Supplemental Information

(De)lithiation of Spinel Ferrites Fe₃O₄, MgFe₂O₄, and ZnFe₂O₄:

A Combined Spectroscopic, Diffraction and Theory Study

David C. $Bock^{1,+}$, Killian R. Tallman^{2,+}, Haoyue Guo², Calvin D. Quilty², Shan Yan¹, Paul F.

Smith^{2,3}, Bingjie Zhang², Diana M. Lutz^{2,5,6}, Alison H. McCarthy^{4,7,8}, Matthew M. Huie⁴,

Veronica Burnett⁴, Andrea M. Bruck², Amy C. Marschilok^{1,2,4}, Esther S. Takeuchi^{1,2,4}, Ping Liu¹, and Kenneth J. Takeuchi^{2,4*}

Email: kenneth.takeuchi.1@stonybrook.edu

⁺equivalent contributions by D.C.B and K.R.T.

¹Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973 ²Department of Chemistry, State University of New York at Stony Brook,

Stony Brook, NY 11794-3400

 ³Present Address: Department of Chemistry, Valparaiso University, Valparaiso, IN 46383-6493
⁴Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275

⁵Department of Chemistry, Elmira College, Elmira, NY 14901

⁶ExCELS Research Experience for Undergraduates, Stony Brook University, Stony Brook, NY 11794-3400

⁷Department of Mechanical Engineering, The College of New Jersey, Ewing, NJ 08628

⁸Research Experience for Undergraduates: Nanotechnology for Health, Energy and the Environment, Stony Brook University, Stony Brook, NY 11794

	Fe3O4	ZnFe ₂ O ₄	MgFe ₂ O ₄		
No. phases	1	1	2		
Crystal System	cubic	cubic	Phase 1 - cubic	Phase 2 - cubic	
Space Group	Fd-3m	Fd-3m	Fd-3m	Fd-3m	
R _{wp} (%)	3.64	6.35	5.24		
Weight Fraction	1	1	0.57	0.43	
a = b = c (Å)	8.3754(2)	8.4306(2)	8.3683(4)	8.440(6)	
Size (nm)	9.7(1)	13.2(2)	15.2(2)	2.7(1)	
Fe (8a) %	100	-	75(4	4)	
Mg (8a) %	-	-	25(4	4)	
Zn (8a) %	-	100	-		
Fe (16d) %	100	100	63(2	2)	
Mg (16d) %	-	-	37(2)		
Zn (16d) %	-	-	-		
O Coord	0.25280(3)	0.2588(1)	0.2517	1(1)	

Table S1. Rietveld refinement of synchrotron XPD data for synthesized samples of Fe₃O₄,
ZnFe₂O₄, and MgFe₂O₄.

Figure S1. Rietveld refinement of synchrotron XPD data for (a) Fe_3O_4 , (b) $ZnFe_2O_4$ and (c) $MgFe_2O_4$.

Figure S2. Representative current vs. potential cyclic voltammetry profiles for Fe₃O₄, MgFe₂O₄, and ZnFe₂O₄. Cycles (a) 1, (b) 2, and (c) 3 are shown using a scan rate of 0.1 mV/s between 0.05 -3.0 V.

Table S2: Combined R-factor from	n EXAFS fits of k, k ²	² and k ³ k-weights for F	e ₃ O ₄ , MgFe ₂ O ₄
	and ZnFe ₂ O ₄ .		

State	Fe ₃ O ₄	MgFe ₂ O ₄	ZnFe ₂ O ₄ (Fe edge)	ZnFe ₂ O ₄ (Zn edge)
unlithiated	0.9	2.1	0.9	2.7
0.5 e- lithiation	1.3	2.0	0.9	2.6
1 e- lithiation	3.9	2.4	0.8	1.1
2 e- lithiation	1.2	2.0	1.1	1.6
4 e- lithiation	0.8	2.1	1.0	1.6
6 e- lithiation	1.9	2.4	1.8	2.5
full lithiation	0.7	2.4	3.2	3.1
4 e- delithiation	3.2	2.7	2.1	0.8
full delithiation	4.2	5.0	3.4	0.9
2 nd lithiation	1.2	1.0	0.7	1.9
2 nd delithiation	2.9	4.9	2.7	0.8

State	Fe ₃ O ₄	MgFe ₂ O ₄	ZnFe ₂ O ₄ (Fe edge)	ZnFe ₂ O ₄ (Zn edge)
unlithiated	-1 ± 1	-5 ± 1	-5 ± 1	6 ± 2
0.5 e- lithiation	2 ± 1	-5 ± 1	-1 ± 1	6 ± 1
1 e- lithiation	2 ± 1	-4 ± 1	-3 ± 1	3 ± 3
2 e- lithiation	5 ± 1	-5 ± 1	-1 ± 1	0 ± 1
4 e- lithiation	3 ± 1	-5 ± 2	-2 ± 1	2 ± 1
6 e- lithiation	-3 ± 1	-8 ± 2	-2 ± 2	-2 ± 1
full lithiation	2 ± 1	5 ± 2	4 ± 2	-5 ± 2
4 e- delithiation	-7 ± 7	-2 ± 1	6 ± 2	4 ± 1
full delithiation	-2 ± 1	-2 ± 1	1 ± 1	4 ± 1
2 nd lithiation	2 ± 1	5 ± 1	4 ± 1	-4 ± 1
2 nd delithiation	-1 ± 2	-3 ± 1	-1 ± 1	4 ± 1

State	Fe3O4	MgFe2O4	ZnFe ₂ O ₄ (Fe edge)	ZnFe ₂ O ₄ (Zn edge)
	(O) 0.010 ± 0.002	(O) 0.01 ± 0.01	(O) 0.005 ± 0.001	(O) 0.006 ± 0.003
unlithiated	(Fe) 0.010 ±	(Fe) 0.009 ± 0.002	(Fe) 0.005 ± 0.001	(Fe) 0.006 ± 0.003
	0.002	$(Mg) \ 0.009 \pm 0.002$	$(Zn) 0.008 \pm 0.002$	$(Zn) \ 0.002 \pm 0.004$
	(O) 0.010 ± 0.001	(O) 0.01 ± 0.01	(O) 0.005 ± 0.001	(O) 0.007 ± 0.003
0.5 e- lithiation	(Fe) 0.010 ±	(Fe) 0.008 ± 0.002	(Fe) 0.005 ± 0.001	(Fe) 0.007 ± 0.003
	0.002	$(Mg) \ 0.008 \pm 0.002$	$(Zn) 0.007 \pm 0.002$	$(Zn) \ 0.002 \pm 0.004$
	(O) 0.010 ± 0.003	(O) 0.004 ± 0.004	(O) 0.006 ± 0.002	(O) 0.003 ± 0.005
1 e- lithiation	(Fe) 0.010 ±	(Fe) 0.008 ± 0.002	(Fe) 0.007 ± 0.001	(Fe) 0.007 ± 0.004
	0.002	$(Mg) \ 0.008 \pm 0.002$	$(Zn) \ 0.005 \pm 0.002$	$(Zn) \ 0.009 \pm 0.005$
	(O) 0.010 ± 0.001	(O) 0.012 ± 0.002	(O) 0.011 ± 0.002	(O) 0.012 ± 0.002
2 e- lithiation	(Fe) 0.014 ±	(Fe) 0.012 ± 0.002	(Fe) 0.01 ± 0.001	(Fe) 0.012 ± 0.002
	0.001	$(Mg) \ 0.012 \pm 0.002$	$(Zn) 0.01 \pm 0.001$	$(Zn) 0.011 \pm 0.003$
4 e- lithiation	(0) 0 01 + 0 002	(O) 0.01 ± 0.003	(O) 0.010 ± 0.002	(O) 0.012 ± 0.002
	$(0) 0.01 \pm 0.002$ (Ee) 0.01 ± 0.002	(Fe) 0.01 ± 0.003	(Fe) 0.011 ± 0.005	(Fe) 0.013 ± 0.002
	(10) 0.01 ± 0.002	$(Mg) \ 0.01 \pm 0.003$	$(Zn) \ 0.008 \pm 0.006$	$(Zn) \ 0.010 \pm 0.003$
	(O) 0.004 ± 0.002	(O) 0.006 ± 0.003	(O) 0.010 ± 0.003	(O) 0.009 ± 0.002
6 e- lithiation	(Fe) 0.010 ±	$(Mg) \ 0.006 \pm 0.003$	(Fe) 0.013 ± 0.004	(Fe) 0.011 ± 0.003
	0.002	(Fe) 0.007 ± 0.003		$(Zn) 0.011 \pm 0.003$
full lithiation	(Fe) 0.010 \pm	(Fe) 0.011 + 0.003	(Fe) 0.010 ± 0.003	(O) 0.011 ± 0.002
	0.001			$(Zn)\ 0.018 \pm 0.002$
	(O) 0.010 ± 0.09	(O) 0.006 ± 0.005	(O) 0.002 ± 0.005	(O) 0.030 ± 0.004
4 e- delithiation	(Fe) 0.012 ± 0.003	(Fe) 0.006 ± 0.005	(Fe) 0.007 ± 0.002	$(Zn) 0.030 \pm 0.004$
	(O) 0.006 ± 0.002	$(0) 0.007 \pm 0.002$	(O) 0.007 ± 0.002	(O) 0.016 ± 0.002
full delithiation	(Fe) 0.006 ± 0.002	(Fe) 0.007 ± 0.002	(Fe) 0.026 ± 0.004	$(Zn) 0.016 \pm 0.002$
and	(Fe) 0.010 ±			(O) 0.010 ± 0.001
2 nd lithiation	0.002	(Fe) 0.010 ± 0.002	(Fe) 0.009 ± 0.002	$(Zn) \ 0.018 \pm 0.001$
	(O) 0.008 ± 0.005	(O) 0.008 ± 0.005	(O) 0.012 ± 0.003	(O) 0.004 ± 0.001
2 nd delithiation	(Fe) 0.007 ± 0.005	(Fe) 0.008 ± 0.005	(Fe) 0.023 ± 0.004	$(Zn) 0.014 \pm 0.009$

 $\label{eq:constraint} \textbf{Table S4:} Debye-Waller factor fit results for Fe_3O_4, MgFe_2O_4 and ZnFe_2O_4.$

Table S5: EXAFS fitting results for interatomic distances for Fe₃O₄. Paths associated with the Fe₃O₄, FeO, and Fe metal structures are highlighted in red, blue, and green, respectively. Fe-O paths which are not part of the Fe₃O₄, FeO, or Fe metal structures but were utilized in the model are highlighted in orange.

State	Tetrahee	dral Iron	Octahed	ral Iron		
State	Fe-O (Å)	Fe-Fe (Å)	Fe-O (Å)	Fe-Fe (Å)	Fe-O (Å)	Fe-Fe Metal (Å)
unlithiated	1.93 ± 0.01 3.61 ± 0.08	3.48 ± 0.02 3.63 ± 0.02	1.98 ± 0.01	3.01 ± 0.01		
	5.01 - 0.00	5.05 _ 0.02		3.48 ± 0.02		
0.5 e- lithiation	1.92 ± 0.01 3.55 ± 0.05	3.48 ± 0.01 3.63 ± 0.01	2.00 ± 0.01	3.00 ± 0.01 3.48 ± 0.01		
1 e- lithiation	1.94 ± 0.01	3.49 ± 0.01	2.04 ± 0.01	3.02 ± 0.01		
i e minuton	3.62 ± 0.01	3.64 ± 0.01	2.01 ± 0.01	3.47 ± 0.01		
2 e- lithiation			2.08 ± 0.01 3.73 ± 0.04	3.06 ± 0.01		
4 e- lithiation			2.06 ± 0.01 3.62 ± 0.03	3.04 ± 0.01		
6 e- lithiation			2.04 ± 0.01 3.65 ± 0.05	3.09 ± 0.02		$2.54 \pm 0.02 \\ 2.93 \pm 0.02$
full lithiation						$\begin{array}{c} 2.45 \pm \ 0.01 \\ 2.81 \pm 0.01 \end{array}$
4 e- delithiation			1.83 ± 0.06	2.79 ± 0.06		2.47 ± 0.04 2.79 ± 0.16
full delithiation			1.93 ± 0.01	3.05 ± 0.03	3.21 ± 0.05	
2 nd lithiation						2.46 ± 0.01
						2.81 ± 0.01
2 nd delithiation			1.94 ± 0.02	3.17 ± 0.06		2.53 ± 0.04

Table S6: EXAFS fitting results for the near neighbors for Fe₃O₄. Paths associated with the Fe₃O₄, FeO, and Fe metal structures are highlighted in red, blue, and green, respectively. Fe-O paths which are not part of the Fe₃O₄, FeO, or Fe metal structures but were utilized in the model are highlighted in orange.

State	Tetrahe	dral Iron	Octahed	Octahedral Iron		
State	Fe-O	Fe-Fe	Fe-O	Fe-Fe	Fe-O	Fe-Fe Metal
Unlithiated	1.2 ± 0.2	3.5 ± 0.5	35 ± 0.4	3.5 ± 0.4		
	3.5 ± 0.5	1.2 ± 0.2	5.5 ± 0.4	3.5 ± 0.4		
0.5 e-Lithiation	1.2 ± 0.1	3.7 ± 0.3	37 ± 04	3.7 ± 0.4		
0.5 C Eltination	3.7 ± 0.3	1.2 ± 0.1	5.7 ± 0.1	3.7 ± 0.4		
1 e- Lithiation	1.2 ± 0.1	3.6 ± 0.3	36+04	3.6 ± 0.4		
	3.6 ± 0.3	1.2 ± 0.1	5.0 - 0.1	3.6 ± 0.4		
2 e- Lithiation			4.7 ± 0.4	9.4 ± 0.7		
			4.7 ± 0.4	, <u> </u>		
4 e- Lithiation			3.8 ± 0.2	7.5 ± 0.5		
			3.8 ± 0.2			
6 e- Lithiation			1.6 ± 0.2	3.4 ± 0.5		$1.5\pm~0.4$
			1.6 ± 0.2			1.5 ± 0.4
full Lithiation						5.2 ± 0.7
						2.1 ± 0.6
4 e- delithiation			1.5 ± 0.8	1.3 ± 0.7		4.6 ± 1.5
						0.7 ± 0.3
Full delithiation			2.4 ± 0.2	1.9 ± 0.3	0.4 ± 0.3	
2 nd lithiation						5.2 ± 0.9
						2.49 ± 0.9
2 nd delithiation			2.4 ± 0.5	0.8 ± 0.6		1.1 ± 0.6

Table S7: EXAFS fitting results for the interatomic distances for MgFe₂O₄. Paths associated with the MgFe₂O₄ structure, a modified structure with all Fe and Mg ions in octahedral sites, and the Fe metal structure, and the FeO structure are highlighted in red, blue, and green, and yellow respectively. Additional Fe-O paths which are not part of these three structures but were utilized in the models are highlighted in orange.

	Tetrahedral Iron			Octahedral Iro	n			
State	Fe-O (Å)	Fe-Fe (Å)	Fe-Mg (Å)	Fe-O (Å)	Fe-Fe (Å)	Fe-Mg (Å)	Fe-O (Å)	Fe-Fe Metal (Å)
unlithiated	1.83 ± 0.01 3.47 ± 0.01	3.46 ± 0.01 3.61 ± 0.01	3.46 ± 0.01	1.97 ± 0.01 3.64 ± 0.01	2.94 ± 0.01 3.46 ± 0.01	2.94 ± 0.01		
0.5 e- lithiation	1.84 ± 0.01 3.47 ± 0.02	3.46 ± 0.02 3.61 ± 0.02	3.46 ± 0.02	1.99 ± 0.01 3.64 ± 0.01	2.94 ± 0.02 3.46 ± 0.02	2.94 ± 0.02		
1 e- lithiation	1.88 ± 0.03 3.47 ± 0.02	3.46 ± 0.02 3.60 ± 0.02	3.46 ± 0.02	2.02 ± 0.03 3.63 ± 0.02	2.94 ± 0.02 3.46 ± 0.02	2.94 ± 0.02		
2 e- lithiation				2.06 ± 0.02 3.67 ± 0.05	3.05 ± 0.01	3.05 ± 0.01		
4 e- lithiation				$\begin{array}{r} 2.06 \pm 0.01 \\ 3.68 \pm \ 0.06 \end{array}$	3.07 ± 0.02	3.07 ± 0.02		$2.54 \pm 0.02 \\ 2.92 \pm 0.02$
6 e- lithiation				2.00 ± 0.02 3.60 ± 0.08	3.06 ± 0.02	3.06 ± 0.02		2.52 ± 0.02 2.90 ± 0.02
full lithiation								2.49 ± 0.02 2.79 ± 0.04
4 e- delithiation				1.92 ± 0.01	3.15 ± 0.06			2.53 ± 0.02
full delithiation				2.00 ± 0.01	3.04 ± 0.03		3.10 ± 0.03	
2 nd lithiation								2.48 ± 0.01 2.80 ± 0.02
2 nd delithiation				1.98 ± 0.01	3.03 ± 0.05		3.12 ± 0.09	

Table S8: EXAFS fitting results for the coordination numbers for MgFe₂O₄. Paths associated with the MgFe₂O₄ structure, a modified structure with all Fe and Mg ions in octahedral sites, and the Fe metal structure, and the FeO structure are highlighted in red, blue, and green, and yellow respectively. Additional Fe-O paths which are not part of these three structures but were utilized in the models are highlighted in orange.

	ſ	Setrahedral Ir	on		Octahedral Iroi	1		
State	Fe-O	Fe-Fe	Fe-Mg	Fe-O	Fe-Fe	Fe-Mg	Fe-O (Å)	Fe-Fe Metal (Å)
unlithisted	1.1 ± 0.1	1.6 ± 0.2	16 ± 0.2	3.3 ± 0.4	1.6 ± 0.2	16 ± 0.2		
unnunated	3.2 ± 0.4	1.1 ± 0.1	1.0 ± 0.2	3.3 ± 0.4	4.9 ± 0.4	1.0 ± 0.2		
0.5 e-	1.1 ± 0.1	1.6 ± 0.2	16 ± 0.2	3.3 ± 0.4	1.7 ± 0.2	1.7 ± 0.2		
lithiation	3.3 ± 0.4	1.1 ± 0.1	1.0 ± 0.2	3.3 ± 0.4	3.3 ± 0.4	1.7 ± 0.2		
1 e-	1.0 ± 0.3	1.5 ± 0.4	1.5 ± 0.4	3.0 ± 0.8	1.5 ± 0.4	1.5 ± 0.6		
lithiation	3.0 ± 0.8	0.8 ± 0.2		3.0 ± 0.8	3.0 ± 0.8			
2 e-				4.3 ± 0.5	57 ± 07	29 ± 04		
lithiation				4.3 ± 0.5	5.7 ± 0.7	2.7 ± 0.4		
4 e-				2.9 ± 0.5	38 ± 0.6	19 ± 03		1.2 ± 0.4
lithiation				$2.9\pm~0.5$	5.0 ± 0.0	1.9 ± 0.5		0.9 ± 0.3
6 e-				1.6 ± 0.4	2.1 ± 0.5	10 + 02		$1.4\pm~0.5$
lithiation				1.6 ± 0.4	2.1 = 0.3	1.0 _ 0.2		1.1 ± 0.4
full								4.7 ± 1.3
lithiation								1.6 ± 1.1
4 e- delithiation				1.7 ± 0.4	0.5 ± 0.4			1.1 ± 0.5
full delithiation				2.1 ± 0.3	0.7 ± 0.3		2.1 ± 0.4	
2 nd lithiation								5.0 ± 0.9
								1.8 ± 0.9
2 nd delithiation				2.4 ± 0.7	1.0 ± 0.9		2.3 ± 0.4	

Table S9: EXAFS fitting results for the interatomic distances for ZnFe₂O₄ (Fe edge). Paths associated with the ZnFe₂O₄ structure, a modified structure with all Zn and Fe ions in octahedral sites, the FeO structure, and the Fe metal structure are highlighted in red, blue, orange and green, respectively.

State	Fe-O (Å)	Fe-Fe (Å)	Fe-Zn (Å)	Fe-Fe Metal (Å)
unlithiated	2.01 ± 0.01 3.55 ± 0.04	3.00 ± 0.01	3.47 ± 0.01	
0.5 e- lithiation	2.01 ± 0.01 3.58 ± 0.04	3.00 ± 0.01	3.48 ± 0.01	
1 e- lithiation	2.02 ± 0.01 3.56 ± 0.01	2.99 ± 0.01	3.45 ± 0.02 2.99 ± 0.01	
2 e- lithiation	2.05 ± 0.01 3.61 ± 0.03	3.03 ± 0.01	3.03 ± 0.01	
4 e- lithiation	2.05 ± 0.01 3.59 ± 0.04	3.02 ± 0.01	3.02 ± 0.01	
6 e- lithiation	1.97 ± 0.02 3.37 ± 0.05	2.97 ± 0.02	2.97 ± 0.02	2.52 ± 0.02 2.90 ± 0.02
full lithiation				2.48 ± 0.02 2.86 ± 0.09
4 e- delithiation	1.87 ± 0.02 3.45 ± 0.02	2.88 ± 0.08		2.48 ± 0.03 2.68 ± 0.08
full delithiation	1.90 ± 0.01 3.49 ± 0.01	3.15 ± 0.03		
2 nd lithiation				2.47 ± 0.01 2.80 ± 0.03
2 nd delithiation	1.89 ± 0.01 3.48 ± 0.01	3.14 ± 0.03		

S-11

Table S10: EXAFS fitting results for the interatomic distances for ZnFe₂O₄ (Fe edge). Paths associated with the ZnFe₂O₄ structure, a modified structure with all Zn and Fe ions in octahedral sites, the FeO structure, and the Fe metal structure are highlighted in red, blue, orange and green, respectively.

~				
State	Fe-O	Fe-Fe	Fe-Zn	Fe-Fe Metal (Å)
unlithiated	5.0 ± 0.4	50 ± 0.4	5.0 ± 0.4	
unnunated	6.6 ± 0.5	5.0 ± 0.4		
0.5 e-	5.0 ± 0.4	5.0 ± 0.4	5.0 ± 0.4	
lithiation	6.6 ± 0.5			
1 e-	4.6 ± 0.4	4.6 ± 0.4	2.5 ± 0.4	
lithiation	6.1 ± 0.5		1.2 ± 0.4	
2 e-	4.9 ± 0.4	4.9 ± 0.4	2.5 ± 0.2	
lithiation	$6.6\pm~0.5$			
4 e-	4.6 ± 0.5	4.6 ± 0.5	2.3 ± 0.3	
lithiation	6.1 ± 0.6			
6 e-	1.9 ± 0.4	1.9 + 0.4	0.9 + 0.2	2.7 ± 1.2
lithiation	$2.5\pm~0.6$	1.9 ± 0.1	0.7 _ 0.2	2.0 ± 0.9
full				4.3 ± 1.7
lithiation				3.2 ± 1.3
4 e-	0.8 ± 0.2	1.6 ± 0.5		3.4 ± 0.8
delithiation	1.1 ± 0.3			2.5 ± 0.6
full	2.6 ± 0.3	5.2 ± 0.6		
delithiation	3.5 ± 0.4	5.2 ± 0.0		
2 nd lithiation				4.6 ± 0.7
2 11011011011				3.4 ± 0.6
2 nd	3.8 ± 0.4	48 + 0.9		
delithiation	5.1 ± 0.6	1.0 = 0.0		

Table S11: EXAFS fitting results for the interatomic distances for ZnFe₂O₄ (Zn edge). Paths associated with the ZnFe₂O₄ structure, a modified structure with all Fe and Zn ions in octahedral sites, the Zn metal structure, and the ZnO structure are highlighted in red, blue, and green, and yellow respectively. Additional Zn-O paths which are not part of these structures but were utilized in the models are highlighted in orange.

	,	Tetrahedral Zn			Octahedral Zn	l		
State	Zn-O (Å)	Zn-Fe (Å)	Zn-Zn (Å)	Zn-O (Å)	Zn-Fe (Å)	Zn-Zn (Å)	Zn-O (Å)	Zn-Zn Metal (Å)
unlithiated	2.00 ± 0.02 3.49 ± 0.05	3.50 ± 0.02	3.65 ± 0.03					
0.5 e- lithiation	1.99 ± 0.02 3.49 ± 0.05	3.51 ± 0.02	3.65 ± 0.03					
1 e- lithiation	1.96 ± 0.06 3.49 ± 0.1	3.50 ± 0.09	3.64 ± 0.09	2.07 ± 0.06 3.85 ± 0.01	3.03 ± 0.03	3.03 ± 0.03		
2 e- lithiation				$\begin{array}{l} 2.05 \pm 0.01 \\ 3.51 \pm \ 0.04 \end{array}$	3.02 ± 0.01	3.02 ± 0.01		
4 e- lithiation				2.06 ± 0.01 3.61 ± 0.06	3.03 ± 0.01	3.03 ± 0.01		
6 e- lithiation				$\begin{array}{c} 2.04 \pm 0.02 \\ 3.60 \pm \ 0.05 \end{array}$	3.05 ± 0.02	3.05 ± 0.02		
full lithiation							$1.92\pm\ 0.02$	2.51 ± 0.02
4 e- delithiation				$\begin{array}{c} 1.96 \pm 0.01 \\ 3.76 \pm 0.04 \end{array}$		3.24 ± 0.05		
full delithiation				$\begin{array}{c} 1.96 \pm 0.01 \\ 3.76 \pm 0.03 \end{array}$		3.21 ± 0.02		
2 nd lithiation							1.93 ± 0.01	2.51 ± 0.01
2 nd delithiation				$\overline{1.96 \pm 0.01}$ 3.75 ± 0.03		3.21 ± 0.01		

Table S12: EXAFS fitting results for the interatomic distances for ZnFe₂O₄ (Zn edge). Paths associated with the ZnFe₂O₄ structure, a modified structure with all Fe and Zn ions in octahedral sites, the Zn metal structure, and the ZnO structure are highlighted in red, blue, and green, and yellow respectively. Additional Zn-O paths which are not part of these structures but were utilized in the models are highlighted in orange.

State	Tetrahedral Zn			Octahedral Zn				
	Zn-O	Zn-Fe	Zn-Zn	Zn-O	Zn-Fe	Zn-Zn	Zn-O (Å)	Zn-Zn Metal (Å)
unlithiated	2.9 ± 0.5 8.6 ± 1.5	8.6 ± 1.5	2.9 ± 0.5					
0.5 e- lithiation	$\begin{array}{c} 2.9\pm0.5\\ 8.6\pm1.5\end{array}$	8.6 ± 1.5	2.9 ± 0.5					
1 e- lithiation	$\begin{array}{c} 1.6\pm0.8\\ 4.7\pm2.4\end{array}$	4.7 ± 2.4	1.6 ± 0.8	2.0 ± 1.4 2.6 ± 1.9	2.0 ± 1.4	1.0 ± 0.7		
2 e- lithiation				5.0 ± 0.5 6.6 ± 0.7	5.0 ± 0.5	2.5 ± 0.3		
4 e- lithiation				4.9 ± 0.5 6.5 ± 0.7	4.9 ± 0.5	2.4 ± 0.3		
6 e- lithiation				3.4 ± 0.4 4.5 ± 0.5	1.0 ± 0.5	1.7 ± 0.2		
full lithiation							1.1 ± 0.2	4.0 ± 0.2
4 e- delithiation				2.7 ± 0.2 6.1 ± 0.4		4.1 ± 0.2		
full delithiation				2.8 ± 0.2 6.4 ± 0.4		4.2 ± 0.3		
2 nd lithiation							1.4 ± 0.2	4.0 ± 0.2
2 nd delithiation				2.9 ± 0.2 6.5 ± 0.5		4.3 ± 0.3		

Figure S3. *Operando* synchrotron XRD (a) Fe₃O₄, (b) MgFe₂O₄, and (c) ZnFe₂O₄. All peaks are indexed to the following phases: spinel, Li metal, Cu metal, and Al metal.

Figure S4. (a, d) Normalized peak areas, (b, e) d-spacing, and (c, f) d-spacing change for (a,b,c) (511) and (d,e,f) (440) reflections from *operando* synchrotron XRD data.

Figure S5. (a) Distances of nearest-neighbors Fe(Mg)_{tet}- Fe(Mg)_{tet}, Fe(Mg)_{tet}- Fe(Mg)_{oct}, Fe(Mg)_{oct}- Fe(Mg)_{oct}- Fe(Mg)_{oct}-O, Fe(Mg)_{tet}-O in MgFe₂O₄ at different lithiation stage and Fe-O in FeO bulk, Mg-O in MgO bulk, Fe-Fe_{metal} in metallic Fe bulk structures to describe the lithiation states after phase separation. (b) Distances of nearest-neighbors Zn_{tet}-Zn_{tet}, Zn_{tet}-Fe_{oct}, Fe(Zn)_{oct}- Fe(Zn)_{oct}- Fe(Zn)_{oct}-O, Zn_{tet}-O in ZnFe₂O₄ at different lithiation stage and Fe-O in FeO bulk, Zn-O in ZnO bulk, Fe-Fe_{metal} in metallic Fe bulk, Zn-Zn_{metal} in metallic Zn bulk structures to describe the lithiation states after phase separation.

Figure S6. Structures of Fe₃O₄, MgFe₂O₄, and ZnFe₂O₄ electrode materials in the unlithiated state and after 2 e^- of lithiation.