Supporting Information

Impact of Alkyl Chain Length and Water on the Structure and Properties of 1alkyl-3-methylimidazolium Chloride Ionic Liquids

Paridhi Sanchora[†], Deepak K. Pandey[†], Hardik L. Kagdada[†], Arnulf Materny^{\$} and Dheeraj K. Singh^{†*}

[†]Department of Physics, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India ^{\$}Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, 28759, Germany

*Corresponding author: dheerajsingh84@gmail.com

Fig. S1 ATR-IR absorption spectra of neat $C_n \text{mim Cl} (n = 2, 4, 6, 8, 10)$ ion pairs and their binary mixtures with H_2O in the region of 600-680 cm⁻¹ at various H_2O : IL molar ratios. The lines at 623 and 654 cm⁻¹ are assigned to ring stretching vibration and alkyl chain N-CH₂-CH₃ asymmetric bending, respectively.

Fig. S2 ATR-IR absorption spectra of neat $C_n \text{mim Cl} (n = 2, 4, 6, 8, 10)$ ion pairs and their binary mixtures with H₂O in the region of 1125-1225 cm⁻¹ at various H₂O : IL molar ratios. The line at 1167 cm⁻¹ is assigned to the C-C stretching vibration of the ring.

Fig. S3 ATR-IR absorption spectra of neat $C_n \text{mim Cl} (n = 2, 4, 6, 8, 10)$ ion pairs and their binary mixtures with H₂O in the region of 1300-1500 cm⁻¹ at various H₂O : IL molar ratios. The line at 1325 cm⁻¹ assigned to the ring C-H in plane bending. The line at 1378 cm⁻¹ belongs to the alkyl chain (CH₂) stretching. The peaks at 1453 and 1470 cm⁻¹ are assigned to the asymmetric ring stretching and asymmetric bending vibrations of C8-H, respectively.

Fig. S4 ATR-IR absorption spectra of neat $C_n \text{mim Cl} (n = 2, 4, 6, 8, 10)$ ion pairs and their binary mixtures with H₂O in the region of 1500-1700 cm⁻¹ at various H₂O : IL molar ratios. The line at 1569 cm⁻¹ is assigned to the C8H₂-C9H₂-C10H₂ scissoring vibration. A new peak arises at 1576 cm⁻¹.

Fig. S5 Comparison of experimental and theoretical IR absorption spectra of the most stable geometries for the C_nmim Cl (n = 2, 4, 6, 8, 10) ion-pairs in the range of 500-1700 cm⁻¹.

Fig. S6 Electrostatic potential mapping (ESP) from total self-consistent field (SCF) for $C_n mim$ Cl (n = 2, 4, 6, 8, 10) ion-pairs.

	C ₂ mim Cl	C ₄ mim Cl	C ₆ mim Cl	C ₈ mim Cl	C ₁₀ mim Cl
		Bond Lengt	h (Å)		
N1-C2	1.33	1.33	1.33	1.33	1.33
C2-N3	1.33	1.33	1.33	1.33	1.33
N3-C4	1.37	1.37	1.37	1.37	1.37
C4–C5	1.35	1.35	1.35	1.35	1.35
C5-N1	1.38	1.37	1.37	1.37	1.37
С2-Н9	1.12	1.12	1.11	1.11	1.11
С5-Н11	1.07	1.07	1.07	1.07	1.07
C4-H10	1.07	1.07	1.07	1.07	1.07
N1-C6	1.45	1.46	1.46	1.46	1.46
N3-C7	1.47	1.47	1.47	1.47	1.47
С6-Н12	1.09	1.09	1.09	1.09	1.09
С6-Н13	1.09	1.09	1.09	1.09	1.09
С6-Н14	1.08	1.08	1.08	1.09	1.09
С7-Н15	1.09	1.09	1.09	1.09	1.09
С7-Н16	1.09	1.09	1.09	1.09	1.09
С8-Н17	1.09	1.09	1.09	1.09	1.09
C8-H18	1.09	1.09	1.09	1.09	1.09
С9-Н19	1.09	1.09	1.09	1.09	1.09
С9-Н20		1.09	1.09	1.09	1.09
C10-H21		1.09	1.09	1.09	1.09
C10-H22		1.09	1.09	1.09	1.09
С10-Н23		1.09	1.09	1.09	1.09
C11-H24			1.09	1.09	1.09
C12-H25			1.09	1.09	1.09
C12-H26			1.09	1.09	1.09
С13-Н27				1.09	1.09
C13-H28				1.09	1.09
C14-H29				1.09	1.09
C14-H30				1.09	1.09
C14-H31				1.09	1.09
С15-Н32					1.09
С15-Н33					1.09
С16-Н34					1.09
С16-Н35					1.09
С16-Н36					1.09
С120-Н9	1.99	2.00	2.02	2.02	2.02
		Dihedral Ang	le (deg)		
∠ N1-C7-C8-C9		-64.52	-64.54	-64.62	-64.73

Table S1. Bond lengths and dihedral angles of the optimized geometries of the $C_n mim$ Cl (n = 2, 4, 6, 8, 10) ion-pairs obtained from the DFT calculations.

Table S2. Wavenumbers of vibrational modes for $C_2 \text{mim}^+$ and the energetically optimized configuration of $C_n \text{mim}$ Cl (n = 2, 4, 6, 8, 10), calculated using DFT and observed in the IR spectra.

V:: h	Compu	Experimental	
vibration		IR	
	C ₂ mim ⁺ (cm ⁻¹)	C ₂ mim Cl (cm ⁻¹)	
<i>v</i> _s (C4-H10, C5-H11)	3308 (10)	3279 (6)	3144 (W)
<i>v</i> _{as} (C4-H10, C5-H11)	3290 (16)		
v (C2-H9)	3292 (29)	2631 (1420)	3054 (S)
<i>v</i> _{as} (H12,13-C6- H14)	3189 (0.3)	3152 (1)	
v _{as} (H12-C6-H13)	3178 (0.1)	3132 (6)	
v _{as} (H15-C7-H16, H17,18-C8-H19)	3160 (8)	3124 (4)	2976 (M)
v _{as} (H15-C7-H16, H17,18-C8-H19)	3154 (5)	3115 (8)	
v _{as} (H15-C7-,H16); v _{as} (H17,18-C8-H19)	3138 (2)	3100 (14)	
<i>v</i> _s (H15-C7-H16)	3098 (6)	3055 (33)	2931 (W)
v _s (H12,13-C6-H14)	3085 (4)	3046 (22)	
v _s (H17-C8-H18,19)	3063 (4)	3020 (24)	2868 (W)

The C–H region for C₂mim Cl is scaled by 0.991. The IR intensities are shown in km/mol in parentheses. Key: W, weak; M, medium; S, strong; v, stretch; v_s , symmetric stretch; v_{as} , asymmetric stretch.

Vibration	Compu	Experimental	
vibration		IR	
	C ₄ mim ⁺ (cm ⁻¹)	C ₄ mim Cl (cm ⁻¹)	
<i>v</i> _s (C4-H10, C5-H11)	3310 (10)	3134 (6)	3143 (W)
<i>v</i> _{as} (C4-H10, C5-H11)	3291 (19)		
v (C2-H9)	3292 (23)	2555 (1239)	3057 (M)
<i>v</i> _{as} (H12,13-C6- H14)	3177 (0.1)	2988 (7)	
<i>v</i> _{as} (H12-C6-H13)	3178 (0.1)	2971 (19)	
v _{as} (H21-22-C10-H12); v _{as} (H19-C9-H20)	3140 (16)	2958 (14)	2957 (S)
v _{as} (H15-C7-H16, H17-C8-H18)	3160 (8)	2950 (11)	
v _s (H19-C9-H20)	3125 (33)	2944 (43)	2930 (M)
<i>v</i> _{as} (H17-C8-H18), <i>v</i> _{as} (H21,22-C10-,H23); <i>v</i> _{as} (H19-C9-H20)		2929 (18)	
<i>v</i> _s (H15-C7-H16); <i>v</i> _{as} (H17-C8-H18);			
<i>v</i> _{as} (H19-C9-H20);	3102 (19)	2908 (9)	
<i>v</i> _{as} (H21,22-C10-,H23)			
<i>v</i> _s (H15-C7-H16); <i>v</i> _{as} (H17-C8-H18);	3093 (3.3)	2900 (28)	
<i>v</i> _s (H17-C8-H18);		2884 (11)	
<i>v</i> _s (H12,13-C6-H14)	3085 (4)	2879 (65)	
v _s (H21-C10-H22,23)	3051 (22)	2870 (42)	2867 (M)
<i>v</i> _s (H17-C8-H18)	3046 (14)	2858 (45)	
<i>v</i> _s (H19-C9-H20)	3030 (20)		

The C–H region for C₄mim Cl is scaled by 0.954. The IR intensities are shown in km/mol in parentheses. Key: W, weak; M, medium; S, strong; v, stretch; v_s , symmetric stretch; v_{as} , asymmetric stretch.

Vib and the m	Comp	Experimental	
vibration —		IR	
	C ₆ mim ⁺ (cm ⁻¹)	C ₆ mim Cl (cm ⁻¹)	
<i>v</i> _s (C4-H10, C5-H11)	3310 (10)	3054 (2)	3140 (W)
<i>v</i> _{as} (C4-H10, C5-H11)	3292 (17)	3036 (6)	
v (C2-H9)	3291 (25)	2526 (1128)	3052 (M)
<i>v</i> _{as} (H12,13-C6- H14)	3189 (0.4)	2919 (7)	
<i>v</i> _{as} (H25-C12-H26,27); <i>v</i> _{as} (H23-C11-H24)	3178 (0.2)	2900 (21)	2955 (M)
v _{as} (H15-C7-H16, H17-C8-H18)	3151 (4.2)	2880 (16)	
v _{as} (H25-C12-H26)	3130 (25)	2879 (37)	
v _s (H23-C11-H24), v _s (H21-C10-H22)	3118 (48)	2869 (61)	2929 (S)
<i>v</i> _s (H15-C7-H16); <i>v</i> _{as} (H17-C8-H18);	2102 (20)		
<i>v</i> _{as} (H19-C9-H20), <i>v</i> _{as} (H21-C10-H22)	3103 (30)		
<i>v</i> _{as} (H17-C8-H18); <i>v</i> _{as} (H19-C9-H20),		2860 (34)	

<i>v</i> _{as} (H21-C10-H22)			
<i>v</i> _{as} (H17-C8-H18); <i>v</i> _{as} (H19-C9-H20),			
<i>v</i> _{as} (H21-C10-H22); <i>v</i> _{as} (H23-C11-H24);		2849 (6)	
v _{as} (H25-C12-H26)			
v _s (H15-C7-H16); v _{as} (H17-C8-H18); v _{as} (H19-C9-			
H20), v _{as} (H21-C10-H22); v _{as} (H23-C11-H24);		2837 (4)	
v _{as} (H25-C12-H26)			
v _s (H15-C7-H16)	3093 (7)	2831 (28)	
v _{as} (H23-C11-H24), v _{as} (H21-C10-H22)	3083 (36)	2830 (10)	
v _s (H18-C8-H19)	3046 (17)	2815 (11)	
v _s (H12,13-C6-H14)	3085 (4)	2810 (75)	
v _s (H25-C12-H26)	3045 (24)	2802 (41)	2857 (M)
v _s (H23-C11-H24); v _s (H19-C9-H20)	3034 (60)	2788 (77)	

The C–H region for C_6 mim Cl is scaled by 0.923. The IR intensities are shown in km/mol in parentheses. Key: W, weak; M, medium; S, strong; v, stretch; v_s, symmetric stretch; v_{as}, asymmetric stretch.

	Compu	Experimental	
vibration —		IR	
	C ₈ mim ⁺ (cm ⁻¹)	C ₈ mim Cl (cm ⁻¹)	
v _s (C4-H10, C5-H11)	3310 (10)	3180 (2)	3141 (W)
v_{as} (C4-H10, C5-H11)	3291 (20)	3160 (6)	
v (C2-H9)	3292 (21)	2637 (106)	3055 (W)
v _{as} (H12,13-C6- H14)	3189 (0.4)	3038 (7)	
v _{as} (H12-C6-H13)	3177 (0.2)	3018 (22)	
v _{as} (H15-C7-H16, H17,18-C8-H19)	3152 (4)	2997 (16)	
v_{as} (H29,30-C14-H31)	3126 (30)	2990 (46)	
v_{as} (H29,30-C14-H31); v_{as} (H27-C13-H28)	3114 (56)	2986 (69)	2956 (M)
v _s (H15-C7-H16); v _{as} (H17-C8-H18); v _{as} (H19-C9-H20), v _{as} (H21-C10-H22)	3104 (34)		
v_{as} (H15-C7-H16); v_{as} (H17-C8-H18); v_{as} (H19-C9-H20), v_{as} (H21-C10-H22); v_{as} (H23-C11-H24)		2979 (49)	
v_{as} (H15-C7-H16); v_{as} (H17-C8-H18); v_{as} (H19-C9-H20), v_{as} (H21-C10-H22); v_{as} (H23-C11-H24); v_{as} (H25-C12-H26); v_{as} (H27-C13-H28); v_{as} (H29,30-C14-H31)	3086 (80)	2970 (16)	
v_{s} (H15-C7-H16); v_{as} (H17-C8-H18); v_{as} (H19-C9-H20), v_{as} (H21-C10-H22); v_{as} (H23-C11-H24); v_{as} (H25-C12-H26); v_{as} (H27-C13-H28); v_{as} (H29-30-C14-H31)		2958 (20)	
v_{as} (H23-C11-H24); v_{as} (H27-C13-H28) v_{as} (H23-C11-H24); v_{as} (H27-C13-H28)		2948 (28) 2941 (2)	
$v_{\rm s}$ (H17-C8-H18);); v_{as} (H23-C11-H24); v_{as} (H25-C12-H26); v_{as} (H27-C13-H28)		2932 (19)	
v _s (H17-C7-H18)		2931 (5)	
$v_{\rm s}$ (H17-C8-H18)	3084 (4)	2924 (80)	2924 (S)
$v_{\rm e}$ (H29.30-C14-H31)	3042 (33)	2915 (39)	2853 (M)
<i>v</i> _s (H17-C8-H18);); <i>v</i> _s (H23-C11-H24); <i>v</i> _s (H25-C12-H26); <i>v</i> _s (H27-C13-H28)	3034 (101)		
v _s (H27-C13-H28)		2909 (60)	
v_{as} (H17-C8-H18)		2900 (44)	
v _s (H21-C10-H22); v _{as} (H23-C11-H24);		2200 (57)	
v _s (H25-C12-H26); v _s (H27-C13-H28)		2899 (57)	
<i>v</i> _s (H21-C10-H22); <i>v</i> _s (H25-C12-H26)		2896 (0.4)	
v _s (H23-C11-H24)		2892 (15)	

The C–H region for C_8 mim Cl is scaled by 0.960. The IR intensities are shown in km/mol in parentheses. Key: W, weak; M, medium; S, strong; v, stretch; v_s, symmetric stretch; v_{as}, asymmetric stretch.

Vibration	Computational	Experimental

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccc} v_{as}(\text{C4-H10}, \text{C5-H11}) & 32901(19) & 3161 (6) \\ v(\text{C2-H9}) & 3292 (22) & 2640 (1104) & 3057 (\text{W}) \\ v_{as}(\text{H12,13-C6-H14}) & 3189 (0.4) & 3039 (7) \\ v_{as}(\text{H12-C6-H13}) & 3178 (0.2) & 3018 (22) \\ v_{as}(\text{H15-C7-H16}, \text{H17-C8-H18}) & 3152 (4) & 2998 (15) \\ v_{as}(\text{H33,34-C16-H35}) & 3123 (34) & 2992 (45) \\ v_{as}(\text{H33,34-C16-H35}); v_{as}(\text{H31-C15-H32}) & 3113 (60) & 2987 (70) & 2955 (\text{W}) \end{array}$
v (C2-H9)3292 (22)2640 (1104)3057 (W) v_{as} (H12,13-C6- H14)3189 (0.4)3039 (7) v_{as} (H12-C6-H13)3178 (0.2)3018 (22) v_{as} (H15-C7-H16, H17-C8-H18)3152 (4)2998 (15) v_{as} (H33,34-C16- H35)3123 (34)2992 (45) v_{as} (H33,34-C16- H35); v_{as} (H31-C15- H32)3113 (60)2987 (70)2955 (W)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
v_{as} (H12-C6-H13) 3178 (0.2) 3018 (22) v_{as} (H15-C7-H16, H17-C8-H18) 3152 (4) 2998 (15) v_{as} (H33,34-C16- H35) 3123 (34) 2992 (45) v_{as} (H33,34-C16- H35); v_{as} (H31-C15- H32) 3113 (60) 2987 (70) 2955 (W)
v_{as} (H15-C7-H16, H17-C8-H18) 3152 (4) 2998 (15) v_{as} (H33,34-C16-H35) 3123 (34) 2992 (45) v_{as} (H33,34-C16-H35); v_{as} (H31-C15-H32) 3113 (60) 2987 (70) 2955 (W)
v_{as} (H33,34-C16- H35)3123 (34)2992 (45) v_{as} (H33,34-C16- H35); v_{as} (H31-C15- H32)3113 (60)2987 (70)2955 (W)
v_{as} (H33,34-C16-H35); v_{as} (H31-C15-H32) 3113 (60) 2987 (70) 2955 (W)
v_{as} (H15-C/-H16); v_{as} (H1/-C8-H18); v_{as} (H19-C9-H20); v_{as} (H21-C10-H22); v_{as} (H23-C11-H24) 2980 (57)
$v_{s}(H15-C7-H16); v_{as}(H17-C8-H18); v_{as}(H19-C9-H20);$ $v_{as}(H21-C10-H22); v_{as}(H23-C11-H24);$ $v_{as}(H25-C12-H26); v_{as}(H27-C13-H28);$ $v_{as}(H29-C14-H30)$ 3103 (37) 2971 (26)
v_{s} (H15-C7-H16); v_{as} (H17-C8-H18); v_{as} (H19-C9-H20); v_{as} (H21-C10-H22); v_{as} (H23-C11-H24); v_{as} (H25-C12-H26); v_{as} (H27-C13-H28); 3087 (126) 2962 (72) v_{as} (H29-C14-H30); v_{as} (H33,34-C16- H35); v_{as} (H31-C15-H32)
v_{as} (H15-C7-,H16); v_{as} (H17,18-C8-H19) 2948 (28)
v_{as} (H19-C9-H20), v_{as} (H21-C10-H22); v_{as} (H23-C11-H24); v_{as} (H25-C12-H26); v_{s} (H27-C13-H28); v_{s} (H29-C14-H30) 2924 (80) 2922 (S)
v _s (H33,34-C16-H35) 2917 (39)
v _s (H31-C15- H32) 2912 (78) 2852 (M)
v _s (H19-C9-H20), v _s (H21-C10-H22);
<i>v</i> _s (H23-C11-H24); <i>v</i> _s (H25-C12-H26); 3034 (150) 2904 (83)
v_{s} (H27-C13-H28); v_{s} (H29-C14-H30)
<i>v</i> _s (H19-C9-H20) 3016 (4) 2902 (40)

The C–H region for C_{10} mim Cl is scaled by 0.961. The IR intensities are shown in km/mol in parentheses. Key: W, weak; M, medium; S, strong; v, stretch; v_s, symmetric stretch; v_{as}, asymmetric stretch.

Table S3. Natural bond orbital (NBO) electron density in the cation and four configurations of $C_n mim$ Cl (n=2,4,6,8, and 10), calculated at the wB97XD/6-311++G(d,p) level of theory.

	C ₂ mim	C ₂ mim Cl	C ₄ mim	C ₄ mim Cl	C ₆ mim	C ₆ mim Cl	C ₈ mim	C ₈ mim Cl	C ₁₀ mim	C ₁₀ mim Cl
N1	-0.34	-0.37	-0.34	-0.36	-0.34	-0.36	-0.34	-0.36	-0.34	-0.36
C2	0.30	0.28	0.29	0.27	0.29	0.27	0.29	0.27	0.29	0.27
Н9	0.24	0.29	0.24	0.29	0.24	0.29	0.24	0.29	0.29	0.29
N3	-0.34	-0.36	-0.34	-0.37	-0.34	-0.36	-0.34	-0.36	-0.36	-0.36
C4	-0.01	-0.02	-0.00	-0.03	-0.00	-0.03	-0.00	-0.03	-0.00	-0.03
H10	0.25	0.23	0.25	0.23	0.25	0.23	0.25	0.23	0.25	0.23
C5	-0.01	-0.04	-0.01	-0.03	-0.01	-0.03	-0.01	-0.03	-0.01	-0.03
H11	0.25	0.23	0.25	0.23	0.25	0.23	0.25	0.23	0.25	0.23
C6	-0.36	-0.35	-0.36	-0.37	-0.36	-0.37	-0.36	-0.37	-0.36	-0.37
H12	0.23	0.21	0.23	0.20	0.23	0.20	0.23	0.20	0.23	0.20
H13	0.23	0.21	0.23	0.20	0.23	0.20	0.23	0.20	0.23	0.20
H14	0.22	0.24	0.22	0.27	0.22	0.27	0.22	0.27	0.22	0.27
C7	-0.17	-0.18	-0.17	-0.15	-0.16	-0.15	-0.16	-0.16	-0.16	-0.15
H15	0.21	0.26	0.22	0.20	0.22	0.21	0.22	0.20	0.22	0.20
H16	0.22	0.19	0.22	0.21	0.22	0.20	0.22	0.20	0.22	0.20
C8	-0.59	-0.59	-0.40	-0.42	-0.39	-0.41	-0.39	-0.41	-0.39	-0.41
H17	0.21	0.24	0.20	0.24	0.20	0.21	0.20	0.21	0.20	0.21

H18	0.21	0.19	0.22	0.21	0.22	0.23	0.22	0.23	0.22	0.23
H19	0.23	0.21	0.18	0.18	0.19	0.18	0.18	0.18	0.18	0.18
C9			-0.39	-0.39	-0.39	-0.38	-0.39	-0.39	-0.39	-0.38
H20			0.18	0.20	0.18	0.20	0.18	0.20	0.19	0.20
C10			-0.27	-0.58	-0.38	-0.39	-0.38	-0.39	-0.38	-0.39
H21			0.20	0.18	0.19	0.17	0.20	0.17	0.20	0.17
H22			0.21	0.24	0.19	0.23	0.19	0.23	0.19	0.23
C11					-0.38	-0.38	-0.38	-0.38	-0.37	-0.37
H23			0.21	0.20	0.18	0.17	0.19	0.17	0.19	0.17
H24					0.19	0.20	0.20	0.20	0.19	0.20
H25					0.19	0.19	0.19	0.18	0.18	0.18
C12					-0.57	-0.57	-0.38	-0.38	-0.38	-0.37
H26					0.20	0.18	0.18	0.20	0.18	0.20
H27					0.21	0.20	0.19	0.18	0.19	0.19
C13							-0.38	-0.38	-0.37	-0.37
H28							0.19	0.19	0.18	0.19
H29							0.19	0.19	0.20	0.19
C14							-0.57	-0.57	-0.38	-0.38
H30							0.19	0.19	0.19	0.18
H31							0.19	0.19	0.19	0.19
C15									-0.38	-0.38
H32									0.18	0.18
H33									0.19	0.18
C16									0.18	0.19
H34									-0.57	-0.57
H35									0.19	0.19
Cl38		-0.86		-0.86		-0.86		-0.86		-0.86