## **Supplementary Information**

**Figure S1** Low-energy CID spectra of the complexes (a) [**Cu**<sup>II</sup>(**dien**)**GAW**]<sup>•2+</sup> and (c) [**Cu**<sup>II</sup>(**dien**)**GGW**]<sup>•2+</sup> and the species (b) [**GAW**]<sup>•+</sup> and (d) [**GGW**]<sup>•+</sup>.

**Figure S2** Comparison of the theoretical IR spectra (black curve) and the experimental IRMPD spectra of the structures of (a) the  $[Cu^{II}(dien)GAW]^{\cdot 2+}$ -SB1 complex (magenta), (b)  $[GAW_{\pi}^{\cdot}]^{+}$ -1 (green), and (c)  $[Cu^{I}(dien)]^{+}$ -1 (purple). Theoretical IR spectra were evaluated at the B3LYP/6-311++G(d,p) level. An anharmonicity scaling factor of 0.976 was applied.

**Figure S3** Theoretical IR spectra of some selected low-lying geometries of  $[Cu^{II}(dien)GGW]^{\cdot 2+}$ : (a) SB1, (b) SB2, (c) SB3, (d) SB4, and (e) CS (black curve), with corresponding IRMPD spectra (pink shaded regions). Energies and spin densities were evaluated at the B3LYP/6-311++G(d,p) level. An anharmonicity scaling factor of 0.976 was applied. Relative energies are in kcal mol<sup>-1</sup>; bond lengths in Å.

**Figure S4** Theoretical IR spectra of  $[indole]^+$  (blue curve),  $[indole]^{++}$  (black curve), and  $[indole - H]^{-}$  (red curve); wavenumbers: 1500–1600 cm<sup>-1</sup>.

**Figure S5** Theoretical IR spectra of some selected low-lying geometries of (a)  $[G_{\alpha}GW]^+$ , (b)  $[GGW_{\pi}]^{++}$ , and (c)  $[GGW_{\beta}]^+$  (black traces), with relative IRMPD spectra (blue areas). Energies and spin densities were evaluated at the B3LYP/6-311++G(d,p) level. An anharmonicity scaling factor of 0.976 was applied. Relative energies are in kcal mol<sup>-1</sup>; bond lengths in Å.

**Figure S6** PES of hydrogen atom migrations in  $[Cu^{II}(dien)GGW]^{2^+}$ . Energies and spin densities were evaluated at the B3LYP/6-311++G(d,p) level. The upper numbers are enthalpies at 0 K; the lower numbers in parentheses are free energies at 298 K. Relative energies are in kcal mol<sup>-1</sup>. Relative energies are presented in kJ mol<sup>-1</sup> below the PES.







Wavenumber / cm<sup>-1</sup>

## Figure S2



Figure S3











