Electronic Supplementary Information

Understanding ionic mesophase stabilization by hydration: A solid-state NMR study

Debashis Majhi, Jing Dai, Andrei V. Komolkin, and Sergey V. Dvinskikh*

Table of Contents

- S1. Materials and Methods
- S2. ¹³C-¹H PDLF experiment in static sample
- S3. ¹³C-¹H APM-CP experiment in spinning sample
- S4. ¹³C-¹³C dipolar CP-INADEQUATE experiment at natural isotopic abundance
- S5. ¹³C-¹⁵N dipolar spectroscopy at natural isotopic abundance
- S6. Natural abundance deuterium (NAD) NMR
- S7. Bond order parameters S_{CH} in the imidazolium ring of the C₁₂mim cation with different anions
- S8. ¹H isotropic chemical shifts
- S9. Water translational diffusion in $C_{12}mimBr \cdot H_2O$

S1. Materials and Methods

Ionic mesogenic materials C_{12} mimCl and C_{12} mimBr (1-dodecyl-3-methylimidazolium chloride and bromide, respectively) were purchased from ABCR GmbH, Karlsruhe. Monohydrated samples were prepared by equilibrating for about 12 h in a desiccator with RH \approx 85%, stabilized by a saturated KCl solution. Representative NMR spectra of samples in mesophase are shown in Fig. S1a,b.

Tuble 51. Water contents and phase transition temperatures			
Ionic liquid	H_2O mole fraction ^{a)}	$T_{\mathrm{Cr}_{\rightarrow}\mathrm{Sm}}, ^{\circ}\mathrm{C}$	$T_{\rm Iso_{2}Sm}$, °C
C ₁₂ mimCl	0.004	36	118
C ₁₂ mimCl·H ₂ O	0.48	30	154
C ₁₂ mimBr	0.025	40	102
C12mimBr·H2O	0.50	36	129

Table S1. Water contents and phase transition temperatures

^{a)} Water content was estimated from ¹H NMR spectra in isotropic phase

Figure S1a. Proton NMR spectra in smectic A phase of anhydrous (top, 95° C) and monohydrated (bottom, 120° C) C₁₂mimCl salt.

Figure S1b. Carbon-13 cross-polarization (CP) proton-decoupled NMR spectra in the smectic A phase of anhydrous (top, 95°C) and monohydrated (bottom, 120°C) C₁₂mimCl salt. In uniaxial mesophases, the rigid-lattice CSA tensor is averaged into an axially symmetric tensor with principal components δ_{\parallel} and δ_{\perp} , corresponding to LC domains with the director oriented parallel and perpendicular to the magnetic field, respectively, and with isotropic chemical shift $\delta^{iso} = (\delta_{\parallel}^{LC} + 2\delta_{\perp}^{LC})/3$. In our samples, which exhibit a negative anisotropy of the diamagnetic susceptibility, the director aligns in the plane perpendicular to the magnetic field of the spectrometer. Hence, the observed chemical shifts are determined by the δ_{\perp}^{LC} values.¹

S2. ¹³C-¹H PDLF experiment in static sample

Figure S2a. PDLF pulse sequence to record dipolar ¹³C-¹H spectra in static samples. In the indirect time period t_1 of the PDLF experiment,² proton (¹H) magnetization evolves in the presence of the local dipolar fields of rare ¹³C spins. Application of the proton homonuclear decoupling sequence BLEW-48 scales the heteronuclear couplings d_{CH} with a factor of $k\approx 0.42$.³ A pair of 180° pulses is applied at $t_1/2$ to refocus ¹H chemical shifts while retaining the ¹H-¹³C couplings. The proton magnetization is transferred to ¹³C spins via CP and the carbon signal is detected under TPPM ¹H heteronuclear decoupling.⁴

Figure S2b. Cross-sections along dipolar dimension from 2D PDLF spectrum in C_{12} mimBr·H₂O smectic A phase at 107 °C are shown for the alkyl chain carbons.

S3. ¹³C-¹H APM-CP experiment in spinning sample

Figure S3a. APM-CP pulse sequence to record dipolar ¹³C-¹H spectra in spinning samples.^{5,6} After the CP signal enhancement, the dipolar evolution period is initiated by inverting the phase of the ¹H spin-lock field. The rf fields during t_1 period are phase- and amplitude-modulated to achieve the ¹H-¹³C heteronuclear dipolar recoupling. Finally, the ¹³C signal is detected in the presence of the heteronuclear ¹H decoupling.

Figure S3b. Cross-sections along dipolar dimension from 2D APM-CP spectrum in C₁₂mimCl smectic A phase at 73 °C are shown for the imidazolium carbons. Spectra were measured at 5 kHz sample spinning speed and with average recoupling radio-frequency field of $\gamma B_1/2\pi = 28$ kHz.

Figure S3c. Comparison of the C-H bond order parameters S_{CH} obtained from PDLF and APM-CP experiments in C₁₂mimCl smectic A phase at 73 °C. Carbon sites 5–7 of the alkyl chain were not resolved in APM-CP spectrum.

S4. ¹³C-¹³C dipolar CP-INADEQUATE experiment at natural isotopic abundance.

Figure S4a. INADEQUATE pulse sequence⁷ was modified by (i) using ADRF CP for ¹³C signal enhancement⁸ and (ii) setting the excitation delay τ to generate double quantum (DQ) coherences according to range of dipolar couplings to be measured.⁹

Figure S4b. ¹³C-¹³C INADEQUATE spectra in the smectic A phase of C₁₂mimCl at 95 °C. The excitation delay in DQ-filter is set to $\tau = 0.83$ ms. Correlation peaks between chain carbons 1-3, 2-4, and 3-5 separated by two bonds are indicated by dashed lines. The observed splittings Δv , contributed by the C-C dipolar coupling depend on the frequency difference $\Delta \delta$ between involved spins. When $\Delta \delta$ is small compared to the splitting Δv , the dipolar coupling is given by $d_{CC}=\Delta v/3$, while for the opposite case $d_{CC} = (\Delta v - J)/2$. For intermediate cases, numerical analysis was performed to determine d_{CC} . For carbons separated by two bonds, literature values of the *J*-coupling are small, within 0-2 Hz range, and were neglected in the analysis.¹⁰

S5. ¹³C-¹⁵N dipolar spectroscopy at natural isotopic abundance.

Figure S5a. ¹³C CP spectra acquired without and with ¹⁵N decoupling in alternate scans are subtracted from each other. ^{11,12} In the resulting difference spectrum, the central peak of uncoupled spins is suppressed while the signal of ¹³C–¹⁵N coupled pairs is preserved. A dipolar interaction with abundant ¹H spins is removed by proton decoupling applied to both spectra. In the scans acquired without nitrogen decoupling, the ¹³C–¹⁵N coupled pairs lead to dipolar doublets in the ¹³C spectrum, whereas they contribute to a residual central peak in the scans with ¹⁵N decoupling. The difference spectrum thus represents a superposition of the ¹³C–¹⁵N doublet and the central peak of the opposite sign.

Figure S5b. ${}^{13}C{}^{-15}N$ dipolar spectrum acquired by recording ${}^{13}C$ difference spectra with nitrogen-15 decoupling in alternating scans. 8k scans were accumulated with a relaxation delay of 4 s (12 h measurement time).

S6. Natural abundance deuterium (NAD) NMR

Figure S6. ²H NMR spectrum of C_{12} mimCl in smectic A phase at 110 ⁰C. Spectrum is measured at the natural isotopic abundance of ²H (0.015%) and in the presence of ¹H decoupling. 128k scans were accumulated with relaxation delay 0.5s (18 h experimental time).

S7. Bond order parameters S_{CH} in the imidazolium ring of the C_{12} mim cation with different anions.

Figure S7. Bond order parameters S_{CH} in the imidazolium ring for the anhydrous C_{12} mimX salts with different anions X = BF₄, I, Cl, and Br. Data are compared at approximately the same difference temperature ΔT with respect to clearing temperature $\Delta T=T-T_C\approx 20^{\circ}$ C.

S8. ¹H isotropic chemical shifts

Figure S8. ¹H chemical shift spectra of anhydrous (top) and monohydrated C_{12} mimBr (bottom) samples in the isotropic phase.

S9. Water translational diffusion in C₁₂mimBr·H₂O

Figure S9. Water diffusion coefficients, D_{iso} (o), D_{\parallel} (\blacksquare), and D_{\perp} (\bullet) in the isotropic and smectic A phases of C₁₂mimBr·H₂O ionic liquid. Lines are guides for the eye.

References

- 1 S. V. Dvinskikh, in *Modern Methods in Solid-State NMR: A practitioners' Guide*, ed. P. Hodgkinson, Royal Society of Chemistry, Abingdon, 2018.
- 2 B. M. Fung, K. Ermolaev and Y. Yu, J. Magn. Reson., 1999, 138, 28-35.
- 3 D. P. Burum, M. Linder and R. R. Ernst, J. Magn. Reson., 1981, 44, 173-188.
- 4 A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi and R. G. Griffin, *J. Chem. Phys.*, 1995, **103**, 6951-6958.
- 5 S. V. Dvinskikh, V. Castro and D. Sandström, Phys. Chem. Chem. Phys., 2005, 7, 3255-3257.
- 6 S. V. Dvinskikh and V. I. Chizhik, J. Exp. Theor. Phys., 2006, 102, 91-101.
- 7 S. Berger and S. Braun, 200 and More NMR Experiments: A Practical Course, Wiley, Leipzig, 2004.
- 8 J. S. Lee and A. K. Khitrin, J. Chem. Phys., 2008, 128, 114504.
- 9 D. Sandström and M. H. Levitt, J. Am. Chem. Soc., 1996, 118, 6966-6974.
- 10 L. B. Krivdin and E. W. Della, Progr. Nucl. Magn. Reson. Spectrosc., 1991, 23, 301-610.
- 11 L. Jackalin, B. B. Kharkov, A. V. Komolkin and S. V. Dvinskikh, *Phys. Chem. Chem. Phys.*, 2018, **20**, 22187-22196.
- 12 M. Cifelli, V. Domenici, V. I. Chizhik and S. V. Dvinskikh, Appl. Magn. Reson., 2018, 4, 553–562.