Electronic Supplementary Information

for

Complementary Interpretation of $E_{T}(30)$ Polarity Parameters of Ionic Liquids

Stefan Spange,^a Caroline Lienert,^a Nadine Friebe^a and Katja Schreiter^a

^a Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany. Corresponding author e-mail address: <u>stefan.spange@chemie.tu-chemnitz.de</u>

Content.

Task A: Effect of the ILs anion on the $E_T(30)$ parameter

• UV/vis and ¹H-NMR spectroscopic investigations of [C₂mim]FAP using TEA

Task B: Investigation of protic ionic liquids

- UV/vis absorption spectra of selected solvatochromic dyes in EtNH₃NO₃
- UV/vis absorption spectra of selected solvatochromic dyes in HO-[C₂mim]NTf₂
- UV/vis absorption spectra of selected solvatochromic dyes in HO-[C2mim]BF4
- UV/vis absorption spectra of Reichardt's dye **1** in various protic ILs with different amounts of added TEA

Task C: Correlation of $E_{T}(30)$ as function of the Kamlet-Taft as well as Catalán solvent parameters of ionic liquids

- Correlation analyses of $E_{T}(30)$ with SA and SdP
- Correlation analyses of $E_T(30)$ with SA, SB and SdP
- Evaluation of Catalán solvent parameter *SdP* of ILs regarding their correlation with molar volume properties
- Correlation of $E_{T}(30)$ and SA with molar concentration of the IL

Task A: Effect of the ILs anion on the $E_{T}(30)$ parameter

1. UV/vis and ¹H-NMR spectroscopic investigations of [C₂mim]FAP using TEA

Figure S1. Left: UV/vis spectra of Reichardt's dye 1 in $[C_2mim]$ FAP with different amounts of added TEA, Right: UV/vis spectra of **Fe** in $[C_2mim]$ FAP with different amounts of added TEA.

Figure S2. ¹H-NMR spectrum of undried $[C_2mim]FAP$ in CD_2Cl_2 with addition of up to 1.94 w% TEA. Signals from TEA are grey shaded, water peaks are marked with a grey arrow.

Figure S3. ¹H-NMR spectrum of dried $[C_2mim]FAP$ in CD_2Cl_2 with addition of up to 1.94 w% TEA. Signals from TEA are grey shaded.

Task B: Investigation of protic ionic liquids

Table S1. UV/vis absorption maxima of Reichardt's dye 1, Fe, ABF, DMe-ABF, Th, DENA and BMN in protic ionic liquids.

	1			Fe		ABF		DMe-ABF		Th		DENA		BMN	
IL	λ_{\max}	$\tilde{v}_{\rm max}$ · 10 ³	λ_{\max}	$\tilde{v}_{\rm max}$ ' 10 ³	λ_{\max}	$\tilde{v}_{\rm max}$ ' 10 ³	λ_{\max}	$\tilde{v}_{\rm max}$ ' 10 ³	λ_{max}	$\tilde{v}_{\rm max}$ ' 10 ³	λ_{max}	$\tilde{v}_{\rm max}$ ' 10 ³	λ_{\max}	$\tilde{v}_{\rm max}$ ' 10 ³	
	(nm)	(cm ⁻¹)	(nm)	(cm-1)	(nm)	(cm ⁻¹)	(nm)	(cm ⁻¹)	(nm)	(cm ⁻¹)	(nm)	(cm⁻¹)	(nm)	(cm⁻¹)	
EtNH ₃ NO ₃	461	21.7	538	18.6	606	16.5	633	15.8	637	15.7	418	23.9	441	22.7	
HO-[C ₂ mim]NTf ₂	471	21.2	545	18.3	577	17.3	645	15.5	628	15.9	416	24.0	436	22.9	
HO-[C ₂ mim]BF ₄	459	21.8	544	18.4	592	16.9	635	15.7	633	15.8	417	23.9	438	22.8	

Figure S4. Left: UV/vis absorption spectrum of **Fe** measured in EtNH₃NO₃, Right: UV/vis absorption spectrum of **ABF** measured in EtNH₃NO₃.

Figure S5. Left: UV/vis absorption spectrum of DMe-ABF measured in EtNH₃NO₃, Right: first derivation of this UV/vis absorption spectrum.

Figure S6. UV/vis absorption spectrum of Th measured in $EtNH_3NO_3$.

Figure S7. Left: UV/vis absorption spectrum of **Fe** measured in HO-[C_2 mim]NTf₂, Right: UV/vis absorption spectrum of **ABF** measured in HO-[C_2 mim]NTf₂.

Figure S8. Left: UV/vis absorption spectrum of DMe-ABF measured in HO-[C_2 mim]NTf₂, Right: UV/vis absorption spectrum of Th measured in HO-[C_2 mim]NTf₂.

3. UV/vis absorption spectra of selected solvatochromic dyes in HO-[C2mim]BF4

Figure S9. Left: UV/vis absorption spectrum of Fe measured in HO-[C_2 mim]BF₄, Right: UV/vis absorption spectrum of ABF measured in HO-[C_2 mim]BF₄.

Figure S10. Left: UV/vis absorption spectrum of **DMe-ABF** measured in HO-[C₂mim]BF₄, Right: first derivation of this UV/vis absorption spectrum.

Figure S11. UV/vis absorption spectrum of Th measured in HO-[C₂mim]BF₄.

Figure S12. Left: UV/vis spectra of Reichardt's dye (1) in EtNH₃NO₃ with different amounts of added TEA, Right: UV/vis spectra of Reichardt's dye (1) in HO-[C₂mim]NTf₂ with different amounts of added TEA.

Figure S13. UV/vis spectra of Reichardt's dye (1) in HO-[C₂mim]BF₄ with different amounts of added TEA.

Task C: Correlation of $E_{T}(30)$ as function of the Kamlet-Taft as well as Catalán solvent parameters of ionic liquids

Table S2. Kamlet-Taft parameters, Catalán parameters and $E_T(30)$ values used for correlation analyses.

IL	lpha (Fe) ²	β (ABF) ²	<i>π</i> * (Th)²	SA (Fe)1	$SB (ABF, DMe_ABE)^1$	SP (Th BMN) ¹	SdP (Th BMN) ¹	<i>Ε</i> _т (30)
[C ₁ mim]NTf ₂	0.60	0.36	0.80	_				52.6 ⁶
[C ₂ mim]N(CN) ₂	0.51	0.61	0.98	_	_	_	_	51.7 ¹⁰
[C ₂ mim]FAP	0.62ª	0.20	0.71	0.346ª	0.191	0.755	0.756	51.6ª
[C₄mim]Cl	0.32	0.95	1.13	0.167	0.869	0.833	1.172	51.0 ³
[C₄mim]Ac	0.36	0.85	1.06	_	_	_	_	48.8 ⁴
[C₄mim]MeSO ₃	0.36	0.85	1.04	0.191	0.799	0.837	1.062	49.6 ⁴
[C ₄ mim]OctOSO ₃	0.41	0.77	0.96	0.223	0.691	0.769	1.032	51.9 ⁵
[C ₄ mim]MeOSO ₃	0.39	0.75	1.05	_	_	_	_	51.4 ⁴
[C ₄ mim]CF ₃ CO ₂	0.43	0.74	0.90	_	_	_	_	51.1 ⁶
[C ₄ mim]NO ₃	0.40	0.74	1.04	0.215	0.664	0.868	1.034	51.8 ⁷
[C ₄ mim]N(CN) ₂	0.44	0.64	0.98	_	_	_	_	51.5 ⁴
[C₄mim]CF₃SO₃	0.50	0.57	0.90	0.271	0.482	0.808	0.934	52.1 ⁴
[C ₄ mim]ClO ₄	0.50	0.55	0.98	0.271	0.397	0.844	0.994	52.9 ⁸
[C₄mim]BF₄	0.52	0.55	0.96	0.288	0.466	0.800	1.003	52.4 ⁶
[C₄mim]PF ₆	0.54	0.44	0.90	0.296	0.364	0.808	0.934	52.6 ⁹
[C ₄ mim]NTf ₂	0.55	0.42	0.83	0.304	0.372	0.793	0867	51.7 ⁶
[C ₄ mim]SbF ₆	0.58	0.42	0.87	_	-	_	_	52.1 ⁹
[C ₄ mim]FAP	0.59	0.25	0.78	0.329	0.233	0.747	0.829	51.5ª
[C ₆ mim]Cl	0.31	0.97	1.06	0.159	0.996	0.787	1.139	50.2 ⁵
[C ₆ mim]Br	0.36	0.88	1.09	0.191	0.786	0.861	1.101	50.6 ⁵
[C ₆ mim]N(CN) ₂	0.44	0.69	1.00	0.239	0.596	0.866	0.990	51.0 ⁵
[C ₆ mim]CF ₃ SO ₃	0.47	0.61	0.92	0.255	0.515	0.798	0.959	52.7 ¹¹
[C ₆ mim]BF ₄	0.44	0.60	0.96	0.239	0.495	0.800	1.003	53.6 ⁹
[C ₆ mim]PF ₆	0.51	0.50	0.93	0.279	0.463	0.820	0.954	52.3 ¹²
[C ₆ mim]NTf ₂	0.51	0.44	0.86	-	_	_	_	51.7 ⁶
[C ₈ mim]Cl	0.31	0.98	1.03	0.159	1.001	0.784	1.096	48.5 ¹²
[C ₈ mim]BF ₄	0.45	0.63	0.93	0.247	0.525	0.788	0.983	51.9 ⁵
[C ₈ mim]PF ₆	0.52	0.53	0.92	0.288	0.392	0.798	0.959	50.1 ¹²
[C ₈ mim]NTf ₂	0.48	0.47	0.86	0.263	0.373	0.774	0.918	51.4 ¹¹
[C ₁₀ mim]NTf ₂	0.48	0.49	086	0.263	0.396	0.774	0.918	51.0 ¹³
$[3C_6C_{14}P]NTf_2$	0.36	0.58	087	0.191	0.447	0.827	0.884	46.4 ¹⁴
[C ₄ mPip]NTf ₂	0.43	0.42	0.82	-	_	_	_	49.4 ¹⁵
[C ₄ Py]NTf ₂	0.51	0.42	0.85	0.279	0.339	0.815	0.863	48.7 ¹⁷
[C ₆ Py]NTf ₂	0.50	0.44	0.86	0.271	0.379	0.805	0.888	50.1 ¹⁶
[C ₄ dmim]BF ₄	0.41	0.57	1.00	0.215	0.452	0.834	1.019	49.7 ⁹
[C ₄ dmim]NTf ₂	0.44	0.44	0.86	0.239	0.371	0.774	0.918	50.1 ⁶

Scheme S1. Cations used within this study and the corresponding abbreviations. Anions are given as chemical formulas, except for FAP and NTf_2 .

<u>1. Correlation analyses of $E_{T}(30)$ with SA and SdP</u>

Figure S14. Correlation of the *via* eq. 7 (main text) calculated $E_T(30)$ parameter of ILs *versus* the measured value as function (data for correlation analyses are taken from Table S2).

2. Correlation analyses of $E_{T}(30)$ with SA, SB and SdP

 $E_{T}(30)$ was correlated with SA, SB and SdP. A smaller significance (F = 96, eq. S1) compared to the correlation with SA and SdP (F = 125, eq. 9) was obtained.

Figure S15. Correlation of the calculated $E_T(30)$ parameter of ILs *via* eq. S1 *versus* the measured value (data for correlation analyses are taken from Table S2).

 $E_{T}(30) = 48.32 SA + 0.016 SB + 20.92 SdP + 18.71$ (S1) $n = 28, r = 0.812, f = 2.00 \cdot 10^{-6}$

<u>3. Evaluation of Catalán solvent parameter *SdP* of ILs regarding their correlation with molar volume properties</u>

Table S3. $E_{T}(30)$ and SA values used for calculating SdP_{cal} via eq. 9 (main text) and V_m and N of the respective IL.

IL	E _⊤ (30)	SA ¹	SdP _{cal}	V _m (cm ³ /mol) ^{18,19}	N (mol/cm³)
[C ₁ mim]NTf ₂	52.6 ⁶	0.279 ^a	0.889	241.5	0.00414
[C ₂ mim]N(CN) ₂	51.7 ¹⁰	0.279 ^a	0.956	160.9	0.00622
[C ₂ mim]FAP	51.6 ^a	0.346 ^b	_	-	_
[C₄mim]Cl	51.0 ³	0.167	1.165	161.7	0.00618
[C₄mim]Ac	48.8 ⁴	0.191ª	0.947	185.9	0.00538
[C ₄ mim]MeSO ₃	49.6 ⁴	0.191	1.005	188.4	0.00531
[C ₄ mim]OctOSO ₃	51.9 ⁵	0.223	1.104	326.8	0.00306
[C₄mim]MeOSO₃	51.4 ⁴	0.208ª	1.099	207.6	0.00482
[C ₄ mim]CF ₃ CO ₂	51.1 ⁶	_	_	-	_
[C₄mim]NO₃	51.8 ⁷	0.215	1.109	174.5	0.00573
[C ₄ mim]N(CN) ₂	51.5^{4}	0.238ª	1.036	193.9	0.00516
[C ₄ mim]CF ₃ SO ₃	52.1 ⁴	0.271	1.004	211.7	0.00472
[C ₄ mim]ClO ₄	52.9 ⁸	0.271	1.063	190.5	0.00525
[C ₄ mim]BF ₄	52.4 ⁶	0.288	0.988	188.1	0.00532
[C ₄ mim]PF ₆	52.6 ⁹	0.296	0.984	208.3	0.0048
[C ₄ mim]NTf ₂	51.7 ⁶	0.304	0.899	291.8	0.00343
[C ₄ mim]SbF ₆	52.1 ⁹	—	-	-	—
[C₄mim]FAP	51.5ª	0.329	0.827	358.4	0.00279
[C ₆ mim]Cl	50.2 ⁵	0.159	1.119	194.9	0.00513
[C ₆ mim]Br	50.6 ⁵	0.191	1.078	201.1	0.00497
[C ₆ mim]N(CN) ₂	51.0 ⁵	0.239	1.000	224.3	0.00446
[C ₆ mim]CF ₃ SO ₃	52.7 ¹¹	0.255	1.086	255.1	0.00392
[C ₆ mim]BF ₄	53.6 ⁹	0.239	1.190	221.9	0.00451
[C ₆ mim]PF ₆	52.3 ¹²	0.279	1.000	241.5	0.00414
[C ₆ mim]NTf ₂	51.7 ⁶	0.279 ^a	0.956	326.4	0.00306
[C ₈ mim]Cl	48.5 ¹²	0.159	1.001	228.4	0.00438
[C ₈ mim]BF ₄	51.9 ⁵	0.247	1.039	254.2	0.00393
[C ₈ mim]PF ₆	50.1 ¹²	0.288	0.900	304.1	0.00329

[C ₈ mim]NTf ₂	51.4 ¹¹	0.263	0.943	360.1	0.00278
[C ₁₀ mim]NTf ₂	51.0 ¹³	0.263	0.943	395.2	0.00253
$[3C_6C_{14}P]NTf_2$	46.4 ¹⁴	0.191	0.771	716.3	0.0014
[C ₄ mPip]NTf ₂	49.4 ¹⁵	_	_	-	_
[C ₄ Py]NTf ₂	48.7 ¹⁷	0.279	0.737	287.7	0.00348
[C ₆ Py]NTf ₂	50.1 ¹⁶	0.271	0.858	318.8	0.00314
[C ₄ dmim]BF ₄	49.7 ⁹	0.215	_	-	_
[C ₄ dmim]NTf ₂	50.1 ⁶	0.239	_	_	_
[3C ₈ mN]NTf ₂	46.2 ¹⁴	0.207	0.720	599.5	0.00167

 a SA values were calculated from the $\tilde{\nu}_{\rm max}$ values from ref. 2 using eq. 23 from the main text. b Data was determined experimentally.

Figure S16. *SdP* calculated *via* eq. 9 of [C₄mim] ILs as function of the molar concentration *N* of the IL (data are taken from Table S3).

Figure S17. Correlation of *SdP* of ILs as function of the product *SA*·*SB*. Long alkyl chain IL are marked.

<u>4. Correlation of $E_T(30)$ and SA with molar concentration of the IL</u>

References of the SI part

- 1 A. Schade, N. Behme and S. Spange, *Chem. Eur. J.*, 2014, **20**, 2232–2243.
- 2 S. Spange, R. Lungwitz and A. Schade, J. Mol. Liq., 2014, **192**, 137–143.
- 3 H. Ohno and Y. Fukaya, *Chem. Lett.*, 2008, **38**, 2–7.
- 4 M. A. A. Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan, J. P. Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis, M. Schrems, T. Welton and R. Wilding, *Phys. Chem. Chem. Phys.*, 2011, **13**, 16831–16840.
- 5 A. Jeličić, N. García, H.-G. Löhmannsröben and S. Beuermann, *Macromol.*, 2009, **42**, 8801–8808.
- 6 H. Tokuda, S. Tsuzuki, Md. A. B. H. Susan, K. Hayamizu and M. Watanabe, *J. Phys. Chem. B*, 2006, **110**, 19593–19600.
- 7 J. L. Kaar, A. M. Jesionowski, J. A. Berberich, R. Moulton and A. J. Russell, *J. Am. Chem. Soc.*, 2003, **125**, 4125–4131.
- J. D. Holbrey, R. D. Rogers, R. A. Mantz, P. C. Trulove, V. A. Cocalia, A. E. Visser, J. L. Anderson, J. L. Anthony, J. F. Brennecke, E. J. Maginn, T. Welton and R. A. Mantz, in *Ionic Liquids in Synthesis*, John Wiley & Sons, Ltd, 2008, pp. 57–174.
- 9 L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter and T. Welton, *Phys. Chem. Chem. Phys.*, 2003, **5**, 2790–2794.
- 10 S. Zhang, X. Qi, X. Ma, L. Lu and Y. Deng, J. Phys. Chem. B, 2010, 114, 3912–3920.
- 11 B. R. Mellein, S. N. V. K. Aki, R. L. Ladewski and J. F. Brennecke, *J. Phys. Chem. B*, 2007, **111**, 131–138.
- 12 J. G. Huddleston, G. A. Broker, H. D. Willauer and R. D. Rogers, in *Ionic Liquids*, American Chemical Society, 2002, vol. 818, pp. 270–288.
- 13 S. V. Dzyuba and R. A. Bartsch, *Tetrahedron Lett.*, 2002, 43, 4657–4659.
- 14 S. Coleman, R. Byrne, S. Minkovska and D. Diamond, *Phys. Chem. Chem. Phys.*, 2009, **11**, 5608–5614.
- 15 J.-M. Lee, Chem. Eng. J., 2011, **172**, 1066–1071.
- 16 N. D. Khupse and A. Kumar, J. Phys. Chem. B, 2010, 114, 376–381.
- 17 J.-M. Lee, S. Ruckes and J. M. Prausnitz, J. Phys. Chem. B, 2008, **112**, 1473–1476.
- 18 S. Zhang, N. Sun, X. He, X. Lu and X. Zhang, J. Phys. Chem. Ref. Data, 2006, 35, 1475–1517.
- 19 Y. Marcus, *Ionic Liquid Properties: From Molten Salts to RTILs*, Springer International Publishing, 2016.