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1. SFG data and orientation analysis

The theoretical data analysis of SFG spectra generated from the air/liquid 

interface has been described elsewhere.1 The SFG intensity I() can be expressed as a 

function of the second order susceptibility 2-4
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Where , , and are  the frequencies of the SF signal, visible, and IR laser beam, 

respectively. 1( )in   is the refractive index of bulk medium i at the frequency of i , 

I() is the intensity of the SFG signal or the input laser beams, c0 is the speed of light 

in vacuum,  is the incident or reflection angle of the ith light beams from the surface 

normal, which is defined as the z axis in the laboratory coordinates system (x, y, z),  

and (2)
eff  is the effective macroscopic second-order susceptibility. (2)

eff  depends on 

the experimental geometry and polarizations. In the polarization dependent SFG 
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experiments, there are three typical polarization combinations commonly used in the 

SFG studies, namely, ssp, sps and ppp. (2)
eff  under these three polarization 

combinations can be expressed as 2, 4
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where is the tensorial Fresnel factor as shown below:( )iiL 
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in which  is the refracted angle and  is the effective refractive index of  '( )n 

the interfacial layer. The macroscopic susceptibility tensors are related to the 
ijk

(2)

microscopic hyperpolarizability tensor elements  in the molecular coordinates 
' ' 'i j k

(2)

system through the ensemble average. 

                                       (4)' ' 'ijk ' ' 'i j k' ' '
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Here  is the number density of interfacial molecules. When the IR frequency sN

is resonance to the molecular vibrational transitions, the second order molecular 

polarizability is described as the following

                                     (5)
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where  is the non-resonant contribution, , , are the strength factor (2)
NR (2)

q q q

tensor, resonant frequency and damping constant of the qth vibrational mode, 



respectively. For SCN- anion which can be treated as  symmetry, the nonzero vC

second-order hyperpolarizabilities are , . Thus the macroscopic aac bbc  ccc

susceptibility tensors under three different polarizations can be given in the following 
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where  is the ratio of , which can be determined through the polarized r /aac ccc 

Raman measurements.  is the tilt angle of SCN- transition dipole (CN stretching) 

from the surface normal. 

By using the SFG intensity ratio method, the orientational parameter D=

 can be determined. With orientational parameter D known, the 3cos / cos 

relative number of SCN- anions adsorbed at the air/water interface can be calculated 

from the following expression

                                       (7)2 2 2( ) | | | ( ) |eff sI N r   

 is the orientational function related to the orientational parameter D.5, 6 The ( )r 

SFG intensity is proportional to the product of the square of the surface density and 

the orientational function, and their contributions can be easily separated through the 

polarization SFG analysis.

2. Experimental results
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Figure S1. (A) FTIR spectra of pure water solution. The peak positioned at 1650 cm-1 



is assigned to the OH bending stretch of water molecule. While the broad peak with 

the central frequency at 2150 cm-1 is originated from the combination band of water 

molecule. (B) SFG spectra generated from air/neat water interface under three 

different polarization combinations.
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Figure S2. Polarized Raman spectra of NaSCN aqueous solution at different bulk 

concentrations. The value of depolarization ratio  of SCN- anion is determined to be 

0.325±0.002. Therefore,  ( ) can be calculated based on the equation of r /aac ccc 

,7 which is determined to be 0.007±0.002 by solving the 2

3
4 5[(1 2 ) / (1 )]r r

 
  

equation.
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Figure S3. Simulated SFG intensities for (A) sps (B) ppp polarizations and (C) their 

ratio (Isps/Ippp) for the air/1.0 mol/kg NaSCN aqueous solution interface with respect 

to the molecular orientation of SCN- anion. The distribution width is considered with 

a Gaussian function.
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Figure S4. The ssp SFG spectra of the surface of the NaSCN aqueous solutions at 

three different concentrations in the 2800 to 3000 cm-1 region. The SFG spectra for 6 

mol/kg and 15 mol/kg NaSCN aqueous solutions have been offset for clarification.
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Figure S5. SFG spectra of the anti-symmetric stretch of the SCN- anions adsorbed at 

the air/NaSCN aqueous solution interface under (A) sps and (B) ppp polarizations at 

the concentration of 15.0 mol/kg. The solid lines with red color are the fitting results. 

Fitting parameters are listed in Table S1.
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Figure S6. Calculated structure of NaSCN and complex structure between NaSCN 

and water molecules in gas phase using DFT method. 
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Figure S7. Concentration-dependent SFG spectra of the anti-symmetric stretch of the 

SCN- anions adsorbed at the air/KSCN aqueous solution surfaces with the 

polarization combinations controlled at (A) sps and (B) ppp.
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Figure S8. The SFG intensity ratio Isps/Ippp for the NaSCN (solid square) and KSCN 

(open circle) solution interfaces with different bulk concentrations.

Table S1. Fitting results using Equation (5) for the SFG spectra of the CN stretching 

of the SCN- at air/NaSCN aqueous solution interface under sps and ppp polarization 

combinations.

sps ppp

Concentration

(mol/kg)

q (cm-1)q (cm-1)q q (cm-1)q (cm-1)q

0.5 4.480 2061.2 17.55 7.601 2064.7 21.08

1 7.673 2060.7 19.32 12.982 2067.9 23.06

2 12.843 2061.7 21.00 20.886 2065.9 24.36

3 18.261 2056.3 20.21 25.443 2060.8 22.73

5 28.251 2056.7 23.27 38.567 2061.0 24.51

6 31.164 2056.0 23.76 41.409 2061.2 24.03

7 32.186 2055.6 24.67 43.553 2060.8 25.05

8 32.476 2055.5 24.32 44.145 2060.7 24.96

9 25.820 2057.2 24.40 49.559 2061.4 25.54

10 38.410 2053.2 25.63 49.640 2058.3 26.38



11 40.648 2055.1 25.52 50.790 2059.1 24.83

13 39.067 2053.2 25.64 57.429 2059.4 25.86

29.505 2050.2 

(peak1)

25.6515 45.944 2058.5 25.57

6.367 2079.3 

(peak2)

12.60

Table S2. Calculated frequency of CN stretching mode in NaSCN and the complex 

structure between NaSCN and water molecules (shown in Figure S6) using different 

level of calculations. The calculation based on M06-2X level is more consistent with 

the experimental results. 

M06-2X (scaling factor=0.94) B3lyp (scaling factor=0.96)

Configuration Calculated 

frequency (cm-1)

Corrected 

Frequency(cm-1)

Calculated 

frequency(cm-1)

Corrected 

Frequency(cm-1)

a 2171.9 2041.6 2160.0 2073.6

b 2157.3 2027.8 2146.3 2060.4

c 2152.5 2023.4 2136.4 2050.9

d 2223.4 2089.9 2201.2 2113.1

e 2158.3 2028.8 2140.5 2054.8

f 2175.0 2044.5 2153.7 2067.5

g 2203.3 2071.1 2184.3 2096.9

h 2228.5 2094.8 2210.0 2121.6
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