Supplementary Information

Critical evaluation of anharmonicity and configurational averaging in QM/MM modelling of equilibrium isotope effects

Maite Roca,^a Catherine M. Upfold^b and Ian H. Williams^{*b}

- a. Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- b. Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)

Table of Contents

pag	;e
Fortran driver program "relax_anharmonic" for use with fDynamo library to interface with Gaussian 16 for anharmonic frequency calculations within a field of point charges.	3
Shell script "Qanh" to extract partition functions and zero-point energies from Gaussian 16 output files for anharmonic frequency calculations and to evaluate isotopic partition-function ratios.	8
Modified subroutine BMAT (from program CAMVIB) to determine the transformation between Cartesians and internal- and external-coordinates for methyl cation.	.0
QM anharmonic frequency calculations for methyl cation embedded with the point-charge representation of the frozen MM aqueous environment.	.4
Table S1. Partial list of B3LYP/6-31+G(d) anharmonic and harmonic fundamental frequencies (aswavenumbers/cm ⁻¹) for relaxed methyl cation within the point-charge representation of its frozenMM solvent environment.	.4
Table S2. Partial output from program Qanh for B3LYP/6-31+G(d) ² H ₃ isotopic partition-function ratios(f) at 298.15 K (cf. "QM relaxation and anharmonic frequencies" in Fig. 1).1	.5
Table S3. Partial list of B3LYP/6-31+G(d) symmetry force constants (/aJ Å ⁻²) for relaxed methyl cationwithin the point-charge representation of its frozen MM solvent environment.1	.6
Fig. S1. B3LYP/6-31+G(d)/TIP3P potential energy for QM methyl cation relaxed within the "frozen" environment of 1032 MM water molecules (black dots) and moving average (mean of the preceding 25 values, red dots) for structures extracted from a 1 ns MD trajectory (298 K).	.7
Fig. S2. Correlation of anharmonic vs. harmonic fundamental frequencies (as wavenumbers/cm ⁻¹) for relaxed methyl cation (B3LYP/6-31+G(d)) within the "frozen" TIP3P aqueous environment.	.7
Fig. S3. Residual r.m.s. gradient (/kJ mol-1 Å-1) for relaxed methyl cation (B3LYP/6-31+G(d)) within the "frozen" TIP3P aqueous environment. 1	.9
Fig. S4. Harmonic isotopic partition-function ratio (2H3, 298.15 K) for B3LYP/6-31+G(d) methyl cation in TIP3P water (black dots) and moving average (mean of the preceding 25 values, red dots) for structures extracted from a 1 ns MD trajectory.	.9
Fig. S5. Correlation of anharmonic vs. harmonic B3LYP/6-31+G(d) IPFR values (2H3, 298.15 K)for 6 internal degrees of freedom for 930 configurations of methyl cation in water.2	20
Fig. S6. (Lack of) correlation between harmonic isotopic partition-function ratio (2H3, 298.15 K) formethyl cation in water and the B3LYP/6-31+G(d)/TIP3P potential energy.2	20
Fig. S7. Variation in average B3LYP/6-31+G(d) IPFR values (² H ₃ , 298.15 K) for 100 ps intervals over the course of a 1 ns classical molecular dynamics simulation for flexible TIP3P water around a frozen methy cation with ESP/ B3LYP/6-31+G(d) atomic charges.	 21

	Table S4. Block-averaged harmonic B3LYP/6-31+G(d) IPFR values (${}^{2}H_{3}$, 298.15 K) for methyl cation in water for structures obtained from a 1 ns MD trajectory at 1 ps intervals.	22
	Table S5. Block-averaged anharmonic B3LYP/6-31+G(d) IPFR values (${}^{2}H_{3}$, 298.15 K) for methyl cation i water for structures obtained from a 1 ns MD trajectory at 1 ps intervals.	n 22
	Fig. S8. Block standard error as a function of blocksize for harmonic IPFRs.	23
	Fig. S9. Block standard error as a function of blocksize for anharmonic IPFRs.	23
	Table S6. B3LYP/6-31+G(d) equilibrium isotope effect (${}^{2}H_{3}$, 298.15 K) for transfer of methyl cation from vacuum to water for snapshot structures obtained from a 1 ns MD trajectory at 8 ps intervals.	m 23
	Fig. S10. Harmonic (blue) and anharmonic (red) B3LYP/6-31+G(d) EIEs (² H ₃ , 298.15 K) for transfer of methyl cation from vacuum to water. Bounds of the standard error are shown by the short lines above and below each solid circle. Individual EIEs evaluated for snapshot solvent configurations at 1 ps intervals were averaged over 8 ps blocks. The points plotted in the graph represents cumulative averages of these block averages over intervals up to the total length of the 1 ns MD trajectory.	′e 24
QI du	M/MM harmonic frequency calculations for methyl cation embedded with the full TIP3P potential to the frozen MM aqueous environment.	
	Table S7.Partial list of B3LYP/6-31+G(d)/TIP3P harmonic fundamental frequencies (aswavenumbers/cm-1) for relaxed methyl cation within its frozen MM solvent environment.	25
	Table S8. Partial list of harmonic B3LYP/6-31+G(d) ${}^{2}H_{3}$ isotopic partition-function ratios at 298.15 K (<i>cf.</i> "QM/MM relaxation and harmonic frequencies" in Fig. 1).	26
Fo en	rtran driver program "energy_scan" for use with fDynamo library to perform rigid QM/MM potential- ergy scans along normal modes	27
Ar	harmonicity in $C_{\alpha}H$ stretching and bending modes.	
	Table S9. Anharmonic (quartic) and harmonic (quadratic) fits to relative QM/MM energies for displacement along H_{α} normal modes	29
	Fig. S11. AM1/OPLS rigid potential-energy scans for displacements along H _a normal modes from atom Hessian analysis for cyclopentyl (CP), cyclohexyl (CH), tetrahydrofuranyl (THF) and tetrahydropyranyl (THP) cations in explicit water and cyclohexane: OP = out-of-plane bending,	nic
	IP = in-plane bending, STR = stretching. Blue dotted line: quartic fit; red solid line: quadratic fit.	30

Fortran driver program for use with fDynamo library to interface with Gaussian 16 for anharmonic frequency calculations within a field of point charges.

program relax anharmonic use dynamo implicit none integer :: i, j, follow_mode, isnap character (len = 10) :: label logical, allocatable, dimension(:) :: acs, flg real(kind=dp), dimension(:),allocatable :: x call dynamo header call cabinitio_init ! Read force-field parameter file "opls" call mm_file_process ("borra", "opls") ! Read sequence file "Me_start.seq" for solvated methyl cation call mm_system_construct ("borra", "Me_start.seq") ! Read the number "isnap" of the solute/solvent snapshot configuration read(*,*) isnap call encode integer(isnap, label, '(i4)') ! Read the coordinate file "Me 1ns isnap.crd" for this structure call coordinates_read('Me_1ns_' // trim(label) // '.crd') ! Allocate array allocate(acs(1:natoms), flg(1:natoms)) ! Define QM region: check subsystem name matches that in ".seq" file acs = atom selection(subsystem = (/ "SOLUTE" /)) call cabinitio_setup(acs) skip_cabinitio = .false. ! Define the core and environment call my sele qmnb(flg) flg = flg .and. .not. acs **!** Nonbonding interactions call energy_initialize call energy_non_bonding_options(& list_cutoff = 15.0_dp, outer_cutoff = 13.5_dp, inner cutoff = 12.0 dp, & ! periodic boundary conditions minimum image = .true.) ! Freeze positions of atoms in the MM region call atoms fix (.not. acs) write(*,*) "Flexible atoms",count(acs),"Frozen Atoms",count (.not. acs) skip cabinitio = .false. ! Energy minimisation for QM region only call optimize_lbfgsb(print_frequency = 1, step_number = 200, gradient_tolerance = 0.5_dp) call gradient ! Write coordinates for relaxed QM region call coordinates_write ("bfgs_" // trim(label) // ".crd") ("bfgs_" // trim(label) // ".pdb") call pdb_write

! Trick the program into doing G16" freq=anharmonic" jobs for two isotopologues. ! Normally, a subroutine call to "energy" sets up a value for "code == 0" which evaluates the ! energy alone, but here it gets hijacked and the inclusion of "freq_g16.f90" (below), instead ! of the usual "with g16.f90", calls a bespoke version of "subroutine chrg server" to set up ! the Gaussian calculations write(*,*) "Start anharmonic frequency calculations" call energy write(*,*) "End anharmonic frequency calculations" call energy deallocate(acs, flg) call cabinitio_exit call dynamo_footer end relax anharmonic include "notfix.f90" include "freq_g16.f90" subroutine my_sele_qmnb(sele) use atoms, only : natoms use atom manipulation, only : atom selection logical, dimension(1:natoms), intent(inout) :: sele sele = .true. end subroutine my_sele_qmnb subroutine chrg_server(code, natm, naqm, atmn, cord, ener, qfit, grad, hess) implicit none integer, intent(in) :: code, natm, naqm real*8, dimension(1:natm), intent(in) :: atmn real*8, dimension(1:3*natm), intent(in) :: cord real*8, intent(inout) :: ener real*8, dimension(1:naqm), intent(inout) :: qfit real*8, dimension(1:*), intent(inout) :: grad real*8, dimension(1:*), intent(inout) :: hess real*8 :: smm real*8, parameter :: bohr = 0.529177249d0 integer :: i, j, k, l, n3, nh, ierr character(len=256) :: str character(len=2), dimension(1:109), parameter :: smb = (/ & "H ", "He", "Li", "Be", "B ", "C ", "N ", "O ", "F ", "Ne", "Na", "Mg", & "Al", "Si", "P ", "S ", "Cl", "Ar", "K ", "Ca", "Sc", "Ti", "V ", "Cr", "Mn", "Fe", & "Co", "Ni", "Cu", "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y ", "Zr", & "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I ", "Xe", & "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", & "Tm", "Yb", "Lu", "Hf", "Ta", "W ", "Re", "Os", "Ir", "Pt", "Au", "Hg", "TI", "Pb", & "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U ", "Np", "Pu", "Am", "Cm", & "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt" /) ! Create Gaussian job file "calc1.gjf" open(unit=999, file = "calc1.gjf", action = "write", form = "formatted")

if(code == 1) then

! This sets up a job to evaluate the electrostatic-potential-fitted (ESP) atomic charges ! and the gradient for the QM atoms with the point charges of the MM environment

```
write( 999, "(a/a/a/a)" ) "%Chk=calc", "%nprocshared=1", "%mem=3GB", &
   "#B3LYP/6-31+g(d) charge scf=(direct,tight) nosymm int=ultrafine"
   write( 999, "(a/)" ) "force pop=(CHelpG,ReadRadii)"
   write( 999, "(a//2i4)" ) "- light -", 1, 1
   do i = 1, naqm
      i = (i - 1) * 3
      write( 999, "(a8,3f20.10)") smb(int(atmn(i))), cord(j+1), cord(j+2), cord(j+3)
   end do
   write( 999, "(a)" ) ""
   smm = 0.0d0
   if( nagm == natm ) then
      write( 999, "(f28.10,2f20.10,f8.3)" ) 999.0d0, 999.0d0, 999.0d0, 0.0d0
   else
      do i = naqm + 1, natm
         i = (i - 1) * 3
         write( 999, "(f28.10,2f20.10,f8.3)" ) cord(j+1), cord(j+2), cord(j+3), atmn(i)
          do k = i + 1, natm
             |=(k-1)*3
             smm = smm + atmn(i) * atmn(k) / dsqrt( sum( ( cord(j+1:j+3) - cord(l+1:l+3) ) ** 2 ) ) * bohr
          end do
      end do
   end if
   write( 999, "(a)" ) ""
   write( 999, "(//)" )
   close(999)
! Execute Gaussian calculation; convert unformatted checkpoint file to formatted (calc.fchk)
   call system( ". $g16root/g16/bsd/g16.profile; g16 < calc1.gjf > calc.log; formchk calc.chk calc.fchk" )
   ener = 0.0d0
   qfit = 0.0d0
   open( unit = 999, file = "calc.fchk", action = "read", form = "formatted" )
   read( 999, "(a)", end = 999 ) str
   do while(.true.)
      if( str(1:12) == "Total Energy" ) read( str(50:71), "(f22.15)", end = 999 ) ener
      if( str(1:11) == "ESP Charges" ) then
          k = 1
          do i = 1, int( naqm / 5 )
             read( 999, "(a)", end = 999 ) str
             do j = 1, 5
                read( str((j-1)*16+1:j*16), "(f16.8)" ) qfit(k)
                k = k + 1
             end do
          end do
         i = mod(naqm, 5)
          if(i > 0) then
             read( 999, "(a)", end = 999 ) str
             do j = 1, i
```

```
read( str((j-1)*16+1:j*16), "(f16.8)" ) qfit(k)
                k = k + 1
             end do
          end if
      end if
      if( str(1:18) == "Cartesian Gradient" .and. ( code == 1 .or. code == 2 ) ) then
          n3 = 3 * naqm
         grad(1:n3) = 0.0d0
         k = 1
          do i = 1, int(n3 / 5)
             read( 999, "(a)", end = 999 ) str
             do j = 1, 5
                read( str((j-1)*16+1:j*16), "(f16.8)" ) grad(k)
                k = k + 1
             end do
          end do
         i = mod(n3, 5)
         if(i > 0) then
             read( 999, "(a)", end = 999 ) str
             do j = 1, i
                read( str((j-1)*16+1:j*16), "(f16.8)" ) grad(k)
                k = k + 1
             end do
          end if
      end if
      read( 999, "(a)", end = 999 ) str
   end do
999
     continue
   close( 999 )
   ener = ener - smm
   return
else if( code == 0 ) then
! Normally "code == 0" would specify an energy evaluation,
! but in this case it requests two anharmonic frequency calculations
   write( 999, "(a/a/a/a)" ) "%Chk=calc", "%nprocshared=1", "%mem=3GB", &
   "#B3LYP/6-31+g(d) charge scf=(direct,tight) nosymm int=ultrafine"
   write(999, "(a/)") "freq=anharmonic punch=(coord, derivatives)"
   write( 999, "(a//2i4)" ) "- light -", 1, 1
   do i = 1, naqm
      j = (i - 1) * 3
      write( 999, "(a8,3f20.10)") smb(int(atmn(i))), cord(j+1), cord(j+2), cord(j+3)
   end do
   write( 999, "(a)" ) ""
   smm = 0.0d0
   if( naqm == natm ) then
      write( 999, "(f28.10,2f20.10,f8.3)" ) 999.0d0, 999.0d0, 999.0d0, 0.0d0
   else
      do i = naqm + 1, natm
```

```
j = (i - 1) * 3
         write( 999, "(f28.10,2f20.10,f8.3)" ) cord(j+1), cord(j+2), cord(j+3), atmn(i)
         do k = i + 1, natm
             I = (k - 1) * 3
             smm = smm + atmn(i) * atmn(k) / dsqrt( sum( ( cord(j+1:j+3) - cord(l+1:l+3) ) ** 2 ) ) * bohr
          end do
      end do
   end if
   write( 999, "(a)" ) ""
   write( 999, "(//)" )
   close( 999 )
! Execute Gaussian calculation for light isotopologue
   call system( ". $g16root/g16/bsd/g16.profile; g16 < calc1.gjf > calc1.out" )
   write(*,*) "...anharmonic frequencies for isotopologue 1"
! Create Gaussian job file "calc2.gjf" for heavy isotopologue by editing "calc1.gjf"
   call system( " sed 's/light/heavy/; s/H /H(Iso=2)/; s/punch=(coord,derivatives)//' < calc1.gjf >
calc2.gjf")
! Execute Gaussian calculation for heavy isotopologue
   call system( ". $g16root/g16/bsd/g16.profile; g16 < calc2.gjf > calc2.out" )
   write(*,*) "...anharmonic frequencies for isotopologue 2"
end if
```

```
end subroutine chrg_server
```

Shell script "Qanh" to extract partition functions and zero-point energies from Gaussian 16 output files for anharmonic frequency calculations and to evaluate isotopic partition-function ratios

#!/bin/bash

Shell script (Qanh) to extract partition functions and zero-point energies # from Gaussian output files for anharmonic frequency calculations.

```
# Loop over required number of structures...
```

```
# EDIT the arguments after 'seq' as necessary:
```

```
# first - number of the initial structure... (which may be 0);
```

```
# second - in increments of...;
```

```
# third - number of final structure...
```

```
for i in `seq 0 1 1000`; do
   n=`printf "%01d" $i`
   if [ -d "$i" ]; then
      cd $i
      echo "$n" > NUM
      if [ -f "calc1.out" ]; then
          grep -m 1 -A 6 "Total Bot" calc1.out | grep "Translational" \
          | sed 's/D/E/' | awk '{$2 = sprintf("%f",$2); print $2 > "LQ"}'
         grep -m 1 -A 6 "Total Bot" calc1.out | grep "Rotational" \
          | sed 's/D/E/' | awk '{$2 = sprintf("%f",$2); print $2 >> "LQ"}'
          sed '1{N;s/\n/ /;}' < LQ | awk '{printf("%5.3f\n", $1*$2) > "MMI"}'
         fi
      if [ -f "calc2.out" ]; then
          grep -m 1 -A 6 "Total Bot" calc2.out | grep "Translational" \
          | sed 's/D/E/' | awk '{$2 = sprintf("%f",$2); print $2 > "HQ"}'
          grep -m 1 -A 6 "Total Bot" calc2.out | grep "Rotational" \
          | sed 's/D/E/' | awk '{$2 = sprintf("%f",$2); print $2 >> "HQ"}'
          sed '1{N;s/\n/ /;}' < HQ | awk '{printf("%5.3f\n", $1*$2) >> "MMI"}'
          awk 'BEGIN {a = 1.0}
          {b = $1/a}
         a = $1}
          END {printf("%7.6f\n", b) > "FMMI"}' MMI
      fi
      if [ -f "calc1.out" ]; then
          grep "ZPE(harm)" calc1.out | sed 's/D/E/g' \
          | awk '{$3 = sprintf("%f",$3); print $3 > "QZharm"; \
          $6 = sprintf("%f",$6); print $6 > "QZanh"}'
          grep -m 1 "QZvib" calc1.out | sed 's/D/E/g' \
          | awk '{$2 = sprintf("%f",$2); print $2 > "QVharm"; \
         $3 = sprintf("%f",$3); print $3 > "QVanh"}'
      fi
      if [ -f "calc2.out" ]; then
          grep "ZPE(harm)" calc2.out | sed 's/D/E/g' \
          | awk '{$3 = sprintf("%f",$3); print $3 >> "QZharm"; \
          $6 = sprintf("%f",$6); print $6 >> "QZanh"}'
          grep -m 1 "QZvib" calc2.out | sed 's/D/E/g' \
```

```
| awk '{$2 = sprintf("%f",$2); print $2 >> "QVharm"; \
      $3 = sprintf("%f",$3); print $3 >> "QVanh"}'
   fi
   sed '1{N;s/\n/ /;}' < QZharm > ZQharm
                                                                            rm -f QZharm
                                                                      ;
   sed '1{N;s/\n/ /;}' < QZanh > ZQanh
                                                                            rm -f QZanh
                                                                      ;
   sed '1{N;s/\n/ /;}' < QVharm > VQharm
                                                                            rm -f QVharm
                                                                      ;
   sed '1{N;s/\n/ /;}' < QVanh > VQanh
                                                                            rm -f QVanh
                                                                      ;
   awk '{printf("%f\n", $2/$1) > "FVharm"}' VQharm
                                                                            rm -f VQharm
                                                                      ;
   awk '{printf("%f\n", $2/$1) > "FVanh"}' VQanh
                                                                            rm -f VQanh
                                                                      ;
   awk '{printf("%f\n", exp(($1-$2)/2.4789568)) > "FZharm"}' ZQharm
                                                                            rm -f ZQharm
                                                                      ;
   awk '{printf("%f\n", exp(($1-$2)/2.4789568)) > "FZanh"}' ZQanh
                                                                            rm -f ZQanh
                                                                      ;
   paste NUM FMMI FVharm FZharm FVanh FZanh >> ../Qanh.out
                                                                            rm -f LQ HQ MMI
                                                                      ;
   cd ..
fi
```

done

Modified subroutine BMAT (from program CAMVIB) to determine the transformation between Cartesians and internal- and external-coordinates for methyl cation.

Notes

This version is dimensioned specifically for a 4-atom fragment. The sections treating stretching, anglebending and out-of-plane wagging are essentially as found in the version of program CAMVIB available on GITHUB (I. H. Williams and P. B. Wilson, SoftwareX, 2017, 6, 1-6). The 3 in-plane bond angles of planar CH₃+ are each described by a valence coordinate HCH, but these are combined into local symmetry coordinates for in-plane scissoring and in-plane rocking in another subroutine within CAMVIB; there are 7 internal valence coordinates and 6 internal symmetry coordinates. The section treating the six external coordinates (3 translations + 3 rotations) has not been described elsewhere by ourselves. The method proposed here is not unique. The first-listed CH bond defines the local x-axis which together with the second-listed CH determines the local xy-plane; the local z-axis is normal to this plane, and the local y-axis is mutually perpendicular.

subroutine BMAT

1 calculates transformation matrix B in the matrix equation R = BX,

```
!
     where R & X are column vectors of internal and cartesian coordinates respectively.
     implicit none
     double precision e1(3),e2(3),e3(3),en(3),er1(3),er2(3),ex(3),ey(3),ez(3)
     double precision c,c1,c2,cosr1,cosr2,s,sp,s1,s2,sinr1,sinr2,sxy,syz,szx,sfac
     double precision bp,bq,br,br1,br2,rp,r1,r2,rr1,rr2,rp,rq,qp,qr,pq
     integer list(4),ntyp(8),I,ic,ii,ip,iq,ir,it,ityp,j,ni,inco,lab1,lab2
     character*4 labs,slab
     character*2 lmnt
     character*1 coord(4), star, type, lab1
     common /bloc2/ u(12,13),b(13,12),ub(12,12),fi(12,12),
     *red(13,12), ired(12), lab2(13), labs(13), lab1(13)
     common /gdata/ x(3,5),wt(5),sf(13),inco(4,13),lmnt(4)
     data coord/'s','b','w','e'/,star/'*'/
     b
             = 0.0D0
                        1
                                 initialize array B
            = 0! initialize array ntyp
     ntyp
i
     NOTE: subroutine DC computes the unit vector between two atoms;
!
           function DOT computes the scalar product between two unit-vectors;
i
           subroutine CROSS computes the vector product between two unit-vectors.
   Specify a "type" of coordinate involving the atoms in "list"
1
Ţ
      S
             stretch
ļ
      В
             bend
1
      W
             wag (out-of-plane bend)
!
      Ε
             external translations + rotations
     ii=0
1
     read(5,101) type,(list(i),i=1,4),sfac,slab
     if(type.eq.star) go to 99
     ii=ii+1
```

```
if(sfac.eq.0.0D0) sfac=1.0D0
sf(ii)=sfac
do i=1,4
 inco(i,ii)=list(i)
end do
do it=1,4
```

```
if(type.eq.coord(it)) ityp=it
     end do
     ntyp(ityp)=ntyp(ityp) + 1
     lab1(ii)= coord(ityp)
     lab2(ii)=ntyp(ityp)
    labs(ii)=slab
! branch according to the type of coordinate to compute a row of the B matrix
   go to (10,20,30,40), ityp
! stretching coordinate for bond p-q specified by: list(1) = p , list(2) = q
10 np=list(1)
    nq=list(2)
    write(6,210) ii,lab1(ii),lab2(ii),lmnt(np),np,lmnt(nq),nq,sf(ii)
     ip=(np-1)*3
     iq=(nq-1)*3
     call dc(np,nq,e1,r1)
     do j=1,3
      b(ii,ip+j) = b(ii,ip+j - e1(j))
      b(ii,iq+j) = b(ii,iq+j) + e1(j)
     end do
     go to 1
! bending coordinate for angle p-q-r specified by: list(1) = p , list(2) = q , list(3) = r
20 np=list(1)
     nq=list(2)
     nr=list(3)
     write(6,220) ii,lab1(ii),lab2(ii),lmnt(np),np,lmnt(nq),nq,lmnt(nr),nr,sf(ii)
     call dc(nq,np,e1,qp)
     ip=(np-1)*3
     iq=(nq-1)*3
     ir=(nr-1)*3
     call dc(nq,nr,e2,qr)
     c=dot(e1,e2)
     s = dsqrt(1.0D0 - c*c)
     do j=1,3
      bp = (c*e1(j) - e2(j)) / (qp*s)
      br = (c*e2(j) - e1(j)) / (qr*s)
      b(ii,ip+j)=b(ii,ip+j)+bp
      b(ii,iq+j)=b(ii,iq+j) - (bp+br)
      b(ii,ir+j)=b(ii,ir+j)+br
     end do
    go to 1
! out-of-plane bending coordinate for four coplanar atoms, apical atom q bonded to end atom p and
! anchor atoms r1 and r2, specified by: list(1)=p ,list(2)=r1 ,list(3)=r2 ,list(4)=q
30 np=list(1)
    nr1=list(2)
     nr2=list(3)
     nq=list(4)
     write(6,230) ii,lab1(ii),lab2(ii),lmnt(np),np,lmnt(nq),nq,lmnt(nr1),nr1,lmnt(nq),nq,lmnt(nr2),nr2,sf(ii)
     ip=(np-1)*3
     ir1=(nr1-1)*3
```

```
ir2=(nr2-1)*3
     iq=(nq-1)*3
     call dc(nq,np,e3,pq)
     call dc(nq,nr1,e1,r1)
     call dc(nq,nr2,e2,r2)
     call cross(e1,e2,en,sp)
     c1=dot(e3,e2)
     c2=dot(e3,e1)
     s1=dsqrt(1.0D0 - c1*c1)
     s2=dsqrt(1.0D0 - c2*c2)
     do j=1,3
      bp = en(j) / pq
      br1= en(j)*s1 / (r1*sp)
      br2 = en(j)*s2 / (r2*sp)
      b(ii,ip+j)=b(ii,ip+j)+bp
      b(ii,ir1+j)=b(ii,ir1+j)+br1
      b(ii,ir2+j)=b(ii,ir2+j)+br2
      b(ii,iq+j)=b(ii,iq+j) -(bp+br1+br2)
     end do
     go to 1
                                  ! translations & rotations
40 np=list(1)
     nr1=list(2)
     nr2=list(3)
     nq=list(4)
     ip=(np-1)*3
     ir1=(nr1-1)*3
     ir2=(nr2-1)*3
     iq=(nq-1)*3
     call dc(nq,np,ex,rp)
                                  ! determine q-p bond vector & define this as the local x-axis
     call dc(nq,nr1,er1,rr1)
                                  ! determine q-r1 ...
     call dc(nq,nr2,er2,rr2)
                                  !... & q-r2 bond vectors
     call cross(ex,er1,ez,sinr1) ! define the local z-axis as normal to r1-q-p plane
     call cross(ez,ex,ey,szx)
                                  ! define the local y-axis as normal to local z- and x- axes
     cosr1= dot(ex,er1)
                                  ! determine cosine of angle for each bond vector ...
     cosr2= dot(ex,er2)
                                  ! ... with local x-axis
     call cross(ex,er2,en,sinr2) ! determine sine of (reflex) angle for bond vector q-r2 with local x-axis
     if(slab .eq. 'trax') then
      write(6,241) ii,lab1(ii),lab2(ii)
      do j=1,3
        b(ii,ip+j) = b(ii,ip+j) + ex(j)
        b(ii,ir1+j)=b(ii,ir1+j)+ex(j)
        b(ii,ir2+j)=b(ii,ir2+j)+ex(j)
        b(ii,iq+j) = b(ii,iq+j) + ex(j)
      end do
     elseif(slab .eq. 'tray') then
      write(6,242) ii,lab1(ii),lab2(ii)
      do j=1,3
        b(ii,ip+j) = b(ii,ip+j) + ey(j)
        b(ii,ir1+j)=b(ii,ir1+j)+ey(j)
```

```
b(ii,ir2+j)=b(ii,ir2+j)+ey(j)
         b(ii,iq+j) = b(ii,iq+j) + ey(j)
       end do
     elseif(slab .eq. 'traz') then
       write(6,243) ii,lab1(ii),lab2(ii)
       do j=1,3
        b(ii,ip+j) = b(ii,ip+j) + ez(j)
        b(ii,ir1+j)=b(ii,ir1+j)+ez(j)
        b(ii,ir2+j)=b(ii,ir2+j)+ez(j)
        b(ii,iq+j) = b(ii,iq+j) + ez(j)
       end do
     elseif(slab .eq. 'rotx') then
       write(6,244) ii,lab1(ii),lab2(ii)
       do j=1,3
        b(ii,ir1+j) = b(ii,ir1+j) - ez(j)
        b(ii,ir2+j) = b(ii,ir2+j) + ez(j)
       end do
     elseif(slab .eq. 'roty') then
       write(6,245) ii,lab1(ii),lab2(ii)
       do 450 j=1,3
        b(ii,ip+j) = b(ii,ip+j) - ez(j)
        b(ii,ir1+j) = b(ii,ir1+j) + ez(j)*cosr1
        b(ii,ir2+j) = b(ii,ir2+j) + ez(j)*cosr2
       end do
     elseif(slab .eq. 'rotz') then
       write(6,246) ii,lab1(ii),lab2(ii)
       do j=1,3
        bp = ey(j)
        br1 = -ex(j)*sinr1 + ey(j)*cosr1
        br2 = + ex(j)*sinr2 + ey(j)*cosr2
        b(ii,ip+j) = b(ii,ip+j) + bp
        b(ii,ir1+i) = b(ii,ir1+i) + br1
        b(ii,ir2+j) = b(ii,ir2+j) + br2
       end do
     endif
     go to 1
99 ni=ii
     return
101 format(a1,4i3,f10.3,a4)
210 format(1x,i4,2x,a1,i2,2x,'stretch',2x,a2,i2,' - ',a2,i2,39x,f6.3)
220 format(1x,i4,2x,a1,i2,2x,'bend',5x,a2,i2,' - ',a2,i2,' - ',a2,i2,32x,f6.3)
230 format(1x,i4,2x,a1,i2,2x,'wag',6x,a2,i2,' - ',a2,i2,2x,'out of plane',2x,a2,i2,' - ',a2,i2,' - ',a2,i2,5x,f6.3)
241 format(1x,i4,2x,a1,i2,' translation about x-axis')
242 format(1x,i4,2x,a1,i2,' translation about y-axis')
243 format(1x,i4,2x,a1,i2,' translation about z-axis')
244 format(1x,i4,2x,a1,i2,' rotation about x-axis')
245 format(1x,i4,2x,a1,i2,' rotation about y-axis')
246 format(1x,i4,2x,a1,i2,' rotation about z-axis')
     end
```

QM anharmonic frequency calculations for methyl cation embedded with the point-charge distribution due to the frozen MM aqueous environment.

Table S1. Partial list of B3LYP/6-31+G(d) anharmonic and harmonic fundamental frequencies (as wavenumbers/cm⁻¹) for relaxed methyl cation within the point-charge representation of its frozen MM solvent environment.

structure	quasi-de	generate C		symmetric CH stret		
	higher		lower			
	anh	harm	anh	harm	anh	harm
1	3167	3309	3146	3290	2989	3101
2	3141	3286	3136	3281	2975	3087
3	3153	3296	3137	3282	2980	3092
4	3147	3292	3131	3277	2975	3087
5	3174	3315	3148	3292	2992	3104
6	3163	3306	3158	3300	2994	3106
7	3168	3312	3151	3297	2993	3106
8	3177	3320	3165	3308	3004	3117
9	3164	3308	3154	3298	2992	3105
10	3178	3321	3158	3303	3001	3114
11	3177	3318	3154	3299	2997	3109
12	3174	3317	3158	3301	2998	3111
13	3172	3314	3152	3297	2994	3107
14	3169	3312	3156	3300	2997	3108
15	3146	3290	3134	3280	2977	3087
16	3155	3297	3131	3277	2978	3089
17	3151	3295	3139	3285	2981	3093
19	3171	3314	3158	3302	2997	3110
20	3183	3325	3144	3290	2994	3107
etc.						
count	928	928	928	928	929	929
mean	3176	3318	3160	3304	3000	3112
stdev	15	14	15	14	13	13

Notes:

- (1) There is no entry for #18 as this structure did not converge in the BFGS relaxation of the solute within the frozen solvent configuration.
- (2) The means and standard deviations are over the full number ("count") of relaxed structures, not only the first few structures.

Table S2. Partial output from program Qanh for B3LYP/6-31+G(d) ${}^{2}H_{3}$ Isotopic partition-function ratios (*f*) at 298.15 K (*cf.* "QM relaxation and anharmonic frequencies" in Fig. 1) for relaxed methyl cation within the point-charge representation of its frozen MM solvent environment.

structure number	translation +rotation	harmonic		anharmonic			
	f _{ммi}	$f_{ m vib}$	$f_{\sf zpe}$	f_{vib}	$f_{\sf zpe}$		
NUM	FMMI	FVharm	FZharm	FVanh	FZanh		
0	3.718150	1.014754	6470.846122	1.015944	5191.657120		
1	3.718149	1.014952	6731.780259	1.016142	5422.839929		
2	3.718134	1.015052	6531.162634	1.016140	5250.629693		
3	3.718148	1.014854	6685.773503	1.015943	5372.758985		
4	3.718159	1.015052	6541.709708	1.016140	5252.748201		
5	3.718120	1.015250	6677.687364	1.016338	5381.435370		
6	3.718113	1.015250	6683.077036	1.016338	5390.125766		
7	3.718133	1.015349	6707.384442	1.016438	5390.125766		
8	3.718115	1.015250	6805.501388	1.016338	5480.015520		
9	3.718093	1.015250	6683.077036	1.016338	5377.095427		
10	3.718106	1.015250	6835.766882	1.016439	5502.166304		
11	3.718136	1.015150	6794.529009	1.016340	5475.596076		
12	3.718093	1.015447	6666.921057	1.016635	5361.933172		
13	3.718121	1.015250	6734.496376	1.016439	5422.839929		
14	3.718142	1.015052	6819.241784	1.016140	5497.728996		
15	3.718131	1.014854	6648.121770	1.015944	5351.129173		
16	3.718113	1.014952	6560.208086	1.016142	5273.980346		
17	3.718143	1.014952	6629.375494	1.016142	5323.140548		
19	3.718123	1.015449	6745.371810	1.016537	5427.216793		
20	3.718108	1.015251	6816.491487	1.016240	5488.865113		
etc.							

Note: there is no entry for #18 as this structure did not converge in the BFGS relaxation of the solute within the frozen solvent configuration.

$$f_{\text{internal}} = f_{\text{vib}} \times f_{\text{zpe}}$$

 $f_{\text{external}} = f_{\text{MMI}}$
 $f_{\text{total}} = f_{\text{internal}} \times f_{\text{external}}$

structure	3 × CH s	tretches		2 × IP be	ends	OP bend	
1	5.684	5.781	5.753	0.428	0.433	0.371	
2	5.715	5.684	5.659	0.435	0.427	0.362	
3	5.701	5.674	5.746	0.439	0.432	0.362	
4	5.729	5.649	5.687	0.430	0.429	0.372	
5	5.754	5.813	5.679	0.427	0.426	0.380	
6	5.747	5.748	5.755	0.427	0.429	0.367	
7	5.731	5.735	5.805	0.426	0.425	0.378	
8	5.770	5.829	5.756	0.422	0.428	0.378	
9	5.700	5.801	5.748	0.424	0.429	0.379	
10	5.775	5.749	5.830	0.422	0.428	0.364	
11	5.726	5.838	5.746	0.433	0.423	0.368	
12	5.799	5.708	5.793	0.425	0.422	0.365	
13	5.710	5.770	5.799	0.427	0.426	0.364	
14	5.806	5.748	5.742	0.429	0.426	0.368	
15	5.740	5.672	5.673	0.436	0.429	0.361	
16	5.682	5.749	5.655	0.423	0.433	0.389	
17	5.719	5.737	5.671	0.426	0.431	0.374	
19	5.755	5.759	5.797	0.431	0.425	0.355	
20	5.684	5.863	5.754	0.429	0.428	0.359	
etc.							
mean	5.770	5.781	5.778	0.427	0.427	0.369	
stdev	0.063	0.064	0.064	0.004	0.004	0.009	
average		5.776		0.42	269	0.3687	
stderr		0.006		0.00	0.0008		

Table S3. Partial list of B3LYP/6-31+G(d) symmetry force constants (/aJ $Å^{-2}$) for relaxed methyl cation within the point-charge representation of its frozen MM solvent environment.

Notes:

(1) There is no entry for #18 as this structure did not converge in the BFGS relaxation of the solute within the frozen solvent configuration.

(2) The means and standard deviations are taken over the first 122 relaxed structures.

(3) The order of the three columns of CH-stretching and of the two columns of in-plane bending force constants is arbitrary.

Fig. S1. B3LYP/6-31+G(d)/TIP3P potential energy for QM methyl cation relaxed within the "frozen" environment of 1032 MM water molecules (black dots) and moving average (mean of the preceding 25 values, red dots) for structures extracted from a 1 ns MD trajectory (298 K).

Fig. S2. Correlation of anharmonic *vs*. harmonic fundamental frequencies (as wavenumbers/cm⁻¹) for relaxed methyl cation (B3LYP/6-31+G(d)) within the "frozen" TIP3P aqueous environment.

CH stretching mode 3

bending modes

N.B. The Gaussian output for anharmonic frequency calculations does not assign frequencies to specific vibrational modes, but simply presents them in descending order of magnitude. Although the three stretching frequencies are clearly distinguishable and occur in the same order, this is not so for the three bending modes (in-plane scissoring and rocking, and out-of-plane wagging), which unfortunately are not in the same order for all structures. The scatter plot for the bending modes displays overlapping bands that cannot easily be deconvoluted into individual correlations.

Fig. S3. Residual r.m.s. gradient (/kJ mol⁻¹ Å⁻¹) for relaxed methyl cation (B3LYP/6-31+G(d)) within the "frozen" TIP3P aqueous environment.

Fig. S4. Harmonic isotopic partition-function ratio (${}^{2}H_{3}$, 298.15 K) for B3LYP/6-31+G(d) methyl cation in TIP3P water (black dots) and moving average (mean of the preceding 25 values, red dots) for structures extracted from a 1 ns MD trajectory.

Fig. S5. Correlation of anharmonic *vs.* harmonic B3LYP/6-31+G(d) IPFR values (${}^{2}H_{3}$, 298.15 K) for 6 internal degrees of freedom for 930 configurations of methyl cation in water.

Fig. S6. (Lack of) correlation between harmonic isotopic partition-function ratio (${}^{2}H_{3}$, 298.15 K) for methyl cation in water and the B3LYP/6-31+G(d)/TIP3P potential energy.

Fig. S7. Variation in average B3LYP/6-31+G(d) IPFR values (${}^{2}H_{3}$, 298.15 K) for 100 ps intervals over the course of a 1 ns classical molecular dynamics simulation for flexible TIP3P water around a frozen methyl cation with ESP/ B3LYP/6-31+G(d) atomic charges.

Table S4. Block-averaged harmonic B3LYP/6-31+G(d) IPFR values (${}^{2}H_{3}$, 298.15 K) for methyl cation in water for structures obtained from a 1 ns MD trajectory at 1 ps intervals.

	blocks	blocksize (L _b)											
	1	2	3	4	6	8	12	16	24	32	40	48	64
N _b	930	465	310	232	155	116	77	58	38	29	23	19	14
A_{β}	25603	25603	25604	25603	25604	25605	25604	25604	25605	25604	25605	25605	25603
stdev	487	366	487	110	409	221	185	164	142	125	124	115	119
BSE	15.97	16.97	17.99	18.91	19.63	20.58	21.19	21.67	23.40	23.70	26.38	27.00	33.07

Table S5. Block-averaged anharmonic B3LYP/6-31+G(d) IPFR values (²H₃, 298.15 K) for methyl cation in water for structures obtained from a 1 ns MD trajectory at 1 ps intervals.

	blocks	blocksize (L _b)											
	1	2	3	4	6	8	12	16	24	32	40	48	64
Nb	930	465	310	232	155	116	77	58	38	29	23	19	14
A_{β}	20642	20642	20642	20642	20642	20643	20643	20642	20644	20642	20643	20644	20642
stdev	409	307	266	241	204	185	155	137	120	105	105	96	101
BSE	15.97	14.23	15.11	15.83	16.46	17.25	17.79	18.16	19.68	19.91	22.29	22.73	27.88

Fig. S8. Block standard error as a function of blocksize for harmonic IPFRs.

Table S6. B3LYP/6-31+G(d) equilibrium isotope effect (${}^{2}H_{3}$, 298.15 K) for transfer of methyl cation from vacuum to water for snapshot structures obtained from a 1 ns MD trajectory at 8 ps intervals.

		harmonio	2	anharmo	anharmonic		
t / ps	snapshots	EIE	SE	EIE	SE		
100	12	0.9369	0.0029	0.9346	0.0030		
200	24	0.9335	0.0019	0.9310	0.0020		
300	36	0.9359	0.0016	0.9334	0.0016		
400	47	0.9370	0.0013	0.9346	0.0014		
500	58	0.9357	0.0012	0.9332	0.0012		
600	70	0.9353	0.0011	0.9328	0.0011		
700	82	0.9354	0.0009	0.9329	0.0010		
800	93	0.9357	0.0009	0.9332	0.0009		
900	104	0.9358	0.0008	0.9334	0.0009		
1000	116	0.9360	0.0008	0.9336	0.0006		

Fig. S10. Harmonic (blue) and anharmonic (red) B3LYP/6-31+G(d) EIEs (²H₃, 298.15 K) for transfer of methyl cation from vacuum to water. Bounds of the standard error are shown by the short lines above and below each solid circle. Individual EIEs evaluated for snapshot solvent configurations at 1 ps intervals were averaged over 8 ps blocks. The points plotted in the graph represents cumulative averages of these block averages over intervals up to the total length of the 1 ns MD trajectory.

QM/MM harmonic frequency calculations for methyl cation embedded with the full TIP3P potential due to the frozen MM aqueous environment.

quasi-degenerate CH stretches symmetric CH stretch higher <u>lower</u> QM 6 QM/MM 12 QM/MM 12 QM/MM 12 QM/MM QM QM/MM QM QM/MM etc.

Table S7. Partial list of B3LYP/6-31+G(d)/TIP3P harmonic fundamental frequencies (as wavenumbers/cm⁻¹) for relaxed methyl cation within its frozen MM solvent environment.

	interr	nal bending	modes						
	<u>highe</u>	st		<u>middl</u>	le		lowes	<u>st</u>	
	QM 6	QM/MM 6	QM/MM 12	QM 6	QM/MM 6	QM/MM 12	QM 6	QM/MM 6	QM/MM 12
1	1432	1451	1442	1426	1440	1440	1400	1439	1435
2	1435	1465	1452	1415	1440	1434	1406	1435	1422
4	1428	1446	1445	1421	1437	1434	1409	1435	1430
5	1425	1463	1462	1419	1454	1454	1396	1448	1443
6	1422	1471	1471	1419	1448	1441	1399	1441	1437
7	1422	1493	1472	1412	1465	1459	1406	1444	1445
8	1427	1461	1479	1410	1449	1463	1400	1443	1443
9	1427	1458	1466	1409	1441	1443	1404	1437	1436
10	1431	1491	1523	1409	1451	1456	1404	1449	1439
11	1435	1461	1469	1408	1446	1439	1402	1438	1430
12	1417	1462	1463	1411	1437	1442	1397	1433	1432
13	1420	1485	1523	1418	1440	1435	1405	1430	1431
14	1431	1476	1481	1423	1453	1443	1401	1434	1430
15	1442	1450	1453	1426	1443	1443	1408	1438	1433
16	1437	1464	1457	1425	1449	1453	1398	1439	1438
17	1431	1466	1454	1420	1447	1443	1411	1437	1435
19	1422	1469	1458	1411	1451	1445	1401	1440	1420
20	1444	1513	1492	1415	1467	1447	1391	1437	1427 <i>etc</i> .

structure	$f_{\sf vib}$	$f_{\sf zpe}$	$f_{ m total}$	$f_{\sf external}$	$f_{\sf internal}$	
0	2.210	13850	30616	4.111	7447	
1	2.290	13287	30429	4.112	7400	
2	2.500	10815	27034	3.966	6817	
4	2.500	11231	28079	3.940	7126	
5	2.097	15440	32382	4.249	7620	
6	2.150	14825	31867	4.267	7468	
7	2.022	16731	33832	4.336	7803	
8	2.024	17906	36235	4.391	8252	
9	2.283	13805	31514	4.075	7733	
10	2.089	17614	36801	4.339	8482	
11	2.275	13765	31317	4.067	7699	
12	2.328	13203	30733	4.028	7629	
13	2.154	15544	33485	4.194	7984	
14	2.284	14585	33309	4.157	8012	
15	2.338	12854	30050	4.045	7429	
16	2.216	13854	30706	4.165	7372	
17	2.348	12836	30144	4.042	7458	
19	2.337	12750	29791	4.047	7361	
20	2.048	17280	35388	4.462	7931	
etc.						
mean(928)	2.255	14284	31922	4.158	7668	
stdev	0.151	2034	2447	0.149	349	
stderr	0.005	67	80	0.005	11	

Table S8. Partial list of harmonic B3LYP/6-31+G(d) ${}^{2}H_{3}$ isotopic partition-function ratios (f) at 298.15 K (cf. "QM/MM relaxation and harmonic frequencies" in Fig. 1).

Note: there is no entry for #18 as this structure did not converge in the BFGS relaxation of the solute within the frozen solvent configuration.

 $f_{
m total}$ = $f_{vib} \times f_{zpe}$ (both factors are functions of frequencies for 12 modes) $f_{\text{int}} \times f_{\text{ext}}$ =

(each factor is a function of frequencies for 6 modes)

Fortran driver program for use with fDynamo library to perform rigid QM/MM potential -energy scans along normal modes

This program performs QM/MM energy scans backwards and forwards along each of the three normal modes obtained for a single H atom following the cutujiso1 procedure. As input, this program takes output from univib.f, which is generated 'in situ' by execution of the go_uniscan script. Output is an fDynamo log file, from which values of energy can be extracted by means of the go_scan_results script and then transferred into an Excel spreadsheet for graph-plotting.

```
program energy_scan
use dynamo
implicit none
integer
                                   :: i,j,k,ip,mode,point,nh,m
character (len = 10)
                                                          ! To select the configurations of the trajectory file
                                   :: si
character (len = 4)
                                   :: junk
logical, dimension(:), allocatable
                                  :: qmr
real
                                  :: Hcrd(3), disp(3), f
real, parameter
                                  :: scale = 0.02
call dynamo header
call mm_file_process ("borra", "opls"
                                                            ! read the force-field parameters and sequence
                                           )
call mm_system_construct( "borra", "THFyl_Cyhex.seq" )
read (*,*) I
                                                                         ! read the number of the structure
call encode integer( i, si, "(i4)" )
call coordinates_read( 'THFyl_Cyhex_' // trim( si ) // '.crd' ) ! read the coordinates file * EDIT AS NEEDED *
call energy_non_bonding_options( list_cutoff = 15.5_dp, outer_cutoff = 14.0_dp, &
            inner_cutoff = 12.5_dp, minimum_image = .true. )
                                                                                 ! Nonbonding interactions
call energy_initialize
allocate( qmr(1:natoms) )
                                                                                       ! Allocating the array
qmr = atom_selection( subsystem = (/ "SOLUTE" /) )
                                                                                   ! Defining the QM region
call mopac_setup( method = "AM1", charge = 1, selection = qmr )
write(*,*) "Number of guantum atoms", count (gmr)
nh = ATOM NUMBER ("H2", 1, "SOLUTE")
write(*,*) "nh = ", nh
Hcrd(1:3) = ATMCRD (1:3, nh)
                                                                     ! Store original coordinates for H atom
write(*,"(' coords:',3F12.6)") (Hcrd(j),j=1,3)
point = 0
                                                                    ! Calculate energy for original structure
write(*,*) "Energy for point", point
call energy
read(*,*) junk
do mode = 1,3
                                                                         ! Loop over normal modes (1 to 3)
        write(*,*) "Mode",mode
        read(*,*) m,f,(disp(k),k=1,3)
        write(*,"(' disp:',3F12.6)") (disp(k),k=1,3)
                                                                         ! Perform scan in forward direction
        do ip = 1,20
        write(*,*) "Forward point",ip
                                                                               ! Modify H-atom coordinates
               do j=1,3
                ATMCRD (j,nh) = ATMCRD (j,nh) + scale*disp(j)
                write(*,*) scale*disp(j)
                end do
        call energy
        end do
                                                                                             ! forward scan
        ATMCRD (1:3, nh ) = Hcrd(1:3)
                                                                                ! Reset H-atom coordinates
        do ip = 1,20
                                                                       ! Perform scan in backward direction
```

! Modify H-atom coordinates

! backward scan ! Restore original coordinates for H atom ! loop over normal modes

Anharmonicity in $C_{\alpha}H$ stretching and bending modes

mode	solvent	cation	coeffic	coefficient of x ⁿ for quartic fit					coefficient of x^n for quadratic fit			
			n = 4	n = 3	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 0	R ²	n = 2	<i>n</i> = 1	<i>n</i> = 0	R ²
OP	water	СР	217	-56	138	-4.1	-0.0003	1.0000	147	-55.5	-0.04	0.9983
		THF	167	-112	145	23.5	-0.0004	1.0000	151	20.6	-0.03	0.9976
		СН	261	5	132	-4.5	-0.0003	1.0000	141	-4.4	-0.04	0.9996
		THP	-7	194	197	14.4	0.0040	1.0000	197	19.5	0.00	0.9942
	cyclohexane	СР	-516	234	754	7.9	0.0000	1.0000	735	14.1	0.08	0.9988
		THF	55	158	194	22.6	-0.0001	1.0000	196	26.8	-0.01	0.9972
		СН	221	4	115	-3.3	-0.0005	1.0000	123	-3.2	-0.04	0.9996
		THP	-423	-133	453	-3.7	0.0007	1.0000	438	-7.2	0.07	0.9989
IP	water	СР	97	-79	245	-2.5	-0.0002	1.0000	249	-4.6	-0.02	0.9989
		THF	108	-99	295	-10.8	-0.0003	1.0000	299	-13.4	-0.02	0.9990
		СН	39	100	288	1.8	-0.0001	1.0000	290	4.4	-0.01	0.9987
		THP	83	-21	277	7.8	-0.0004	1.0000	280	7.2	-0.01	0.9999
	cyclohexane	СР	-484	95	497	25.3	0.0007	1.0000	479	27.8	0.08	0.9996
		THF	-82	-134	325	10.9	0.0001	1.0000	322	7.3	0.01	0.9981
		СН	120	7	257	-0.5	-0.0004	1.0000	262	-0.3	-0.02	1.0000
		THP	-423	-133	453	-3.7	0.0007	1.0000	438	-7.2	0.06	0.9989
STR	water	СР	1865	2306	1538	-32.9	-0.0008	1.0000	1607	27.8	-0.30	0.9780
		THF	1896	2255	1561	-36.4	-0.0011	1.0000	1631	23.0	-0.31	0.9794
		СН	1791	2197	1520	-17.1	-0.0008	1.0000	1587	40.8	-0.29	0.9801
		THP	1529	2088	1461	-15.4	-0.0015	1.0000	1518	39.6	-0.25	0.9804
	cyclohexane	СР	-524	-166	674	10.5	0.0003	1.0000	655	6.1	0.09	0.9992
		THF	1271	1945	1408	-13.7	-0.0016	1.0000	1455	37.4	-0.21	0.9815
		СН	1972	-2326	1543	13.0	-0.0006	1.0000	1617	-48.2	-0.32	0.9789
		THP	228	965	1134	-29.8	-0.0012	1.0000	1142	-4.4	-0.04	0.9921

Table S9. Anharmonic (quartic) and harmonic (quadratic) fits to relative QM/MM energies (kJ mol⁻¹) for displacement (Å) along H_{α} normal modes

Fig. S11. AM1/OPLS rigid potential-energy scans for displacements along H_{α} normal modes from atomic Hessian analysis for cyclopentyl (CP), cyclohexyl (CH), tetrahydrofuranyl (THF) and tetrahydropyranyl (THP) cations in explicit water and cyclohexane: OP = out-of-plane bending, IP = in-plane bending, STR = stretching. Blue dotted line: quartic fit; red solid line: quadratic fit.

Continued on next page ...

...continued from previous page

