\%), 12.7 mg 9 c (yield: 52\%) was obtained, respectively. HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Na}\right]^{+}: 267.0893$; found: 267.0896 .
${ }^{1} \mathbf{H}$ NMR ( 600 MHz, DMSO-d6) $\delta 7.82-7.81(1 \mathrm{H}), 7.55-7.52(1 \mathrm{H}), 7.43-7.41(1 \mathrm{H})$, 7.37-7.35 (2H), 7.30-7.27 (1H), 7.25 (1H), 7.14-7.11 (3H), 6.59(1H), $6.40(1 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, DMSO-d6) $\delta 139.2,136.0,133.5,132.6,130.8,129.2,128.6$, 127.7, 126.8, 125.4, 125.1, 118.2, 113.4, 111.2, 109.5.

## 6. NMR Spectra






## શッホ

$\stackrel{6}{1}$





U.
in
in



|  |  <br>  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: |




$\stackrel{\otimes}{1}$










## 


















## 



## 



[^0]
## 7. References

(1) Dreizler, R. M.; Gross, E. U. Density functional theory. Perspect. Electron. Struct. Theory 1990, 255-368.
(2) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289-320.
(3) Zhao, Y.; Truhlar, D. G.; Spectus, C. O. N. Acc. Chem. Res. 2008, 41, 157-167.
(4) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215-241.
(5) Grimme, S. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211-228.
(6) Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133, 134105.
(7) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase,
J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045-1052.
(8) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 63786396.
(9) Marques, M. A. L. et al. Phys. Chem. Chem. Phys. 2009, 11, 4436-4436.
(10)Burke, K.; Werschnik, J.; Gross, E. K. U. J. Chem. Phys. 2005, 123, 062206.
(11) Finley, J.; Malmqvist, P.-Å.; Roos, B. O.; Serrano-Andrés, L. Chem. Phys. Lett. 1998, 288, 299-306.
(12) Roos, B. O.; Lindh, R.; Malmqvist, P. Å.; Veryazov, V.; Widmark, P. O. J. Phys. Chem. A 2004, 108, 2851-2858.
(13) Malmqvist, P. Å.; Roos, B. O.; Schimmelpfennig, B. Chem. Phys. Lett. 2002, 357, 230-240.
(14)Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.;

Vico, L. D.; Galván, I. F.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M.;

Giussani, A.; Hoyer, C. E.; Manni, G. L.; Lischka H.;, Ma, D.; Malmqvist, P. Å.;
Müller, T.; Nenov, A.; Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.; Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Martí, J.; Stenrup, M.; Truhlar, D. G.;

Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R. J. Comput. Chem. 2016, 37, 506-541.
(15)Frisch, M. J. et al. Gaussian 09, Revision C.01. 2009.


[^0]:    $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

