Supporting materials for

Unveiling the atomic defects and electronic structure in Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0 to 0.04) by X-ray absorption Fine structure spectroscopy

- 1. EXAFS spectra and XANES spectra; Figure.S1-S6
- 2. EXAFS fitting results: Table.S1-S6
- 3. XANES calculation generated electronic occupation: Table.S7-S11

Figure.S1. The Zn *K*-edge EXAFS spectrum cannot be fitted well with CZTSe model; the black ellipse highlights the unidentified peak

Figure.S2 Comparison of Zn K-edge EXAFS spectra for the oxygen-free $Cu_2ZnSnSe_4$, $Cu_{2.2}Zn_{0.8}SnSe_4$ in this work and reference ZnO; the pronounced peak was identified as Zn-O bond.

Figure.S3 Comparison of XANES at Zn K-edge for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04) and ZnO

Figure.S4 Comparison of XANES at Cu K-edge for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04)

Figure.S5 Comparison of XANES at Se K-edge for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04)

Figure.S6 Comparison of XANES at Sn L₃-edge for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04)

Phase	l	Keisterite	Stannite							
Central atom	First shell	Bond-distance(Å)	First shell	Bond-distance(Å)						
Zn	Zn-4Se	2.4873	Zn-4Se	2.5050						
Cu	Cu _{2a} -4Se	2.4424	Cu-4Se	2.4287						
	Cu _{2c} -4Se	2.4415								
Se	Se-Cu _{2c}	2.4415	Se-2Cu	2.4287						
	Se-Cu _{2a}	2.4423								
	Se-1Zn	2.4873	Se-1Zn	2.5050						
	Se-1Sn	2.6152	Se-1Sn	2.6222						
Sn	Sn-4Se	2.6152	Sn-4Se	2.6222						

Table.S1 Local coordination environment for Keisterite and stannite phase Cu₂ZnSnSe₄

Table.S2. EXAFS Fitting parameters at Zn, Cu and Se K-edge for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04)

	<i>k</i> range[Å ⁻	R	S ₀ ²	k	Independent point
	1]	range[Å]		weight	N _{idp}
Zn K-edge	2-13	1-3	0.97	3	11
Cu K-	2-13	1-3	0.9	3	11
edge					
Se K-edge	2-13	1-3	0.9	3	11

Table.S3. EXAFS Fitting results of pristine $Cu_{2.2}Zn_{0.8}SnSe_4$ at Zn, Cu and Se *K*-edge using Keisterite (I-4, SG82) and Stannite phase (I-42m, SG121), respectively; CN: coordination number, R: bond distance, σ^2 : means square relative displacement, ΔE : energy shift; R-factor: fitting quality

Zn <i>K</i> -edge, SG121	Path	CN	R(Å)	σ² (×10 ⁻³) (Ų)	ΔE(eV)	R-factor
$Cu_{2.2}Zn_{0.8}SnSe_4$	Zn-Se	2.7±0.6	2.44 ± 0.004	7.3±0.5	0.882	0.007
	Zn-O	0.9 ± 0.1	1.95 ± 0.012			
Zn K-edge, SG82						
Cu _{2.2} Zn _{0.8} SnSe ₄	Zn-Se	2.7±0.2	2.44 ± 0.004	7.3 ± 0.6	0.871 ± 0.06	0.007
	Zn-O	0.9±0.1	1.95 ± 0.012		0.871 ± 0.06	
Cu K-edge, SG121						
Cu _{2.2} Zn _{0.8} SnSe ₄	Cu-Se	3.2 ± 0.3	2.40 ± 0.004	8.2 ± 0.7	1 ± 0.812	0.006
Cu K-edge SG82						
$Cu_{2.2}Zn_{0.8}SnSe_4$	Cu-Se	3.2±0.2	2.40 ± 0.004	8.2±0.6	0.992 ± 0.812	0.003
Se K-edge, SG121						
Cu _{2.2} Zn _{0.8} SnSe ₄	Se-Cu	1.7±0.3	2.40 ± 0.004	4.49±1.4	1.37±1.24	0.02
	Se-Zn	0.1 ± 0.1	2.44 ± 0.004			
	Se-Sn	1.0±0.2	2.56 ± 0.020			
Se K-edge, SG82						
Cu _{2.2} Zn _{0.8} SnSe ₄	Se-Cu	1.7±0.3	2.40 ± 0.004	4.43±1.42	1.43±1.24	0.02
	Se-Zn	$0.1 {\pm} 0.1$	2.44 ± 0.004			
	Se-Sn	0.6±0.2	2.56 ± 0.020			

Table.S4 Zn *K*-edge EXAFS fitting results for $Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x$ (x=0-0.04) CN: coordination number, R: bond distance, σ^2 : means square relative displacement, ΔE : energy shift; R-factor:

Samples	Path	CN	R(Å)	σ² (×10⁻³) (Ų)	ΔE(eV)	R-factor
Cu _{2.2} Zn _{0.8} SnSe ₄	Zn-Se	2.7±0.2	2.44 ± 0.004	7.3 ± 0.6	0.871 ± 0.06	0.007
	Zn-O	0.9 ± 0.1	1.95 ± 0.012			
$Cu_{2.2}Zn_{0.8}SnSe_{3.99}Te_{0.01}$	Zn-Se	2.7±0.2	2.45 ± 0.005	7.4 ± 0.6	0.846±0.377	0.008
	Zn-O	0.9 ± 0.1	1.95 ± 0.011			
$Cu_{2.2}Zn_{0.8}SnSe_{3.98}Te_{0.02}$	Zn-Se	2.6 ± 0.3	2.44 ± 0.005	7.6 ± 0.7	1.028 ± 0.215	0.013
	Zn-O	1.0 ± 0.1	1.94 ± 0.013			
$Cu_{2.2}Zn_{0.8}SnSe_{3.97}Te_{0.03}$	Zn-Se	2.5 ± 0.2	2.44 ± 0.004	7.3±0.6	0.821 ± 0.624	0.007
	Zn-O	0.9 ± 0.1	1.95 ± 0.013			
Cu _{2.2} Zn _{0.8} SnSe _{3.96} Te _{0.04}	Zn-Se	2.6±0.2	2.45 ± 0.004	7.3±0.5	1.127 ± 0.668	0.005
	Zn-O	1.0 ± 0.1	1.95 ± 0.009			

Table.S5 Cu *K*-edge EXAFS fitting results for Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x (x=0-0.04) CN: coordination number, R: bond distance, σ^2 : means square relative displacement, Δ E: energy shift; R-factor:

fitting quality

Samples	Path	CN	R(Å)	σ² (×10⁻³) (Ų)	ΔE(eV)	R-factor
Cu _{2.2} Zn _{0.8} SnSe ₄	Cu-Se	3.2±0.2	2.40 ± 0.004	8.2±0.6	0.992 ± 0.812	0.003
$Cu_{2.2}Zn_{0.8}SnSe_{3.99}Te_{0.01}$	Cu-Se	3.2±0.3	2.40 ± 0.004	8.4±0.8	0.957 ± 0.982	0.009
Cu _{2.2} Zn _{0.8} SnSe _{3.98} Te _{0.02}	Cu-Se	3.0±0.2	2.40 ± 0.004	8.0±0.6	0.804 ± 0.693	0.006
Cu _{2.2} Zn _{0.8} SnSe _{3.97} Te _{0.03}	Cu-Se	3.1±0.3	2.40 ± 0.006	8.3±0.9	1.699 ± 1.093	0.012
Cu _{2.2} Zn _{0.8} SnSe _{3.96} Te _{0.04}	Cu-Se	3.1±0.3	2.40 ± 0.006	8.3±0.9	1.519 ± 1.038	0.010

Table.S6 Se *K*-edge EXAFS fitting results for $Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x$ (x=0-0.04) CN: coordination

number, R: bond distance, σ^2 : means square relative displacement, ΔE : energy shift; R-factor:

	fitting quality										
Samples	Path	CN	R(Å)	σ² (×10 ⁻³) (Ų)	ΔE(eV)	R-factor					
Cu _{2.2} Zn _{0.8} SnSe ₄	Se-Cu	1.7 ± 0.3	2.40 ± 0.004	4.49±1.4	1.37±1.24	0.02					
	Se-Zn	0.1 ± 0.1	2.44 ± 0.004								
	Se-Sn	1.0 ± 0.2	2.56 ± 0.020								
$Cu_{2.2}Zn_{0.8}SnSe_{3.99}Te_{0.01}$	Se-Cu	1.7 ± 0.3	2.40 ± 0.004	4.68 ± 1.4	1.38±1.24	0.028					
	Se-Zn	0.1 ± 0.1	2.45 ± 0.005								
	Se-Sn	0.6 ± 0.2	2.56 ± 0.018								
$Cu_{2.2}Zn_{0.8}SnSe_{3.99}Te_{0.02}$	Se-Cu	1.7 ± 0.3	2.40 ± 0.004	4.68 ± 1.5	1.31±1.24	0.027					
	Se-Zn	0.1 ± 0.1	2.44 ± 0.005								
	Se-Sn	0.6 ± 0.2	2.56 ± 0.02								
Cu _{2.2} Zn _{0.8} SnSe _{3.99} Te _{0.03}	Se-Cu	1.7 ± 0.3	2.40 ± 0.006	4.62 ± 1.4	1.38±1.22	0.026					
	Se-Zn	0.1 ± 0.1	2.44 ± 0.004								
	Se-Sn	0.7 ± 0.2	2.56 ± 0.019								
Cu _{2.2} Zn _{0.8} SnSe _{3.99} Te _{0.04}	Se-Cu	1.6 ± 0.3	2.40 ± 0.006	4.56 ± 1.4	1.24 ± 1.24	0.027					
	Se-Zn	0.1 ± 0.1	2.45±0.004								
	Se-Sn	0.7±0.2	2.56 ± 0.018								

Table.S7 Electron occupation of $Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x$ calculated with Te(@Se) as the cluster center

Atoms	S	p	d	Charge Transfer	Electron configuration	Valence
Te-exc	1.903	4.292	0.398	0.409	$[Kr]4d^{10}5s^25p^4$	-2, 4, 6
Se	1.907	3.907	0.299	-0.112	$[Ar]3d^{10}4s^{2}4p^{4}$	-2, 4, 6
Cu	0.597	0.664	9.579	0.159	[Ar]3d ¹⁰ 4s ¹	2,1
Sn	0.516	1.731	10.396	0.358	$[Kr]4d^{10}5s^25p^2$	4, 2
Zn	0.962	1.099	10.168	-0.230	$[Ar]3d^{10}4s^2$	2

$\textbf{Table.S8} \ \text{Electron occupation of } Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x \ \text{calculated with Se as the cluster center}$

Te <i>L</i> ₃ -	S	p	d	Charge Transfer	Electron configuration	Valence
edge						
Se-exc	1.966	4.576	0.260	0.198	$[Kr]4d^{10}5s^25p^4$	-2, 4, 6
Se	1.895	3.930	0.268	-0.093	$[Ar]3d^{10}4s^{2}4p^{4}$	-2, 4, 6
Cu	0.594	0.660	9.614	0.131	$[Ar]3d^{10}4s^1$	2,1
Sn	1.558	1.705	10.397	0.340	$[Kr]4d^{10}5s^25p^2$	4, 2

Zn	0.963	1.078	10.190	-0.231	$[Ar]3d^{10}4s^2$	2

Table.S9 Electron occupation of Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x by Cu *K*-edge XANES calculations

Cu <i>K</i> -	S	p	d	Charge Transfer	Electron configuration	Valence				
edge										
Cu-exc	0.948	1.139	10.198	-0.285	$[Ar]3d^{10}4s^1$	2,1				
Se	1.900	3.927	0.251	-0.078	$[Ar]3d^{10}4s^{2}4p^{4}$	-2, 4, 6				
Cu	0.600	0.678	9.598	0.125	$[Ar]3d^{10}4s^1$	2,1				
Sn	1.528	1.749	10.400	0.323	$[Kr]4d^{10}5s^25p^2$	4, 2				
Zn	0.964	1.109	10.185	-0.259	$[Ar]3d^{10}4s^2$	2				

 $\textbf{Table.S10} \ Electron \ occupation \ of \ Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x \ by \ Sn \ \textit{K}-edge \ XANES \ calculations$

Sn K-	s	p	d	Charge Transfer	Electron configuration	Valence
edge						
Sn-exc	1.759	2.346	10.460	0.435	$[Kr]4d^{10}5s^25p^2$	4, 2
Se	1.898	3.877	0.282	-0.057	$[Ar]3d^{10}4s^{2}4p^{4}$	-2, 4, 6
Cu	0.613	0.684	9.598	0.105	$[Ar]3d^{10}4s^1$	2,1
Sn	1.530	1.766	10.401	0.303	$[Kr]4d^{10}5s^25p^2$	4, 2
Zn	0.977	1.122	10.186	-0.285	$[Ar]3d^{10}4s^2$	2

Table.S11 Electron occupation of $Cu_{2.2}Zn_{0.8}SnSe_{4-x}Te_x$ by Zn K-edge XANES calculations

Zn K-	S	p	d	Charge Transfer	Electron configuration	Valence
edge						
Zn-exc	1.232	1.421	10.328	0.019	$[Ar]3d^{10}4s^2$	2
Se	1.896	3.864	0.271	-0.031	$[Ar]3d^{10}4s^{2}4p^{4}$	-2, 4, 6
Cu	0.617	0.694	9.606	0.082	$[Ar]3d^{10}4s^1$	2,1
Sn	1.534	1.790	10.406	0.270	$[Kr]4d^{10}5s^25p^2$	4, 2
Zn	0.988	1.133	10.190	-0.311	$[Ar]3d^{10}4s^2$	2